
CHAPTER 8

TRAINING ON D-MODULES

Summary. In this chapter, we introduce the fundamental functors on D-mod-
ules that we use in order to define supplementary structures, and we also in-
troduce various operations: pullback and pushforward by a holomorphic map
between complex manifolds or a morphism between smooth algebraic varieties.
Most results are presented as exercises. They mainly rely on Leibniz rule. The
main references for this chapter are [Bjö93], [Kas03] and [GM93].

8.1. The sheaf of holomorphic differential operators

Let (X,OX) be a complex manifold equipped with its sheaf of holomorphic func-
tions. We also denote by C1

X
the sheaf of complex-valued C

1 functions on the un-
derlying C

1 manifold XR. This sheaf is a c-soft sheaf.

8.1.a. Vector fields, derivations, differential forms, contractions. We will
denote by ⇥X the sheaf of holomorphic vector fields on X. This is the OX -locally free
sheaf generated in local coordinates by @x1

, . . . , @xn
. It is a sheaf of OX -Lie algebras,

and vector fields act (on the left) on functions by derivation, in a way compatible
with the Lie algebra structure: given local vector fields ⇠, ⌘ acting on functions as a
derivations and given a local holomorphic function f ,

• f⇠ is the vector field acting as (f⇠)(g) = f · ⇠(g),
• the bracket [⇠, ⌘] defined as the operator [⇠, ⌘](g) := ⇠(⌘(g)) � ⌘(⇠(g)) is still a

derivation, hence defines a vector field.
We will denote by ⇥X,k the exterior product ^k⇥X , which is also a locally free OX -
module.

Dually, we denote by ⌦
1

X
the sheaf of holomorphic 1-forms on X. We will set

⌦
k

X
= ^k⌦1

X
and !X = ⌦

n

X
. We denote by d : ⌦

k

X
! ⌦

k+1

X
the differential.

The natural nondegenerate pairing h•, •i : ⌦1

X
⌦ ⇥X ! OX extends in a natural

way as a nondegenerate pairing ⌦
k

X
⌦⇥X,k ! OX . In local coordinates (x1, . . . , xn),

a basis of ⌦
k

X
is given by the family (dxI)I , where I runs among the subsets of

cardinal k of {1, . . . , n} and dxI is defined as dxi1
^ · · · ^ dxik

, with I = {i1, . . . , ik}



228 CHAPTER 8. TRAINING ON D-MODULES

and i1 < · · · < ik. Dually, the partial derivatives @xi
lead to the basis (@xI

)I of ⇥X,k,
with a similar meaning. Due to anti-commutativity of the wedge product, (@xI

)I is
the basis dual to (dxI)I up to sign, that is, denoting by � the Kronecker index,

hdxI , @x0
I
i = "(k)�I,I0 ("(k) := (�1)k(k�1)/2).

We can thus regard sections of ⌦k

X
as OX -linear forms on ⇥X,k. For a local section ⌘

of ⌦k

X
, we may denote h⌘, •i as ⌘(•).

The contraction by a vector field ⇠ is the OX -linear morphism ⇠ : ⌦
k

X
! ⌦

k�1
X

defined by ⌘ 7! ⌘(⇠^ •), where • is local section of ⇥X,k�1. More generally, for a local
section ⇠ of ⇥X,j , the contraction ⌘ 7! ⌘(⇠ ^ •) sends ⌦

k

X
to ⌦

k�j
X

.
For example, if k = n = dimX, set

dx := dx1 ^ · · · ^ dxn and dxbı := dx1 ^ · · · ^ddxi ^ · · · ^ dxn.

Then we have
@xi

dx = (�1)n�idxbı,

since

(@xi
dx)(@xbı) = dx(@xi

^ @xbı) = (�1)i�1dx(@x)

= (�1)i�1 "(n) = (�1)n�i "(n� 1) = (�1)n�idxbı(@xbı).

As a consequence, for f 2 OX , we have d(f@xi
dx) = (�1)n�1@f/@xi

· dx.
The Lie derivative of dx along ⇠ is defined as L⇠(dx) := d(⇠ dx). Similarly,

we rename the action of ⇠ as a derivation on f as L⇠(f) = @f/@xi
. Note that

L@xi
(dx) = 0. We conclude from these formulas that there is a natural right action

(in a compatible way with the Lie algebra structure) of ⇥X on !X , defined by

(8.1.1) ! · ⇠ = (�1)nL⇠! := (�1)nd(⇠ !).

Indeed, the relation ⇠(f)! = ! · [⇠, f ] = (! ·⇠)f� (!f) ·⇠ holds, as for example, taking
⇠ = @xi

, we find (fdx) · @xi
= �(@f/@xi)dx and

(@f/@xi)dx = (�1)n�1d(f@xi
dx) = �(fdx) · @xi

and (dx · @xi
)f = 0.

Similarly, let us check ! · [⇠, ⇠0] = (! · ⇠) · ⇠0 � (! · ⇠0) · ⇠ with ! = dx, ⇠ = f@xi
,

⇠
0
= @xj

. We have [⇠, ⇠
0
] = �(@f/@xj

)@xi
and ! · ⇠0 = 0, so we only have to check

�(@f/@xjdx) · @xi
= ((fdx) · @xi

) · @xj
,

which follows from the commutativity of the partial derivatives of f .

8.1.2. Definition (The sheaf of holomorphic differential operators)
For any open set U of X, the ring DX(U) of holomorphic differential operators

on U is the subring of HomC(OU ,OU ) generated by
• multiplication by holomorphic functions on U ,
• derivation by holomorphic vector fields on U .

The sheaf DX is defined by �(U,DX) = DX(U) for every open set U of X.

By construction, the sheaf DX acts on the left on OX , i.e., OX is a left DX -module.
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8.1.3. Definition (The filtration of DX by the order). The increasing family of sub-
sheaves FkDX ⇢ DX is defined inductively:

• FkDX = 0 if k 6 �1,
• F0DX = OX (via the canonical injection OX ,! HomC(OX ,OX)),
• the local sections P of Fk+1DX are characterized by the fact that [P, f ] is a local

section of FkDX for any holomorphic function g.

8.1.4. Proposition. Giving a left DX-module M is equivalent to giving an OX-module M

together with an integrable connection r.

Proof. Exercises 8.1, 8.5 and 8.6.

8.1.b. Vector fields and differential forms in presence of a filtration

We now apply the constructions of Section 5.1 to the filtered ring (DX , F•DX) and
its (left or right) modules. We obtain the following properties:

• eOX := RFOX = OX [z].
• in local coordinates, we have

(8.1.5) eDX := RFDX = OX [z]he@x1
, . . . , e@xn

i,

i.e., any germ of section of eDX may be written in a unique way as
X

↵

a↵(x, z)
e@↵
x
=

X

↵

e@�
x
b↵(x, z),

where a↵, b↵ 2 eOX , and where we set

(8.1.6) e@xi
:= z@xi

.

• The ring eDX is equipped with a natural filtration F•
eDX by the order in e@x. If we

write eDX = RFDX , then this filtration is defined by the formula

(8.1.7) Fk
eDX =

k�1L
j=0

FjDXz
j � FkDXz

k
C[z].

The graded ring gr
F eDX can be identified with the graded ring gr

FDX ⌦C C[z] (with
grading only coming from gr

FDX) by dividing each gr
F

k
eDX by z

k. If we regard
gr

FDX as the ring of holomorphic functions on the cotangent space T
⇤
X which are

polynomial with respect to the projection eT ⇤X := T
⇤
X ! X, we interpret the ring

gr
F eDX as the ring of holomorphic functions on T

⇤
X ⇥Cz which are polynomial with

respect to the projection to X.
• The sheaf e⇥X is the locally free eOX -module locally generated by e@x1

, . . . , e@xn

(having degree 1, due to our convention in Section 5.1.3) and we have [e@xi
, f ] =

ze@f/e@xi for any local section g of eOX ; we also set e⇥X,k = ^k e⇥X ;
• e⌦1

X
is the locally free graded eOX -module z

�1
C[z]⌦C ⌦

1

X
, and e⌦k

X
= ^ke⌦1

X
; the

differential ed is induced by 1 ⌦ d on e⌦k

X
= z

�k
C[z] ⌦C ⌦

k

X
; we set e!X = e⌦n

X
; we

regard the differential as a graded morphism of degree zero
ed : e⌦k

X
�! e⌦k+1

X
;
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the local basis (edxi = z
�1

dxi)i (having degree �1) is dual to the basis (e@xi
)i of e⇥X .

• We also set eC1
X

:= C1
X
[z]. This is a c-soft sheaf on the underlying C

1 mani-
fold XR.

• Contraction of a z-differential form of degree k by a z-vector field is defined as
in Section 8.1.a.

• We have natural Lie algebra actions of e⇥X on eOX (action on the left) and on e!X

(action on the right).

8.1.8. Example (Filtered flat bundles). Let (L,r) be a flat holomorphic bundle on X

and let F
•L be a decreasing filtration of L by OX -locally free sheaves. Then the flat

connection r endows L with the structure of a left DX -module (Proposition 8.1.4).
The Griffiths transversality property

(8.1.8 ⇤) rF pL ⇢ ⌦
1

X
⌦ F

p�1L, 8 p 2 Z

is equivalent to the property that the corresponding increasing filtration F•L is an
FDX -filtration of the DX -module L.

8.1.9. Definition (Connection). Let eM be a graded eOX -module. A connection on eM is
a graded eC-linear morphism er : eM ! e⌦1

X
⌦ eM (of degree zero) which satisfies the

Leibniz rule
8 f 2 eOX , er(fm) = f erm+ ed f ⌦m.

Proposition 8.1.4 holds true in this filtered setting (Exercise 8.7).

8.1.10. Example. The fundamental examples of filtered left and right DX -modules are:
• (OX , F•OX) with gr

F

p
OX = 0 for p 6= 0, so RFOX = OX [z],

• (!X , F•!X) with gr
F

p
!X = 0 for p 6= �n, so RF!X = e!X = e⌦n

X
= z
�n
!X [z].

8.1.11. Convention. We will use the following convention.

(i) eOX (resp. eC1
X

) denotes either the sheaf rings OX (resp. C1
X

) or the sheaf of
graded rings OX [z] = RFOX (resp. C1

X
[z]), and Mod(eOX) denotes the category of

OX -modules or that of graded OX [z]-modules.
(ii) The notation e⇥X , e⌦k

X
, ^k e⇥X has a similar double meaning.

(iii) Similarly, eDX denotes either the sheaf rings DX or the sheaf of graded rings
RFDX , and Mod(eDX) denotes the category of DX -modules or that of graded RFDX -
modules.

(iv) It will also be convenient to denote by eC either the field C or the graded
ring C[z].

(v) In each of the second cases above, we will usually omit the word “graded”,
although it is always understood.

(vi) One recovers standard results for DX -modules by setting z = 1 and e@ = @.
(vii) The strictness condition that we may consider (see Section 5.1.b) only refers

to the second cases above, it is empty in the first cases.
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8.2. Left and right

Considering left or right eDX -modules is not completely symmetric. The main
reason is that the left eDX -module eOX is a sheaf of rings, while its right analogue
e!X := e⌦n

X
, is not a sheaf of rings. So for example the behaviour with respect to

tensor products over eOX is not the same for left and right eD-modules. Also, the side
changing functor defined below sends eDleft

X
to e!X ⌦eOX

eDX , and not to eDX regarded
as a right eDX -module over itself.

8.2.1. Notation (The category Mod(eDX)). The categories of left (resp. right) eDX -mod-
ules are denoted by Mod

left
(eDX) (resp. Mod

right
(eDX) with the convention that we

implicitly consider graded modules and morphisms of degree zero in the case of eD =

RFD.

We analyze the relations between both categories in this section. The main rule to
be followed is that the side-changing functor changes a functor in the category of left
objects to the functor denoted in the same way in the category of right objects, and
conversely.

Exercises 8.8 and 8.9 give the basic tools for generating left or right eD-modules.

8.2.2. Example (Example 8.1.10 continued).

(1) eDX is a left and a right eDX -module.
(2) eOX is a left eDX -module (Exercise 8.10), with grading

(eOX)p =

(
OX if p > 0,

0 if p < 0.

(3) e!X := e⌦dimX

X
is a right eDX -module (Exercise 8.11), with grading

(e!X)p =

(
!X if p > �n,
0 if p < �n.

8.2.3. Definition (Side-changing of eDX -modules). Any left eDX -module eMleft gives rise
to a right one eMright by setting eMright

= e!X ⌦eOX

eMleft and, for any vector field ⇠ and
any function g,

(! ⌦m) · f = f! ⌦m = ! ⌦ fm, (! ⌦m) · ⇠ = !⇠ ⌦m� ! ⌦ ⇠m.

Conversely, set eMleft
= Hom eOX

(e!X , eMright
), which also has in a natural way the

structure of a left eDX -module (see Exercise 8.13(2)). The grading behaves as follows
(see Example 8.1.10 and (5.1.4)):

eMright
= z
�n
!X ⌦OX

eMleft
= !X ⌦OX

eMleft
(�n),

Mright

p
= !X ⌦OX

Mleft

p+n
.

(8.2.3 ⇤)
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If eM = RFM is the Rees module of a filtration, then the side-changing functor is
written as

(8.2.3 ⇤⇤) FpM
right

= Fp(!X ⌦OX
Mleft

) = !X ⌦OX
Fp+nM

left
.

8.2.4. Caveat. Let e!_
X

= Hom eOX

(e!X , eOX) as an eOX -module. One often finds in the
literature the formula eMleft

= eMright ⌦eOX

e!_
X

, which give the eOX -module structure
of eMleft. However, the left eDX -module structure is not obtained with a “tensor product
formula” as in Exercise 8.12, but uses the interpretation as Hom eOX

(e!X , eMright
).

On the other hand, let U be a chart of X with coordinates x1, . . . , xn. Set edx =

edx1 ^ · · · ^ edxn. This is an eOU -basis of e!X . Let edx_ denote the dual basis of e!_
X

. It
is often convenient, for a right eDU -module eMright, to write eMleft

= eMright⌦edx_ with
the convention that a local section edx_ ⌦m is regarded as the morphism sending edx
to m. In view of the duality between e⌦1

X
and e⇥X , one can identify e!_

X
with ^ne⇥X

and choose the local basis e@^nx := e@x1
^ · · ·^ e@xn

of ^ne⇥U . Both bases are related by
edx_

= "(n)e@^nx . See also Exercise 8.17.

The following is obvious from Exercises 8.14 and 8.15.

8.2.5. Proposition. The side-changing functors left-to-right and right-to-left are iso-
morphisms of between the categories of left and right graded eDX-modules, which are
inverse one another. The left-to-right functor induces a twist (�n), while the right-
to-left functor induces a twist (n) (n = dimX).

8.2.6. Remark. The ring eDX considered as a right eDX -module over itself is not equal
to the right eDX -module associated with eDX regarded as a left eDX -module over itself
by the side-changing functor.

8.2.7. Caveat (Side-changing and grading). For a filtered left DX -module (M, F•M),
side-changing and grading are related by the formula (according to example 8.2.2(3))

gr
F
(!X ⌦OX

M) = !X ⌦OX
gr

FM(�n),

as OX -modules. The action of grFDX is not exactly preserved by this isomorphism.
Indeed, recall that, for a vector field ⇠, we have (! ⌦m)⇠ = !⇠ ⌦m � ! ⌦ ⇠m and,
taking classes in the suitable graded piece, we find [! ⌦m][⇠] = �! ⌦ [⇠m]. We can
thus write, as gr

FDX -modules,

gr
F
(!X ⌦OX

M) = !X ⌦OX
inv
⇤
gr

FM(�n),

where inv
⇤
gr

FM denotes the OX -module gr
FM on which the action of gr

FDX is
modified in such a way that gr

F

k
DX acts by multiplying by (�1)k the usual action.

8.3. Examples of eD-modules

We list here some classical examples of eD-modules. One can get many other ex-
amples by applying various operations on eD-modules.
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8.3.1. Induced eDX -modules. Let eL be an eOX -module. There is a very simple way to
get a right eDX -module from eL: consider eL⌦eOX

eDX equipped with the natural right
action of eDX . This is called an induced eDX -module. Although this construction is
very simple, it is also very useful to get cohomological properties of eDX -modules.
One can also consider the left eDX -module eDX ⌦eOX

eL (however, this is not the left
eDX -module attached to the right one eL ⌦eOX

eDX by the side-changing functor of
Definition 8.2.3).

8.3.2. (Meromorphic) OX -modules with integrable connection. One of the main geomet-
rical examples of DX -modules are the vector bundles on X equipped with an inte-
grable connection. Recall (Proposition 8.1.4) that left DX -modules are OX -modules
with an integrable connection. Among them, the coherent DX -modules are of partic-
ular interest. One can show that such modules are OX -locally free, i.e., correspond
to holomorphic vector bundles of finite rank on X.

It may happen that, for some X, such a category does not give any interesting
geometric object. Indeed, if for instance X has a trivial fundamental group (e.g. X =

P
1
(C)), then any vector bundle with integrable connection is isomorphic to the trivial

bundle OX with the connection d. However, on non simply connected Zariski open
sets of X, there exist interesting vector bundles with connections. This leads to the
notion of meromorphic vector bundle with connection.

Let D be a divisor in X and denote by OX(⇤D) the sheaf of meromorphic functions
on X with poles along D at most. This is a sheaf of left DX -modules, being an
OX -module equipped with the natural connection d : OX(⇤D)! ⌦

1

X
(⇤D).

By definition, a meromorphic bundle is a locally free OX(⇤D) module of finite rank.
When it is equipped with an integrable connection, it becomes a left DX -module.

8.3.3. Twisted connections. One can twist the previous examples. Assume that ! is a
closed holomorphic form on X. Define r : OX ! ⌦

1

X
by the formula r = d + !. As

! is closed, r is an integrable connection on the trivial bundle OX .
Usually, the nonzero closed form on X are meromorphic, with poles on some divi-

sor D. Then r is an integrable connection on OX(⇤D).
If ! is exact, ! = dg for some meromorphic function g on X, then r can be written

as e
�g � d � eg.

More generally, if M is any meromorphic bundle with an integrable connection r,
then, for any such !, r+ ! Id defines a new DX -module structure on M.

8.3.4. Filtered flat bundles. Contrary to what happens for OX -coherent DX -modules,
which are automatically OX -locally free and correspond to vector bundles with in-
tegrable connection, eOX -coherent eDX -modules may not be eOX -locally free. We are
mainly interested in eOX -locally free such objects. Let eM be one such. In particu-
lar, eM is eC-flat, hence corresponds to a filtered DX -module (M, F•M). Furthermore,
M = eM/(z � 1) eM is OX -coherent, hence is OX -locally free with an integrable con-
nection r satisfying the Griffiths transversality property with respect to F•M. The
eOX -coherency property implies that the (increasing) filtration is stationary and is a
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filtration by OX -coherent subsheaves. Lastly, the graded module eM/z eM is eOX/zeOX -
locally free, hence each graded component gr

F

p
M is OX -locally free, thus each FpM

also. For example, variations of Hodge structure in their holomorphic description of
Section 4.1.a are eOX -locally free (of finite rank) eDX -modules.

8.3.5. Distributions and currents. Denote by DbX the sheaf of distributions on the
complex manifold X of dimension n: given any open set U of X, DbX(U) is the space
of distributions on U , which is by definition the weak dual of the space of C1 forms
with compact support on U , of type (n, n). By Exercise 8.11, there is a right action
of DX on such forms. The left action of DX on distributions is defined by adjunction:
denote by h⌘, ui the natural pairing between a compactly supported C

1-form ⌘ and
a distribution u on U ; let P be a holomorphic differential operator on U ; define then
P · u in such a way that, for every ⌘, on has

h⌘, P · ui = h⌘ · P, ui.

Given any distribution u on X, the subsheaf DX · u ⇢ DbX is the DX -module gener-
ated by this distribution. Saying that a distribution is a solution of a family P1, . . . , Pk

of differential equation is equivalent to saying that the morphism DX ! DX ·u send-
ing 1 to u induces a surjective morphism DX/(P1, . . . , Pk)! DX · u.

Similarly, the sheaf CX of currents of degree 0 on X is defined in such a way that,
for any open set U ⇢ X, CX(U) is dual to C

1
c
(U) with a suitable topology. It is a

right DX -module.
In local coordinates x1, . . . , xn, a current of degree 0 is nothing but a distribution

times the volume form dx1 ^ · · · ^ dxn ^ dx1 ^ · · · ^ dxn.
As we are now working with C

1 forms or with currents, it is natural not to
forget the anti-holomorphic part of these objects. Denote by O

X
the sheaf of anti-

holomorphic functions on X and by D
X

the sheaf of anti-holomorphic differential op-
erators. Then DbX (resp. CX) are similarly left (resp. right) D

X
-modules. Of course,

the DX and D
X

actions do commute, and they coincide when considering multipli-
cation by constants.

The conjugation exchanges both structures. For example, if u is a distribution
on U , its conjugate u is defined by the formula

(8.3.0 ⇤) h⌘, ui := h⌘, ui (⌘ 2 En,n

c
(U)).

This is of course compatible with the usual conjugation of L1

loc
functions.

It is therefore natural to introduce the following sheaves of rings:

(8.3.0 ⇤⇤) O
X,X

:= OX ⌦C O
X
, D

X,X
:= DX ⌦C D

X
,

and consider DbX (resp. CX) as left (resp. right) D
X,X

-modules.

Operations on eDX -modules. One can construct new examples from old ones by using
various operations.
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• Let eM be a left eDX -module. Then Hom eDX

( eM, eDX) has a natural structure of
right eDX -module. Using a resolution eN• of eM by left eDX -modules which are acyclic
for Hom eDX

(•, eDX), one gets a right eDX -module structure on ExtkeDX

( eM, eDX) for k > 0.
• Given two left (resp. a left and a right) eDX -modules eM and eN, the same argument

enables one to put on the various Tor
i,eOX

(eN, eM) a left (resp. a right) eDX -module
structure.

8.4. The de Rham functor

8.4.1. Definition (de Rham). For a left eDX -module eM, the de Rham complex DR eM is
the bounded complex (with • in degree zero and all nonzero terms in non-negative
degrees)

DR eM := {0! eM
•

er���! e⌦1

X
⌦ eM

er���! · · ·
er���! e⌦n

X
⌦ eM! 0}.

The terms are the eOX -modules e⌦•
X
⌦eOX

eMleft and the differentials the eC-linear mor-
phisms er defined in Exercise 8.6 or 8.7.

The shifted de Rham complex p

DR eM is defined as

p

DR eM := {0! eM
(�1)n er
�������! e⌦1

X
⌦ eM

(�1)n er
�������! · · ·

(�1)n er
�������! e⌦n

X
⌦ eM
•

! 0}.

The previous definition produces a complex since er � er = 0, according to the
integrability condition on er, as remarked in Exercise 8.6 or 8.7. The notation p

DR is
motivated by the property that, for a holonomic DX -module M, the complex p

DRM

is a perverse sheaf (a theorem of Kashiwara).

8.4.2. Remark (Shift of a complex). Given a complex (C
•
, e�), the shifted complex

(C
•
, e�)[n] is the complex (C

n+•
, (�1)ne�). Thus the complex p

DR eM is equal to
DR eM[n]. The shifted de Rham complex is implicitly considered in Formula (8.1.1).
In the following, given a complex (C

•
, e�), we will also denote by C

n+• the shifted
complex (C

•
, e�)[n] when there is no doubt about the differential.

8.4.3. Definition (Spencer). The Spencer complex Sp( eM) of a right eDX -module eM is
the bounded complex (with • in degree zero and all nonzero terms in non-positive
degrees; recall also the notation e⇥X,k = ^k e⇥X)

Sp( eM) := {0! eM⌦eOX

e⇥X,n

e�fM���! · · ·
e�fM���! eM⌦eOX

e⇥X,1

e�fM���! eM
•
! 0},

where the differential e�fM is the eC-linear map given by

m⌦ (⇠1 ^ · · · ^ ⇠k) 7
e�fM���!

kX

i=1

(�1)i�1(m⇠i)⌦ (⇠1 ^ · · · ^ b⇠i ^ · · · ^ ⇠k)

+

X

i<j

(�1)i+j
m⌦

�
[⇠i, ⇠j ] ^ ⇠1 ^ · · · ^ b⇠i ^ · · · ^ b⇠j ^ · · · ^ ⇠k

�
,
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where b⇠i means that we omit ⇠i in the wedge product.

Of special interest will be, of course, the de Rham or Spencer complex of the
ring eDX , considered as a left or right eDX -module. Notice that in DR(eDX) the
differentials are right eDX -linear, and in Sp(eDX) they are left eDX -linear. See Exercises
8.21–8.24 for some of their properties.

8.4.4. Remark.
(1) For a right eDX -module eM, the complex Sp( eM) is isomorphic to eM⌦eDX

Sp(eDX)

(Exercise 8.24). It is then possible to prove some statements on Sp( eM) by only
considering the case where eM = eDX .

(2) For a left eDX -module eM, it is usual to find in the literature the definition
of the unshifted deRham complex DR eM as RHom eDX

(eOX
eM) (in a suitable derived

category). Since Sp(eDX) is a resolution of eOX by locally free eDX -modules, this
isomorphism amounts to the isomorphism DR eM ' Hom eDX

(Sp(eDX), eM). This is
shown in Exercise 8.25.

Side-changing. Given any k > 0, the contraction is the morphism (see Section 8.1.a)

e!X ⌦eOX

e⇥X,k ��! e⌦n�k
X

! ⌦ ⇠ 7�! (⇠ !)(•) = !(⇠ ^ •).

(8.4.5)

8.4.6. Example. In local coordinates (x1, . . . , xn), let us set edx = edx1 ^ · · ·^ edxn. For

i = 1, . . . , k 6 n, let us set e@ bxi
:= e@x1

^ · · ·^ce@xi
^ · · ·^e@xk

(i.e., omitting e@xi
in the

wedge product) for simplicity. Then the following formulas hold, for k 6 n:

(e@x1
^ · · · ^ e@xn

) edx = "(n),

(e@x1
^ · · · ^ e@xk

) edx = "(n) "(n� k)edxk+1 ^ · · · ^ edxn,(8.4.6⇤)
e@ bxi

edx = (�1)k�i "(n) "(n� k + 1)edxi ^ edxk+1 ^ · · · ^ edxn.(8.4.6⇤⇤)

8.4.7. Lemma. There exists a natural isomorphism of complexes of right eDX-modules
(i.e., is compatible with the differentials of these complexes)

◆ : e!X ⌦eOX

Sp(eDX)
⇠�! p

DR(eDX)

which induces the identity

e!X ⌦eOX

Sp
0
(eDX) = e!X ⌦eOX

eDX = DR
n eDX .

It is induced by the isomorphisms of right eDX-modules

e!X ⌦eOX

�eDX ⌦eOX

e⇥X,k

� ◆���!⇠
e⌦n�k
X
⌦eOX

eDX

⇥
! ⌦ (1⌦ ⇠)

⇤
· P 7�! (⇠ !)⌦ P

(where the right structure of the right-hand term is the natural one and that of the
left-hand term is nothing but that induced by the natural left structure of eDX⌦eOX

e⇥X,k

by side-changing).
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Proof. It is enough to prove that the diagram

e!X ⌦eOX

�eDX ⌦eOX

e⇥X,k

� ◆
//

e�
✏✏

e⌦n�k
X
⌦eOX

eDX

(�1)n er
✏✏

e!X ⌦eOX

�eDX ⌦eOX

e⇥X,k�1
� ◆

// e⌦n�k+1

X
⌦eOX

eDX

commutes. We will make use of the relations satisfied by the function " (see Nota-
tion 0.2). It is also enough to check this locally, and, in local coordinates (x1, . . . , xn),
we are reduced by right eDX -linearity to checking this on sections of the form
edx⌦ (1⌦ (e@x1

^ · · · ^ e@xk
)). We use the notation of Example 8.4.6.

On the one hand, we have edx · e@xi
= 0 and, according to (8.4.6⇤⇤) we find

e�
⇥edx⌦ (1⌦ (e@x1

^ · · · ^ e@xk
))
⇤
=

kX

i=1

(�1)i�1edx⌦ (e@xi
⌦ e@ bxi

)

=

kX

i=1

(�1)i
⇥edx⌦ (1⌦ e@ bxi

)
⇤
·e@xi

◆��!
kX

i=1

(�1)i(e@ bxi

edx)⌦ e@xi

= (�1)k "(n) "(n� k + 1)

kX

i=1

(edxi ^ edxk+1 ^ · · · ^ edxn)⌦ e@xi
.

On the other hand, we have, according to (8.4.6⇤) (see Exercises 8.5 and 8.7),

(�1)n er◆
⇥edx⌦(1⌦ (e@x1

^ · · · ^ e@xk
))
⇤

= (�1)n er
⇥
(e@x1

^ · · · ^ e@xk
) edx)⌦ 1

⇤

= (�1)n "(n) "(n� k)er
⇥
(edxk+1 ^ · · · ^ edxn)⌦ 1

⇤

= (�1)n "(n) "(n� k)

kX

i=1

(�1)n�k(edxk+1 ^ · · · ^ edxn ^ edxi)⌦ e@xi

= (�1)n "(n) "(n� k)

kX

i=1

(edxi ^ edxk+1 ^ · · · ^ edxn)⌦ e@xi
.

and the desired equality follows from the relation "(n�k+1) = (�1)n�k "(n�k).

Let eM be a left eDX -module and let eMright the associated right module. We will
now compare p

DRX( eM) and Sp( eMright
). We will denote by p

DR( eMright
) the Spencer

complex Sp( eMright
) and we keep the notation p

DR( eMleft
) for the de Rham complex

of a left eDX -module. Exercise 8.26 gives an isomorphism

(8.4.8) p

DR( eMright
)
⇠�! p

DR( eMleft
).

8.4.9. The grading of p

DR eM. In the left and right case, p

DR eM is a bounded complex
of sheaves of graded eC-modules and the isomorphism (8.4.8) is an isomorphism as
such (i.e., preserves the grading). Indeed, we note that, for k > 0, e⌦k

X
(resp. e⇥X,k) is
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homogeneous of degree �k (resp. k); therefore, the degree p component of p

DR eM is
the complex of C-vector spaces

(
p

DR eMleft
)p := {0!Mleft

p
�! ⌦

1

X
⌦Mleft

p+1
�! · · · �! ⌦

n

X
⌦Mleft

p+n

•

! 0} · zp,

(
p

DR eMright
)p := {0!Mright

p�n ⌦⇥X,n ! · · ·!Mright

p�1 ⌦⇥X,1 !Mright

p

•

! 0} · zp,

and the side-changing functors preserve the grading (see (8.2.3 ⇤)). If eM = RFM

is the Rees module of an F -filtered DX -module M, we regard p

DR eM as the Rees
complex of the filtered complex

Fp

p

DRMleft
:= {0! FpM

left ! ⌦
1

X
⌦ Fp+1M

left ! · · ·! ⌦
n

X
⌦ Fp+nM

left

•
! 0},

Fp

p

DRMright

:= {0! Fp�nM
right ⌦⇥X,n ! · · ·! Fp�1M

right ⌦⇥X,1 ! FpM
right

•
! 0}.

Recall that the side-changing functor for filtered DX -modules (8.2.3 ⇤⇤) amounts to

FpM
right

= !X ⌦ Fp+nM
left

.

Exercise 8.24 clearly shows that p

DR is a functor from the category of left
(resp. right) eDX -modules to the category of bounded complex of sheaves of eC-mod-
ules. It can be extended to a functor between the corresponding bounded derived
categories.

8.4.10. Definition (Contraction by a one-form). The contraction morphism

e⇥X,k ⌦ e⌦1

X
��! e⇥X,k�1

is the unique morphism such that the following diagram commutes:

e!X ⌦ e⇥X,k ⌦ e⌦1

X

✏✏

Id⌦
// e!X ⌦ e⇥X,k�1

✏✏

e⌦n�k
X
⌦ e⌦1

X

^
// e⌦n�k+1

X

where the vertical morphisms are induced by (8.4.5), i.e., e!(⇠ ⌘
1
) = e!(⇠) ^ ⌘1.

8.4.11. Action of a closed one-form on the de Rham complex. Let ⌘ be a closed holomor-
phic one-form on X. Then the exterior product by ⌘ induces a morphism

⌘ ^ • :
p

DR( eMleft
) �! p

DR( eMleft
)[1].

Indeed, for a local section m of eM and a k-form !, we have
er((⌘ ^ !)⌦m) = (ed⌘ ^ !)⌦m� ⌘ ^ er(! ⌦m) = �⌘ ^ er(! ⌦m),

so that the morphism ⌘ ^ commutes with the differentials (see Remark 8.4.2).
According to Lemma 8.4.7, we can define the contraction

• ⌘ : Sp(eDX) �! Sp(eDX)[1]
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as the unique morphism which corresponds to ⌘ ^ • on p

DR(eDX) via ◆. According to
Remark 8.4.4(1), we can define in a similar way a morphism of complexes

(8.4.12) • ⌘ :
p

DR( eMright
) �! p

DR( eMright
)[1].

Note that, if ⌘ = edf is exact, then the induced morphism

⌘ ^ : H
i p

DR( eMleft
) �! H

i+1 p

DR( eMleft
)

is zero. Indeed, if a local section µ of e⌦k

X
⌦ eMleft satisfies erµ = 0, then edf^µ = er(fµ).

In other words, the morphism ⌘ ^ on the cohomology only depends on the class of ⌘
in H

1
�(X, (e⌦•

X
, ed)). The same result holds when we make ⌘ acting on the complex

�(X,
p

DR( eMleft
)), and a similar result holds for the action • ⌘ on p

DR( eMright
).

8.4.13. C
1 de Rham and Spencer complexes. Let us denote by (eE(•,0)

X
, ed0) the complex

eC1
X
⌦eOX

e⌦•
X

with the differential induced by ed (here, we assume • > 0). More generally,
let us set

eE(p,q)

X
= e⌦p

X
^ eE(0,q)

X
= eE(p,0)

X
^ eE(0,q)

X

and let d
00 be the (usual) anti-holomorphic differential. For every p, the complex

(eE(p,•)
X

, d
00
) is a resolution of e⌦p

X
(note that, here, d00 is not affected by z, hence is

homogeneous of degree zero with respect to the grading). We therefore have a complex
(eE•

X
, ed), which is the single complex associated to the double complex (eE(•,•)

X
, ed0, d00).

In particular, since eDX is eOX -locally free, we have a natural quasi-isomorphism of
complexes of right eDX -modules:

(e⌦•
X
⌦eOX

eDX , er) ⇠�! (eE•
X
⌦eOX

eDX , eD) =: DR
1
(eDX), eD := Id⌦er+ d

00 ⌦ Id,

by sending holomorphic k-forms to (k, 0)-forms. Given a left eDX -module eMleft, we can
define similarly the C

1 de Rham complex
p

DR
1
( eMleft

) := (eEn+•
X
⌦eOX

eMleft
, eD), eD := (�1)n(Id⌦er+ d

00 ⌦ Id).

As in Exercise 8.24(2), by using that (eEn+•
X
⌦eOX

eDX , eD) is a complex of right eDX -mod-
ules, we obtain a quasi-isomorphism:

p

DR
1
(eDX)⌦eDX

eMleft ⇠�! p

DR
1
( eMleft

).

From the commutative diagram
p

DR(eDX)⌦eDX

eMleft ⇠
//

o
✏✏

p

DR( eMleft
)

✏✏

p

DR
1
(eDX)⌦eDX

eMleft ⇠
//

p

DR
1
( eMleft

)

we conclude that the right vertical morphism is a quasi-isomorphism.
We can argue similarly for defining the C

1 Spencer complex of a right eDX -module
eMright. We resolve

e⇥X,k

⇠�! (e⇥X,k ⌦eOX

eE(0,•)
X

, Id⌦d00).
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Let us set, for each ` 2 Z,

fSp1,`

X
=

L
j�i=`

(e⇥X,i ⌦eOX

eE(0,j)

X
).

For any right eDX -module eMright, we define
p

DR
1
( eMright

) := ( eMright ⌦eOX

fSp1,•
X

, e�1fM),

where the differential e�1fM is defined in Exercise 8.28. We will use the notation
Sp
1
(eDX) for the C

1 Spencer complex of eDX with its right structure. Then, ar-
guing as in Exercise 8.24(1), we obtain a quasi-isomorphism

eMright ⌦eDX

Sp
1
(eDX)

⇠�! p

DR
1
( eMright

),

from which we deduce as above a quasi-isomorphism
p

DR( eMright
)
⇠�! p

DR
1
( eMright

).

Recall that eC1
X

is flat over eOX , hence so are eEk

X
and fSp1,`

X
. The terms of

p

DR
1
(eDX) and Sp

1
(eDX) are flat over eOX and eDX , and are c-soft sheaves, so that

any short exact sequence 0! eM0 ! eM! eM00 ! 0 gives rise to an exact sequence of
the corresponding C

1 de Rham complexes, which consist of c-soft sheaves.
Moreover, by Exercise 8.28, if eMright corresponds to eMleft by side-changing, then

p

DR
1
( eMright

)
⇠�! p

DR
1
( eMleft

).

8.5. Induced eD-modules

A subcategory of Mod(eDX) proves very useful in many places, namely that of
induced right eDX-modules. Let eL be an eOX -module. It induces a right eDX -module
eL⌦eOX

eDX , called an induced right eDX-module.

8.5.1. Remark. We note that eL⌦eOX

eDX has two structures of eOX -module, one coming
from the action on eL and the other one from the right eDX -module structure, and they
do not coincide. We will mainly use the right one. The “left” eOX -module structure
on eL⌦eOX

eDX will only be used when noticing that some naturally defined sheaves of
eC-vector spaces are in fact sheaves of eOX -modules. On the other hand, eL ⌦eOX

eDX

has a canonical structure of right eDX -module.

The category Modi(
eDX) of right induced differential modules is the full subcategory

of Mod(eDX) consisting of induced eDX -modules (i.e., we consider as morphisms all
eDX -linear morphisms). It is an additive category (but not an abelian category).

8.5.2. Proposition (The canonical resolution by induced eDX -modules)
Let eM be a right eDX-module. Then the complex eM⌦eOX

Sp(eDX) is isomorphic to
a complex of right induced eDX-modules which is a resolution of eM as such.
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One should not confuse eM ⌦eOX

Sp(eDX) with eM ⌦eDX

Sp(eDX) ' Sp( eM) as in
Exercise 8.24(1), where a tensor product over eDX is considered. A good preliminary
for the following proof is Exercise 8.29.

Proof. (See Exercise 8.31 for a detailed proof.) That the terms of the complex are in-
duced eDX -modules follows from Exercise 8.19(4) applied to eL = e⇥X,k. Since Sp(eDX)

is a resolution of eOX as a eDX -module, hence as an eOX -module, and since the terms of
Sp(eDX) are eOX -locally free, we conclude that eM⌦eOX

Sp(eDX) is a resolution of eM.

Let C
?

i
(eDX) the category of ?-bounded complexes of the additive category

Modi(
eDX) and let K?

i
(eDX) be the corresponding homotopy category. Since Sp eDX is

a complex of locally free eOX -modules, the functor eM• ! eM• ⌦eOX

Sp eDX is a functor
of triangulated categories, and sends acyclic complexes to acyclic complexes according
to the previous proposition. It induces therefore a functor D

?
(eDX)! D

?

i
(eDX).

8.5.3. Corollary (Equivalence of D?
(eDX) with D

?

i
(eDX)). The natural functor D?

i
(eDX)!

D
?
(eDX) is an equivalence of categories, and the functor D

?
(eDX)! D

?

i
(eDX) induced

by eM• 7! eM• ⌦eOX

Sp eDX is a quasi-inverse functor.

8.6. Pullback and external product of eD-modules

8.6.a. Pullback of left eD-modules. Let us begin with some relative complements
to Section 8.2. Let f : X ! Y be a holomorphic map between analytic manifolds.
For any local section ⇠ of the sheaf e⇥X of z-vector fields on X, Tf(⇠) is a local section
of eOX ⌦f�1eOY

f
�1e⇥Y . We hence have an eOX -linear map

Tf : e⇥X �! eOX ⌦f�1eOY

f
�1e⇥Y ,

and dually
T
⇤
f : eOX ⌦f�1eOY

e⌦1

Y
�! e⌦1

X
.

Therefore, if eN is any left eDY -module, the connection erY on eN can be lifted as a
connection

erX
: f
⇤eN := eOX ⌦f�1eOY

f
�1eN �! e⌦1

X
⌦

f�1eOY

f
�1eN = e⌦1

X
⌦eOX

f
⇤eN

by setting

(8.6.1) erX
= ed⌦ Id+(T

⇤
f ⌦ IdeN) � (1⌦ erY

).

8.6.2. Lemma. The connection erX on f
⇤eN is integrable and defines the structure of a

left eDX-module on eN.

Proof. Exercise 8.32(1).

This leads to the first definition of the pullback functor for eDY -modules.

8.6.3. Definition. The left eDX -module corresponding to (f
⇤eN, erX) is the pullback of eN

in the sense of eD-modules, and is denoted Df
⇤(0)eN.
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However, this definition is not suited for considering derived inverse images, since
the sheaves Torf

�1eOY

j
(eOX , f

�1eN) are not obviously equipped with an integrable con-
nection. In order to overcome this difficulty, we introduce the transfer modules.

8.6.4. Definition (Transfer modules).
(1) The sheaf

eDX!Y = eOX ⌦f�1eOY

f
�1 eDY = Df

⇤(0) eDY

is a left-right (eDX , f
�1 eDY )-bimodule when using the natural right f

�1 eDY -module
structure and the left eDX -module introduced above (see Exercise 8.32(2)). It has a
canonical section 1.

Correspondingly, we have FpDX!Y = OX⌦f�1OY
f
�1

FpDY and the previous defi-
nition reads RFDX!Y = eOX ⌦f�1eOY

f
�1

RFDY (with eOX =OX [z] and eOY =OY [z]).
(2) The sheaf eDY X is obtained from eDX!Y by using the usual side-changing

functor on both sides:
eDY X = Hom

f�1eOY

�
e!Y , e!X ⌦eOX

eDX!Y

�
.

In the filtered/graded setting, this definition reads

FpDY X = Homf�1OY

�
!Y ,!X ⌦OX

Fp+n�mDX!Y

�
.

8.6.5. Example.
(1) One recovers eDX as eDX!X for the identity map Id : X ! X, so that eDX X

is identified with Hom eOX

�
e!X , e!X ⌦eOX

eDX

�
.

(2) On the other hand, if Y is reduced to a point, so that f�1 is the constant map,
we have eDX!pt =

eOX and eDX pt = e!X .

We can now give a better definition of the pullback of a left eDY -module eN, better
in the sense that it is defined inside of the category of eD-modules. It also enables
one to give a definition of a derived inverse image. The coincidence between both
definitions can be obtained by Exercise 8.39.

8.6.6. Definition (of the pullback of a left eDY -module). Let eN be a left eDY -module.
The pullback Df

⇤(0)eN is the left eDX -module eDX!Y ⌦f�1 eDY

f
�1eN.

The derived pullback Df
⇤eN is now defined by the usual method, i.e., by taking

a flat resolution of eN as a left eDY -module, or by taking a right f
�1 eDY -flat reso-

lution of eDX!Y by (eDX , f
�1 eDY )-bimodules. The cohomology modules Df

⇤(j)eN :=

Torf
�1 eDY

j
(eDX!Y , f

�1eN) are left eDX -modules.

8.6.7. Remark. If f : X ! Y is a smooth morphism, that is, locally expressed as the
projection of a product, or more generally a flat morphism, i.e., having equidmensional
fibers (since both X and Y are smooth), then for any left eDY -module eN, we have
Df
⇤eN = Df

⇤(0)eN, i.e., Df
⇤(j)eN = 0 for j 6= 0. Indeed, in such a case, eDX!Y is

f
�1 eDY -flat (Exercise 8.36). Moreover, if eN is strict (see Definition 5.1.6), then so is
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Df
⇤(0)eN: indeed, the assumption amounts to the injectivity of z : eN ! eN, which is

preserved after flat base change.
We sometimes use the notation Df

⇤ instead of Df
⇤(0).

8.6.8. Side-changing and pullback. The pullback for a right eDY -module eNright is ob-
tained by applying the side-changing functor at the source and the target. Let eNleft

be the left eDY -module associated with eNright, so that eNright
= e!Y ⌦ eNleft. Then

we set

Df
⇤(0)eNright

:= e!X ⌦ Df
⇤(0)eNleft

,

and similarly with Df
⇤. Notice the change of grading by dimY � dimX, due to the

grading of e!X ⌦ f
�1e!_

Y
, i.e., we have

(Df
⇤(0)Nright

)p := !X ⌦ (Df
⇤(0)Nleft

)(m� n)p = !X ⌦ f
⇤Nleft

p+n�m.

8.6.9. Example (Pull-back of a filtered module). Assume that eN is the Rees module
RFN of a filtered left DY -module (N, F•N). Then f

⇤N = OX ⌦f�1OY
f
�1N is

equipped with the filtration

Fpf
⇤N = image

⇥
OX ⌦f�1OY

f
�1

FpN! OX ⌦f�1OY
f
�1N

⇤
,

and the corresponding Rees module RF f
⇤N is equal to f

⇤eN/z-torsion. If for exam-
ple f is a smooth morphism, so that OX is f

�1OY -flat, then eOX is also f
�1eOY -flat

and f
⇤eN = RF f

⇤N.
We also have Fpf

⇤Nright
= !X ⌦ Fp+n�mNleft, after (8.2.3 ⇤⇤).

8.6.b. External product. We start with the case of DX -modules. Let X,Y be two
complex manifolds and let pX , pY be the projections from X ⇥Y to X and Y respec-
tively. For any pair of sheaves FX ,FY of C-vector spaces on X and Y respectively,
let us set FX ⇥C FY := p

�1
X

FX ⌦C p
�1
Y

FY .
By using an analogue of Theorem 8.8.7(2), one obtains that OX ⇥C OY and

DX ⇥C DY are coherent sheaves of rings on X ⇥ Y . Moreover, OX⇥Y is flat
over OX ⇥C OY (as can be seen by applying [Ser56, Prop. 28] to each germ
OX⇥Y,(x,y) and the localization of OX,x ⇥C OY,y), and we also have

DX⇥Y = OX⇥Y ⌦(OX⇥COY ) (DX ⇥C DY ) = (DX ⇥C DY )⌦(OX⇥COY ) OX⇥Y .

For an OX -module LX (resp. a DX -module MX) and an OY -module LY (resp. a
DY -module MY ), set

LX ⇥O LY = (LX ⇥C LY )⌦OX⇥COY
OX⇥Y

MX ⇥D MY = (MX ⇥C MY )⌦OX⇥COY
OX⇥Yresp.

= (MX ⇥C MY )⌦DX⇥CDY
DX⇥Y .

Clearly, if LX ,LY are O-coherent, then LX⇥CLY is OX⇥COY -coherent. It follows
that LX ⇥OLY is OX⇥Y -coherent. Similarly, if MX ,MY are D-coherent, MX ⇥DMY

is DX⇥Y -coherent.
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We now consider the case of eDX -modules. For any pair of sheaves eFX , eFY of eC-
modules on X and Y respectively, we set eFX ⇥eC

eFY := p
�1
X

eFX ⌦eC p
�1
Y

eFY . If we
identify eC⇥C eC with C[z1, z2], then eFX ⇥C eFY is a C[z1, z2]-module and

eFX ⇥eC
eFY = Coker

⇥eFX ⇥C eFY

z1 � z2�������! eFX ⇥C eFY

⇤
.

As a consequence, we will obtain a behaviour of ⇥eC similar to that of ⇥C only with
a supplementary C[z]-flatness (i.e., strictness) condition for eFX , eFY .

We have eOX ⇥eC
eOY = (OX ⇥COY )⌦CC[z], therefore eOX ⇥eC

eOY is a coherent sheaf
of rings, and one also checks that eDX ⇥eC

eDY is coherent. Moreover, from the above
flatness result, we find that eOX⇥Y is flat over eOX ⇥eC

eOY .
For strict eO-modules eLX , eLY (resp. eD-modules eMX , eMY ), one defines the external

product eLX ⇥eO
eLY (resp. eMX ⇥eD

eMY ) as for O-modules (resp. D-modules). In such
a case, we have eMX = RFMX for some F•DX -filtration F•M, and similarly for Y ,
according to Proposition 5.1.8(1).

8.6.10. Lemma (See [Kas03, §4.3]). If F•MX , F•MY are F•D-filtrations, then

Fj(MX ⇥D MY ) :=

X

k+`=j

FkMX ⇥O F`MY

is an F•D-filtration of MX ⇥eD MY for which

gr
F
(MX ⇥D MY ) = gr

FMX ⇥grFD gr
FMY .

Proof. We set eM = RFM. Let us start by considering eMX ⇥C eMY as a C[z1, z2]-
module. One checks that multiplication by z1 � z2 is injective on eMX ⇥C eMY . Its
cokernel is identified with eMX ⇥eC

eMY , where the action of z is induced either by
that of z1 ⇥ 1 or that of 1⇥ z2. But eMX ⇥eC

eMY is also eC-torsion free, and defining
F•(

eMX ⇥C eMY ) by a formula similar to that of the lemma amounts to setting (due
to torsion-freeness)

RF (MX ⇥C MY ) =
eMX ⇥eC

eMY .

We have a commutative diagram of short exact sequences

eMX ⇥C eMY

� � z1 � z2
//

_�

z1

✏✏

eMX ⇥C eMY
_�

z1

✏✏

// //
eMX ⇥eC

eMY

_�

z

✏✏

eMX ⇥C eMY

� � z1 � z2
//

✏✏

✏✏

eMX ⇥C eMY

✏✏

✏✏

// //
eMX ⇥eC

eMY

✏✏

✏✏

gr
FMX ⇥C eMY

� � �z2
// gr

FMX ⇥C eMY
// // C

and the term C is identified with gr
F
(MX ⇥C MY ) when considered as the cokernel

of the vertical arrow, while it is identified with gr
FMX ⇥C gr

FMY when considered
as the cokernel of the horizontal one.
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Once this identification is obtained, the formula of the lemma is simply deduced
by tensoring with OX⇥Y over OX ⇥C OY .

8.6.11. Remark. We will interpret this property in terms of flatness in Exercise 15.4.

8.7. Pushforward of eD-modules

Let f : X ! Y be a holomorphic map between complex manifolds. The pullback
of a C

1 function on Y is easy to define and, by adjunction, the pushforward of a
current of degree 0 is easily defined provided that f is proper. On the other hand, the
pullback of a form of maximal degree on Y is usually not of maximal degree on X,
so the pushforward of a distribution is not defined in an easy way. This example is
an instance of the fact that the pushforward of eDX -modules by a proper holomorphic
map should be defined in a simple way for right eDX -modules, while for left eDX -mod-
ules one should use the side-changing functors.

8.7.1. Remark.
(1) We will distinguish the usual direct image and the direct image with proper

supports for the sake of completeness. However, in the main part of this text, we al-
ways assume properness of the map on the support of the object to which it is applied.
Therefore, this distinction will not be useful.

(2) The pushforward functor by a map f : X ! Y applied to a eDX -module takes
values in the derived category D

+
(eDY ).

8.7.a. Definition and examples. We aim at defining the derived pushforward of a
right eDX -module eM by a formula using the transfer module (see Definition 8.6.4(1))
like

Rf?

� eM⌦L
eDX

eDX!Y

�
.

However, the derived tensor product eM ⌦L
eDX

eDX!Y is a priori an object of

D
�
(eDX)

right and we need to argue that f has finite cohomological dimension in order
to apply Rf? to it. In order to avoid such an argument, we will simply make explicit
a finite resolution of eDX!Y as a (eDX , f

�1 eDY )-bimodule whose terms are eDX -locally
free: this is the relative Spencer complex Sp

X!Y
(eDX) (see Exercise 8.40). Recall

also that the Spencer complex Sp(eDX), which was defined in 8.4.3, is a complex
of locally free left eDX -modules (hence locally free eOX -modules) and is a resolution
of eOX as a left eDX -module. There is an isomorphism of complexes of bi-modules
(see Exercise 8.40)

(8.7.2) Sp
X!Y

(eDX) ' Sp(eDX)⌦eOX

eDX!Y .

On the right-hand term, the left eOX -structure on each factor is used for the tensor
product, and it is a complex of (eDX , f

�1 eDY )-bimodules: the right f
�1 eDY structure



246 CHAPTER 8. TRAINING ON D-MODULES

is the trivial one; the left eDX -structure is that defined by Exercise 8.12(1). It is a
resolution of

eOX ⌦eOX

eDX!Y = eDX!Y

as a left eDX -module, in a way compatible with the right f
�1 eDY -module structure

(see Exercise 8.41).
For a right eDX -module eM, we will use the identification

Sp
X!Y

( eM) ' eM⌦eDX

Sp
X!Y

(eDX)

(see Exercise 8.40).

8.7.3. Definition (Pushforward of a eD-module). Setting ? = ⇤ or ? = !, the direct image
Df? is the functor from Mod(eDX)

right to D
+
(eDY )

right defined(1) by

(8.7.3 ⇤) Df?
eM := Rf⇤

� eM⌦eDX

Sp
X!Y

(eDX)
�
' Rf⇤ SpX!Y

( eM).

For a left eDX -module eM, we set

(8.7.3 ⇤⇤) Df?
eM :=

�
Df?

eMright
�left

.

The cohomology modules are objects of Mod(eDY ) (right or left, respectively) and are
denoted by

Df
(j)

?
eM := H

j
Df?

eM.

One can give a formula for the pushforward of left eDX -modules which looks like
that for the right eDX -modules.

8.7.4. Lemma. For a left eDX-module eM, we have

Df?
eM ' Rf?

�eDY X ⌦L
eDX

eM
�
.

Proof. See Definition 8.6.4(2) for the transfer module. The meaning of eDY X ⌦L
eDX

eM
is Sp

Y X
(eDX)⌦eDX

eM, with an obvious notation. For the proof, see Exercise 8.43.

8.7.5. Remarks.
(1) If f is proper, or proper on the support of eM, we have an isomorphism in the

category D
+
(eDY ):

Df!
eM ⇠�! Df⇤ eM.

(2) If eF is any sheaf on X, we have R
j
f⇤eF = 0 and R

j
f!
eF = 0 for j 62 [0, 2 dimX].

Therefore, taking into account the length dimX of the relative Spencer complex,
we find that Df

(j)

⇤ eM and Df
(j)

!
eM are zero for j 62 [� dimX, 2 dimX]: we say that

Df⇤ eM, Df!
eM have bounded amplitude (see Remark 8.7.13 for a more precise estimate

of the amplitude).
(3) See Exercise 8.52 for a simple expression of the pushforward in terms of differ-

ential forms.

(1)Recall that, if eDX = RFDX , then Mod(eDX) := Modgr(RFDX).
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Let us give natural examples of pushforward of eDX -modules.

8.7.6. Example (Pushforward of a eD-module by a closed embedding)
If ◆ is a closed embedding, it is proper, so the ordinary pushforward and the

pushforward with proper support will be the same. Since eDX!Y is eDX -locally free
in this case (Exercise 8.35), we have, for a right eDX -module eM,

D◆
(0)

⇤ eM = ◆⇤( eM⌦eDX

eDX!Y ), D◆
(k)

⇤ eM = 0 if k 6= 0,

so that we will simply denote D◆
(0)

⇤ by D◆⇤, and it is a functor Mod(eDX) 7! Mod(eDY ).
Similarly, for a left eDX -module eM we can write

D◆⇤ eM = ◆⇤(eDY X ⌦eDX

eM).

8.7.7. Example (Pushforward by a graph inclusion (see also Exercise 8.46))
Let g : X ! C be a holomorphic function and let ◆g : X ,! X ⇥ C denote the

graph embedding of g, with coordinate t on the factor C. A special case is when
g ⌘ 0, so that the formulas below can be simplified by replacing every occurrence
of g by zero. We denote eM⌦eC

eC[e@t] by eM[e@t]. In order to simplify notation, we also
denote the pushforward D◆g⇤ eM by eMg.

(1) Let eM be a right eDX -module. By Exercise 8.35, we have eDX!X⇥C' ◆g⇤ eDX [e@t].
Then eMg := D◆g⇤ eM ' ◆g⇤ eM[e@t] with the right eDX⇥C-action defined locally be the
following formulas (recall that for a holomorphic function h(x, t, z), the bracket [e@k

t
, h]

can be written as
P

j<k
ah,j(x, t, z)

e@j
t
=

P
j<k

e@j
t
bh,j(x, t, z)):

(m⌦ e@k
t
) · e@xi

= (me@xi
)⌦ e@k

t
�
⇣
m

@g

@xi

⌘
⌦ e@k+1

t
,

(m⌦ e@k
t
) · e@t = m⌦ e@k+1

t
,

(m⌦ e@k
t
) · h(x, t, z) =

X

j<k

mah,j(x, g(x), z)⌦ e@j
t
+mh(x, g(x), z)⌦ e@k

t
.

(8.7.7 ⇤)

If eM = RFM, then the filtration of Mg 'M[@t] is simply given by

Fp(M
right

[@t]) =

X

q+r=p

FqM
right

@
r

t
.

(2) Let eM be a left eDX -module. Since the coordinate t on C is fixed, a generator edt
of e!C is also fixed, and we identify (see Caveat 8.2.4 for the notation edt_)

eMg ' ◆g⇤ eM[e@t]⌦ edt_,

i.e., the remaining right action of e@t is changed to a left action. Note that the term edt_
also shifts the grading of the right-hand side. In other words, the left-hand side is
obtained from eMright

g
by applying the left-to-right functor on X⇥eC, which introduces a

twist (dimX+1), while the right-hand side is obtained from ◆g⇤ eMright
[e@t] by applying

the right-to-left functor on X, which introduces a twist (dimX) (see Proposition
8.2.5). We will usually omit the term edt_ in the notation. For example, if eM =
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RFM, the right-hand term corresponds to the DX -module ◆g⇤M[@t] equipped with
the filtration

Fp(◆g⇤M
left

[@t]) =

X

q+r=p

◆g⇤F [1]q(M
left

) @
r

t
=

X

q+r=p�1
◆g⇤FqM

left
@
r

t
.

The left eDX⇥C-action is defined locally be the following formulas (by using Exer-
cise 8.17; note the sign at the second line due to (the omitted) edt_):

e@xi
(m⌦ e@k

t
) = (e@xi

m)⌦ e@k
t
�
⇣
@g

@xi

m

⌘
⌦ e@k+1

t
,

e@t(m⌦ e@k
t
) = �m⌦ e@k+1

t
,

h(x, t, z)(m⌦ e@k
t
) =

X

j<k

(�1)k�1�jbh,j(x, g, z)m⌦ e@j
t
+ h(x, g, z)m⌦ e@k

t
.

(8.7.7 ⇤⇤)

(3) In both left and right cases, we can also consider eM[e@t] as a module over the
ring eDX [t]he@ti, i.e., algebraically with respect to the variable t, with the action of t
given by

(m⌦ e@k
t
) · t = mg ⌦ e@k

t
+ kzm⌦ e@k�1

t
, resp. t · (m⌦ e@k

t
) = gm⌦ e@k

t
� kzm⌦ e@k�1

t
.

This corresponds to the third lines in (8.7.7 ⇤) and (8.7.7 ⇤⇤), according to the equality
[e@k

t
, t] = kze@k�1

t
.

8.7.8. Remark. If eM is a left eDX -module, one can also consider the left eDX⇥C-module
structure on ◆g⇤ eM[e@t] := ◆g⇤ eM ⌦eC

eC[e@t] defined by setting (without a sign on the
second line)

e@xi
(m⌦ e@k

t
) = (e@xi

m)⌦ e@k
t
�

⇣
@g

@xi

m

⌘
⌦ e@k+1

t
,

e@t(m⌦ e@k
t
) = m⌦ e@k+1

t
,

h(x, t, z)(m⌦ e@k
t
) = �

X

j<k

bh,j(x, g, z)m⌦ e@j
t
+ h(x, g, z)m⌦ e@k

t
.

However, there exists a natural eDX⇥C-linear isomorphism

◆g⇤ eM[e@t]
⇠�! ◆g⇤ eM[e@t]⌦ edt_(�1), m⌦ e@k

t
7�! m⌦ (�e@k

t
)⌦ edt_.

8.7.9. Example (Pushforward by a constant map). If Y = pt we denote by aX the
constant map on X. For a eDX -module eM, we have (recall that, as a graded complex,
p

DR eMright ' p

DR eMleft)

DaX,⇤ eM = R�(X,
p

DR eM), DaX,!
eM = R�c(X,

p

DR eM).

These are bounded complexes of eC-modules. If eM = RFM, then for every j 2 Z,
Da

(j)

⇤ M is equipped with the filtration

Fp(Da
(j)

⇤ M) : image[H
j
(X,Fp

p

DRM) �!H
j
(X,

p

DRM)],

where the filtration F•
p

DRM is defined in Remark 8.4.9, and

RF (Da
(j)

⇤ M) ' (Da
(j)

⇤ RFM)/z-torsion.
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8.7.10. Example (Pushforward by a projection, right case). If X = Y ⇥ T and f is the
projection Y ⇥ T ! Y , denote by e⇥X/Y the sheaf of relative tangent vector fields,
i.e., which do not contain e@yj

in their local expression in coordinates adapted to the
product Y ⇥T . It leads to the subsheaf of relative differential operators eDX/Y ⇢ eDX .
On the other hand, Df

⇤ eDY = eOX ⌦f�1eOY

f
�1 eDY = eDX!Y can also be regarded as

a subsheaf of eDX (differential operators only containing e@yj
in their expression).

The relative Spencer complex eDX/Y ⌦eOX

e⇥X/Y,• (with e⇥X/Y,k := ^�k e⇥X/Y )is
defined in the same way as its absolute analogue, and is a resolution of eOX as a
left eDX/Y -module. As a consequence, eDX/Y ⌦eOX

e⇥X/Y,• ⌦f�1eOY

f
�1 eDY is also a

resolution of eOX⌦f�1eOY

f
�1 eDY = eDX!Y as a bimodule by locally free left eDX -mod-

ules. By identifying eDX with eDX/Y ⌦f�1eOY

f
�1 eDY , we can also write this resolution

as eDX ⌦eOX

e⇥X/Y,•. There is moreover a canonical quasi-isomorphism as bimodules

Sp
X!Y

(eDX) =
�eDX ⌦eOX

e⇥X/Y,•

�
⌦

f�1eOY

f
�1�e⇥Y,• ⌦eOY

eDY

�

=
�eDX ⌦eOX

e⇥X/Y,•

�
⌦

f�1 eDY

f
�1�

Sp
Y
(eDY )⌦eOY

eDY

�

⇠�!
�eDX ⌦eOX

e⇥X/Y,•

�
⌦

f�1 eDY

f
�1 eDY!Y

= eDX ⌦eOX

e⇥X/Y,•.

Definition 8.7.3 now reads

(8.7.10 ⇤) Df?
eM = Rf?

� eM⌦eOX

e⇥X/Y,•

�
,

where the right eDY structure is naturally induced from that of Df
⇤ eDY ⇢ eDX on eM.

If eM = RFM, the p-th term of the filtration F•(M ⌦OX
⇥X/Y,•) of the complex

M⌦OX
⇥X/Y,• has Fp+kM⌦OX

⇥X/Y,k in degree �k and for every j 2 Z,

Df
(j)

?
eM/z-torsion ' RF (Df

(j)

? M)

with

Fp(Df
(j)

? M) = image[f
(j)

? Fp(M⌦OX
⇥X/Y,•)! f

(j)

? (M⌦OX
⇥X/Y,•)].

8.7.11. Example (Pushforward by a projection, left case). We take up the setting of
Example 8.7.10 and we make explicit the formula in the case of left eDX -modules
(See Exercise 8.44). Let us denote by e⌦1

X/Y
the sheaf of relative differential forms,

i.e., which do not contain edyj in their local expression in coordinates adapted to the
product Y ⇥T . If eM is a left eDX -module, we can form the relative de Rham complex
p

DRX/Y
eM by mimicking Definition 8.4.1 and by using the relative connection erX/Y .

On the other hand, there remains an action of erY on eM. Due to the integrability
property of er on eM, both connections erX/Y and erY commute, so that the relative
de Rham complex p

DRX/Y
eM (the shift is by dX/Y := dimX � dimY ) is naturally

equipped with an f
�1eOY -connection erY . Then we have (Exercise 8.44), for ? = ⇤ or

? = !,
Df?

eM = (Rf?
p

DRX/Y
eM, erY ).
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If eM = RFM, the p-th term of the filtration F•(
p

DRX/Y M) of the complex
p

DRX/Y M = ⌦
•
X/Y
⌦OX

M has ⌦k

X/Y
⌦OX

Fp+kM in cohomological degree k�dimX

and for every j 2 Z,
Df

(j)

?
eM/z-torsion ' RF Df

(j)

? M

with
Fp Df

(j)

? M = image[f
(j)

? Fp(
p

DRX/Y M)! f
(j)

? (
p

DRX/Y M)].

8.7.12. Remark. Since any morphism can be decomposed as a closed embedding fol-
lowed be a projection, through the graph embedding, we could simply say that the
pushforward by a closed embedding (resp. a projection) of a right eDX -module is
obtained by the definition of Example 8.7.6 (resp. Example 8.7.10), and define the
pushforward by any holomorphic map f by composing the pushforward functors in
these simple cases. Nevertheless, in order to check various other properties, it is useful
to have the intrinsic definition 8.7.3 for any holomorphic mapping f .

8.7.13. Remark (Amplitude of the pushforward). Formula (8.7.17) below shows that
Df

(j)

?
eM = 0 for j /2 [�n, n]. On the other hand, if f is a closed inclusion, the

amplitude is equal to zero, and if f is a projection, the C
1 resolutions for Examples

8.7.10 or 8.7.11 show that Df
(j)

?
eM = 0 for j /2 [�(n�m), (n�m)].

8.7.b. Explicit constructions with the pushforward functor

There are two natural ways (at least) to make explicit the functor Rf? enter-
ing the definition of Df?: one can use the canonical Godement resolution by flabby
sheaves, which is a very general procedure but with few geometric content, or one can
replace the relative Spencer or de Rham complexes by their C

1 counterparts as in
Remark 8.4.13. We will mainly use the latter, but it can be useful to have the former
at hand.

Godement resolution. Recall that the flabby sheaves are injective with respect to the
functor f⇤ (direct image) in the category of sheaves (of modules over a ring) and, being
c-soft, are injective with respect to the functor f! (direct image with proper support).
The Godement canonical resolution is an explicit functorial flabby resolution for any
sheaf (see Exercise 8.49 for details).

8.7.14. Definition (Godement resolution).
(1) The Godement functor C0 (see [God64, p. 167]) associates to any sheaf eL the

flabby sheaf C0
(eL) of its discontinuous sections and to any morphism the correspond-

ing family of germs of morphisms. Then there is a canonical injection eL ,! C0
(eL).

(2) Set inductively (see [God64, p. 168]) Z0
(eL) = eL, Zk+1

(eL) = Ck
(eL)/Zk

(eL),
Ck+1

(eL) = C0
(Zk+1

(eL)) and define � : Ck
(eL)! Ck+1

(eL) as the composition Ck
(eL)!

Zk+1
(eL) ! C0

(Zk+1
(eL)). This defines a complex (C•

(eL), �), that we will denote as
(God

• eL, �).
(3) Given any sheaf eL, (God

• eL, �) is a resolution of eL by flabby sheaves. For
a complex (eL•

, d), we regard God
• eL• as a double complex ordered as written, i.e.,
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with differential (�i, (�1)idj) on God
i eLj , and therefore also as the associated simple

complex.

8.7.15. Corollary. We have, by taking the single complex associated to the double com-
plex, and for ? = ⇤ or ? = !,

Df?
eM = f? God

•
Sp

X!Y
( eM).

C
1 resolution. Recall (see Remark 8.4.13) that Sp

1
(eDX) is a resolution of Sp(eDX)

in the category of left eDX -modules by flat eOX -modules. Therefore,

Sp
1
X!Y

(eDX) ' Sp
1
(eDX)⌦eOX

eDX!Y

is a resolution of Sp
X!Y

(eDX) in the category of (eDX , f
�1 eDY ) bi-modules, so that,

for a right eDX -module eM, (8.7.3 ⇤) becomes

(8.7.16) Df?
eM ' f?(

eM⌦eDX

Sp
1
X!Y

(eDX)) ' f? Sp
1
X!Y

( eM).

On the other hand, for a left eDX -module eM, we can use Exercise 8.52(5) to obtain

(8.7.17) Df?
eM ' f?

⇥eEn+•
X
⌦ ( eM⌦

f�1eOY

f
�1 eDY )

⇤left
.

This expression clearly shows that Df?
eM can be realized by a bounded complex

of amplitude n. It can also be used to construct the spectral sequence attached to a
filtered eDX -module.

8.7.18. Corollary. Let W• eM be a finite increasing filtration of eM by eDX-submodules.
Then there exists a spectral sequence, which is functorial in ( eM,W•

eM):

E
�`,k+`

1
= Df

(k)

⇤ (gr
W

`
eM) =) gr

W

` Df
(k)

⇤ ( eM),

where W•(Df
(k)

⇤ ( eM)) is the image filtration image[Df
(k)

⇤ (W•
eM)! Df

(k)

⇤ ( eM)].

8.7.19. The Lefschetz morphism. As a consequence of Exercise 8.52(5), given a (1, 1)-
form e⌘ 2 �(X, eE(1,1)

X
) which ed-closed (equivalently, ed0 and d

00-closed), there is a well-
defined morphism for a left eDX -module (? = ⇤ or ? = !)

e⌘ ^ : Df?
eM �! Df?

eM[2](1),

induced by e⌘ ^ : eE•
X
! eE•

X
[2](1). (Here, [2] means the shift by 2 of the complex,

which occurs since e⌘ has total degree 2, while (1) is the Tate twist shift, which occurs
since e⌘ has a degree-one holomorphic part.) It is clearly functorial with respect to eM,
that is, given any morphism ' : eM1 ! eM2, the following diagram commutes (where ?
is either for ⇤ or for !):

Df?
eM1

e⌘ ^
//

Df?'
✏✏

Df?
eM1[2](1)

Df?'
✏✏

Df?
eM2

e⌘ ^
//

Df?
eM2[2](1)
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8.7.20. Definition (The Lefschetz morphism attached to a closed (1, 1)-form)
For a left eDX -module eM, the Lefschetz morphism associated to a (usual) closed

(1, 1)-form ⌘ on X is the morphism

L⌘ :=
1

z
⌘ ^ : Df?

eM �! Df?
eM[2](1).

It is functorial with respect to eM.

8.7.21. The Lefschetz morphism attached to a line bundle. Let f : X ! Y be any mor-
phism between complex manifolds and let L be a line bundle on X, with Chern class
c1(L) 2 H

2
(X,Z). We will define a Lefschetz morphism

LL : Df?
eM �! Df?

eM[2](1).

We can choose a closed (1, 1)-form ⌘ on X whose class in H
2
(X,C) is equal to the

complexified class c1(L)C. We regard ⌘ as a closed relative (1, 1)-form with respect
to the projection. As noticed in Remark 8.4.11, namely by using a similar argument,
the action of L⌘ given in Definition 8.7.20 only depends on the class of ⌘ in H

2
(X,C).

Notice also that, since ⌘ has degree two, wedging (or contracting) with ⌘ on the left
or on the right gives the same result.

We thus define LL as L⌘. This operator only depends on c1(L)C. It is functorial
with respect to eM.

8.7.22. Remark (Restriction to z = 1 of the Lefschetz morphism)
It is obvious that the restriction to z = 1 of the morphism LL is the morphism

LL : Df?M �! Df?M[2].

8.7.c. Composition of direct images and the Leray spectral sequence

We compare the result of the pushforward functor by the composition of two
maps with the pushforward by the second map of the pushforward by the first map.
We find an isomorphism at the level of derived categories, that we will translate as
a spectral sequence, which is the eD-module analogue of the Leray spectral sequence
(see Section 8.10.c).

8.7.23. Theorem (Composition of direct images). Let

f : X �! Y and f
0
: Y �! Z

be two holomorphic maps. There is a functorial canonical isomorphism of functors

D(f
0 � f)!(•) = Df

0
!
(Df!(•)).

If f is proper, we also have

D(f
0 � f)⇤(•) = Df

0
⇤(Df⇤(•)).

Proof. We start from the canonical isomorphism of (eDX , (f
0 � f)�1 eDZ)-bimodules

(Exercise 8.37):

(8.7.24) eDX!Y ⌦f�1 eDY

f
�1 eDY!Z

⇠�! eDX!Z .
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We deduce an isomorphism of complexes of (eDX , (f
0 � f)�1 eDZ)-bimodules

h
Sp(eDX)⌦eOX

eDX!Y

i
⌦

f�1 eDY

f
�1 eDY!Z

⇠�! Sp(eDX)⌦eOX

eDX!Z

lifting (8.7.24), that is, a natural isomorphism

Sp
X!Y

(eDX)⌦
f�1 eDY

f
�1 eDY!Z

⇠�! Sp
X!Z

(eDX).

On the other hand, there exists a natural morphism of complexes

Sp
X!Y

(eDX)⌦
f�1 eDY

f
�1

Sp
Y!Z

(eDY ) �! Sp
X!Y

(eDX)⌦
f�1 eDY

f
�1 eDY!Z ,

obtained by tensoring the augmentation morphism Sp
Y!Z

(eDY ) ! eDY!Z with
Sp

X!Y
(eDX), and the left-hand term is a resolution of eDX!Y ⌦f�1 eDY

f
�1 eDY!Z

(in the category of (eDX , (f
0 � f)

�1 eDZ)-bimodules) by locally free eDX -modules.
Indeed, remark that, as Sp

Y!Z
(eDY ) is eDY locally free, one has

Sp
X!Y

(eDX)⌦
f�1 eDY

f
�1

Sp
Y!Z

(eDY )
⇠�! eDX!Y ⌦f�1 eDY

f
�1

Sp
Y!Z

(eDY )

= eOX ⌦f�1eOY

f
�1

Sp
Y!Z

(eDY )

= eOX ⌦L
f�1eOY

f
�1 eDY!Z

= eOX ⌦f�1eOY

f
�1 eDY!Z (eDY!Z is eOY locally free)

= eDX!Y ⌦f�1 eDY

f
�1 eDY!Z .

Altogether, we have found a morphism, lifting (8.7.24),

Sp
X!Y

(eDX)⌦
f�1 eDY

f
�1

Sp
Y!Z

(eDY ) �! Sp
X!Z

(eDX),

between two resolutions (in the category of (eDX , (f
0�f)�1 eDZ)-bimodules). This mor-

phism is therefore a quasi-isomorphism. We now have, for an object eM of Mod(eDX)

or of D+
(eDX)

D(f
0 � f)!( eM) = R(f

0 � f)!
� eM⌦eDX

Sp
X!Z

(eDX)
�

' R(f
0 � f)!

� eM⌦eDX

Sp
X!Y

(eDX)⌦
f�1 eDY

f
�1

Sp
Y!Z

(eDY )
�

' Rf
0
!
Rf!

� eM⌦eDX

Sp
X!Y

(eDX)⌦
f�1 eDY

f
�1

Sp
Y!Z

(eDY )
�

' Rf
0
!

h
Rf!

� eM⌦eDX

Sp
X!Y

(eDX)
�
⌦eDY

Sp
Y!Z

(eDY )

i

= Df
0
!
(Df!

eM).

The above arguments also apply if we replace Sp with Sp
1 as defined in Remark

8.4.13, according to the eDX -flatness of Sp
1
X!Y

and the eDY -flatness of Sp
1
Y!Z

(see Exercise 8.51(1)). All terms of the corresponding complexes are c-soft and we
have

D(f
0 � f)!( eM) ' (f

0 � f)! Sp1X!Z
( eM)

' f
0
!

h
f!

�
Sp
1
X!Y

( eM)
�
⌦eDY

Sp
1
Y!Z

(eDY )

i
.

(8.7.25)

The same result holds with Df⇤ if we only assume that f is proper on the support
of eM. On the other hand, if f is proper or proper on the support of eM, but f

0 is
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possibly not proper, then the same results are valid for ⇤ instead of !: indeed, f! = f⇤
and f! Sp

1
X!Y

( eM) is flabby, so the last isomorphism in (8.7.25) still holds with f
0
⇤,

and the same reasoning gives D(f
0 � f)⇤ = Df

0
⇤ Df⇤.

8.7.26. Remark. If f is not proper, we cannot assert in general that D(f
0 � f)⇤(•) =

Df
0
⇤(Df⇤(•)). However, such an identity still holds when applied to suitable subcate-

gories of D+
(eDX), the main examples being:

• the restriction of f to the support of eM is proper, as already seen,
• eM has eDX -coherent cohomology.

In such cases, the natural morphism coming in the projection formula for f⇤ is a
quasi-isomorphism (see [MN93, §II.5.4] for the coherent case).

This theorem reduces the computation of the direct image by any morphism
f : X ! Y by decomposing it as f = p � ◆f , where ◆f : X ,! X ⇥ Y denotes the
graph inclusion x 7! (x, f(x)). As ◆f is an embedding, it is proper, so we have
Df⇤ = Dp⇤D◆f⇤. The following corollary is a direct consequence of Example 8.7.6.

8.7.27. Corollary (Composition with a closed embedding).
(1) Assume that f is a closed embedding. Then, for each k 2 Z, we have a functo-

rial isomorphism D(f
0 � f)(k)

!
' Df

0(k)
!
� Df!.

(2) Assume that f
0 is a closed embedding. Then, for each k 2 Z, we have a

functorial isomorphism D(f
0 � f)(k)

!
' Df

0
!
� Df

(k)

!
.

The Leray spectral sequence exists in this setting.

8.7.28. Corollary (Leray spectral sequence for the composition of maps)
There exists a bounded spectral sequence with E

p,q

2
= Df

0(p)
!

(Df
(q)

!
eM) which con-

verges to D(f
0 �f)p+q

!
eM. There are corresponding spectral sequences with Df⇤ and Df

0
⇤

under the properness assumptions above.

Proof. Let us consider the expression (8.7.25). First, f! Sp
1
X!Y

( eM) is a bounded
complex having cohomology Df

(q)

!
eM. The second line of (8.7.25) is a double com-

plex (K
•,•

, �1, �2). The single complex attached to (K
•,•

, �1, �2) has cohomology
D(f
0 � f)(k)

!
( eM), according to our previous computation. The spectral sequence at-

tached to this double complex has E2 term

E
p,q

2
= H

p

�2
(H

q

�1
(K

•,•
)) = Df

0(p)
!

(Df
(q)

!
eM).

The spectral sequence degenerates at a finite step. We have a similar result for
D(f
0 � f)(k)⇤ ( eM) if f is proper.

We call this spectral sequence the Leray spectral sequence for the composition f
0�f .

In such a way, the abutment D(f
0 �f)(k)

!
( eM) comes equipped with a natural filtration,

that we call the Leray filtration, such that

E
p,q

1 = gr
p

Ler

⇥
D(f
0 � f)(p+q)

!
( eM)

⇤
.
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It is clear that the restriction to z = 1 of the Leray spectral sequence is the Leray
spectral sequence for DX -modules.

8.7.29. Behaviour of the Spencer complex by pushforward. In the proof of Theorem
8.7.23, let us set Z = pt, so that Sp

Y!Z
(eDY ) = Sp(eDY ). By the same argument,

but not applying the functor Rf
0
!
, we obtain

Sp(Df!
eM) ' Rf! Sp(

eM).

We already have an identification on X as follows: considering the right eDY -structure
on eDX!Y , the Spencer complex Sp

Y
(eDX!Y ) is well defined, and is nothing but

Sp
Y
(eDX!Y ) =

eOX ⌦f�1eOY

f
�1

Sp(eDY ) ' eOX ⌦f�1eOY

f
�1eOY = eOX

as a left eDX -module. Similarly, regarding eM⌦eDX

Sp
X!Y

(eDX) as a complex of right
f
�1

(eDY )-modules, we obtain

Sp
Y
( eM⌦eDX

Sp
X!Y

(eDX)) = Sp
Y
(( eM⌦eDX

Sp(eDX))⌦eOX

eDX!Y )

' ( eM⌦eDX

Sp(eDX))⌦eOX

Sp
Y
(eDX!Y )

' eM⌦eDX

Sp(eDX) ' Sp( eM).

We also conclude that, for a left or right eDX -module, we have
p

DR(Df!
eM) ' Rf!

p

DR( eM).

8.7.d. A morphism of adjunction. There are various adjunction morphisms for
eD-modules in the literature (see [Kas03, HTT08]). We will give here a simple one,
in the case where the source and target of the proper holomorphic map f : X ! Y

have the same dimension. In such a case, the cotangent map T
⇤
f induces a morphism

f
�1e⌦k

Y
�! e⌦k

X

for every k, which is compatible with the differential ed, and similarly for C
1 forms.

8.7.30. Proposition. Under this assumption, if eM is a left eDY -module, there is a func-
torial morphism

adj
f
: eM �! Df

(0)

⇤ (Df
⇤(0) eM).

Proof. Set n = dimX = dimY . The left setting makes easier the definition of
Df
⇤(0) eM. Nevertheless, we will construct the morphism in the right setting.
Firstly, by using Exercise 8.31(2), we find

eMright
= e!Y ⌦eOY

eM ⇠ � (e⌦n+•
Y
⌦ eDY )⌦eOY

eM ⇠�! (eEn+•
Y
⌦ eDY )⌦eOY

eM.

The cotangent map f
�1eEk

Y
! eEk

X
induces, by using the sheaf-theoretic adjunction

Id! f⇤f
�1, a morphism eEk

Y
! f⇤eEk

X
compatible with differentials, hence a morphism

(eEn+•
Y
⌦ eDY )⌦eOY

eM �! (f⇤eEn+•
X
⌦ eDY )⌦eOY

eM.

By using the isomorphism of Exercise 8.18(3), we obtain

(f⇤eEn+•
X
⌦ eDY )⌦eOY

eM ' f⇤eEn+•
X
⌦ ( eM⌦eOY

eDY ),



256 CHAPTER 8. TRAINING ON D-MODULES

where, for the left-hand side, the left eDY -module structure of eDY is used for the C
1-

complex (•), and the right eDY -module structure of eDY is used in the tensor product
with eM in order to obtain the final right eDY -module structure (see Exercise 8.18(2)).

By the sheaf-theoretic projection formula, we have a morphism compatible with
differentials

f⇤eEn+•
X
⌦eOY

( eM⌦eOY

eDY ) �! f⇤

⇣
eEn+•
X
⌦

f�1eOY

f
�1

( eM⌦eOY

eDY )

⌘
,

and we identify the latter complex with the complex

f⇤

⇣
eEn+•
X
⌦eOX

(Df
⇤(0) eM⌦

f�1eOY

f
�1 eDY )

⌘
,

which, by Exercise 8.52 applied to Df
⇤(0) eM, is also identified with

(Df⇤(Df
⇤(0) eM))

right
.

We finally find a morphism between the cohomologies in degree zero:

eMright �! (Df
(0)

⇤ (Df
⇤(0) eM))

right
.

8.7.31. Example (Case of a finite morphism). Let us consider the simple case of a finite
morphism f : X ! Y . Since X and Y are smooth, it is flat. Let us assume that f⇤eOX

is eOY -locally free (hence the same holds for any locally free eOX -module of finite rank,
as e.g. e⌦k

X
for each k > 1). The adjunction morphism reads

eMright ' (e⌦n+•
Y
⌦ eDY )⌦eOY

eM

�! (f⇤e⌦n+•
X
⌦ eDY )⌦eOY

eM ' f⇤e⌦n+•
X
⌦ ( eM⌦eOY

eDY )

⇠�! f⇤

⇣
e⌦n+•
X
⌦

f�1eOY

f
�1

( eM⌦eOY

eDY )

⌘
,

where the latter isomorphism follows from the local freeness assumption and the fact
that f has cohomological dimension zero. In particular, we obtain that

Df
(0)

⇤ (Df
⇤(0) eM) ' Df

(0)

⇤ (Df
⇤(0)eOY )⌦eOY

eM,

and the adjunction morphism for eM is induced by that for eOY .
Assume that f is locally multi-cyclic, that is, near each point of X and its im-

age by f , there exist coordinates x1, . . . , xn on X and coordinates y1, . . . , yn on Y

such that, in these coordinates, f = (f1, . . . , fn) is the finite morphism defined by
fi(x1, . . . , xn) = x

ri

i
with ri 2 N

⇤. Then the local freeness property considered above
is easily checked. By Exercise 8.58, there exists a trace morphism

Trf : Df
(0)

⇤ (Df
⇤(0) eM) �! eM

such that the composition Trf � adjf : eM! eM is the identity. As a consequence, eM is
a direct summand of Df

(0)

⇤ (Df
⇤(0) eM).
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8.7.e. Pushforward of D
X,X

-modules. As we will apply the pushforward functor
by a holomorphic map f : X ! Y to the sheaf of distributions on X or to the sheaf of
currents of maximal degree (see Example 8.3.5), we will make precise the adaptation
of the previous properties to the category of D

X,X
-modules, where we recall that

D
X,X

:= DX ⌦C D
X

(see (8.3.0 ⇤⇤)). We will denote the corresponding pushforward
functor by D,Df! or D,Df⇤. This notation was already used, with that meaning, in
Section 7.3.17, for the pushforward by a closed inclusion.

We define D
X,X!Y,Y

as DX!Y ⌦C D
X!Y

. This sheaf can also be described
as O

X,X
⌦f�1O

Y,Y
f
�1D

Y,Y
. The Spencer complex Sp(D

X,X
) is the simple com-

plex associated with the double complex Sp(DX) ⌦C Sp(D
X
). Defining ⇥

k

X,X
=

L
i+j=k

(⇥
i

X
⌦C ⇥

j

X
), the (�k)-th term of the Spencer complex Sp(D

X,X
) is equal

to D
X,X
⌦ ⇥

k

X,X
, which is D

X,X
-locally free of finite rank, and the differentials are

expressed in a way similar to that in Definition 8.4.3. It is a D
X,X

-resolution of O
X,X

by locally free D
X,X

-modules.
The relative Spencer complex is defined similarly to (8.7.2), by

Sp
X,X!Y,Y

(D
X,X

) = Sp(D
X,X

)⌦O
X,X

D
X,X!Y,Y

,

and is a resolution of D
X,X!Y,Y

as a (D
X,X

, f
�1D

Y,Y
)-bimodule by locally free D

X,X
-

modules.
The pushforward functor D,Df? (? =!, ⇤) is defined, for a right D

X,X
-module N, or

a bounded complex of such, by

D,Df?(N) = Rf?(SpX,X!Y,Y
(N)) ' Rf?

�
N ⌦D

X,X
Sp

X,X!Y,Y
(D

X,X
)
�
.

In a way similar to what is done in Theorem 8.7.23 and Corollary 8.7.28, we obtain
the following result. In the present setting, it is enough to use the Godement flabby
resolution Sp

X,X!Y,Y
(N) when a flabby resolution is needed.

8.7.32. Proposition. Let

f : X �! Y and f
0
: Y �! Z

be two holomorphic maps. There is a functorial canonical isomorphism of functors

D,D(f
0 � f)!(•) = D,Df

0
!
(D,Df!(•)).

If f is proper, we also have

D,D(f
0 � f)⇤(•) = D,Df

0
⇤(D,Df⇤(•)).

Furthermore, there exists a bounded spectral sequence with E
p,q

2
= D,Df

0(p)
!

(D,Df
(q)

!
M)

which converges to D,D(f
0 � f)p+q

!
M. There are corresponding spectral sequences with

D,Df⇤ and D,Df
0
⇤ under the properness assumptions above.

8.8. Coherent eDX-modules and coherent filtrations

Although it would be natural to develop the theory of coherent eDX -modules in
a way similar to that of eOX -modules, some points of the theory are not known to
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extend to eDX -modules (the lemma on holomorphic matrices). The approach which
is therefore classically used consists in using the eOX -theory, and the main tools for
that purpose are the coherent filtrations.

8.8.a. Coherence of eDX . Let us begin by recalling the definition of coherence.
Let eA be a sheaf of rings on a space X.

8.8.1. Definition.
(1) A sheaf of eA-modules eF is said to be eA-coherent if it is locally of finite type:

8x 2 X, 9Ux, 9 q, 9 eAq

|Ux

!�! eF|Ux
,

and if, for any open set U of X and any eA-linear morphism ' : eAr

|U ! eF|U , the kernel
of ' is locally of finite type.

(2) The sheaf eA is a coherent sheaf of rings if it is coherent as a (left and right)
module over itself.

8.8.2. Lemma. Assume eA coherent. Let eF be a sheaf of eA-module. Then eF is eA-
coherent if and only if eF is locally of finite presentation: 8x 2 X, 9Ux, 9 p, q and an
exact sequence

eAp

|Ux

�! eAq

|Ux

�! eF|Ux
�! 0.

Classical theorems of Cartan and Oka claim the coherence of eOX , and a theorem
of Frisch asserts that, if K is a compact polycylinder, eOX(K) is a Noetherian ring.
It follows that gr

FeDX(K) is a Noetherian ring, and one deduces that eDX(K) is left
and right Noetherian. From this one concludes that the sheaf of rings eDX is coherent
(see [GM93, Kas03] for details).

8.8.3. Remark (Noetherianity). It follows from these properties that eDX is a Noetherian
sheaf of rings, in the sense of [Kas03, Def. A.7], that is, together with the coherence
property, each germ eDX,x is Noetherian and for any open subset U ⇢ X and any
family eIi of coherent (left or right) ideals of eDU , the ideal

P
i
eIi is a coherent eDU -mod-

ule.

8.8.b. Coherent eD-modules and filtrations

Let eM be a eDX -module. From the preliminary reminder on coherence, we know
that eM is eDX-coherent if it is locally finitely presented, i.e., if for any x 2 X there
exists an open neighbourhood Ux of x an an exact sequence eDq

X|Ux

! eDp

X|Ux

! eM|Ux
.

8.8.4. Definition (Coherent filtrations). Let F•
eM be a filtration of eM (see Section 5.1).

We say that the filtration is coherent if the Rees module RF
eM is coherent over the

coherent sheaf RF
eDX (i.e., locally finitely presented).

It is useful to have various criteria for a filtration to be coherent.

8.8.5. Proposition (Existence of coherent filtrations).
(1) If eM is eDX-coherent, then it admits locally on X a coherent filtration.
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(2) If eDX = RFDX and if eM is eDX-coherent and strict, it admits globally on X

a coherent filtration.

Proof. For (1), see Exercise 8.63. Let us prove (2). By Proposition 5.1.8(1), we have
eM = RFM for some filtered DX -module M and since eM is eDX -coherent, F•M is a
coherent F•D-filtration. Then one can apply Exercise 8.66.

The notion of a coherent filtration is the main tool to obtain results on coherent
eDX -modules from theorems on coherent eOX -modules, and the main results concern-
ing coherent eDX -modules are obtained from the theorems of Cartan and Oka for
eOX -modules.

8.8.6. Theorem (Theorems of Cartan-Oka for eDX -modules)
Let eM be a left eDX-module and let K be a compact polycylinder contained in an

open subset U of X, such that eM has a coherent filtration on U . Then,

(1) �(K, eM) generates eM|K as an eOK-module,
(2) For every i > 1, Hi

(K, eM) = 0.

Proof. This is easily obtained from the theorems A and B for eOX -modules, by using
inductive limits (for A it is obvious and, for B, see [God64, Th. 4.12.1]).

8.8.7. Theorem (Characterization of coherence for eDX -modules, see [GM93])

(1) Let eM be a left eDX-module. Then, for any small enough compact polycylin-
der K, we have the following properties:

(a) eM(K) is a finite type eD(K)-module,
(b) For every x 2 K, eOx ⌦eO(K)

eM(K)! eMx is an isomorphism.
(2) Conversely, if there exists a covering {K↵} by polycylinders K↵ such that X

is the union of the interiors of the K↵ and that on any K↵ the properties (1a) and
(1b) are fulfilled, then eM is eDX-coherent.

A first application of Theorem 8.8.7 is a variant of the classical Artin-Rees lemma:

8.8.8. Corollary. Let eM be a eDX-module with a coherent filtration F•
eM and let eN be

a coherent eDX-submodule of eM. Then the filtration F•
eN := eN \ F•

eM is coherent.

Proof. Let K be a small compact polycylinder for RF
eM. Then �(K,RF

eM) is finitely
generated, hence so is �(K,RF

eN), as �(K,RF
eDX) is Noetherian. It remains to be

proved that, for any x 2 K and any k, the natural morphism

eOx ⌦eO(K)
(Fk

eM(K) \ eN(K)) �! Fk
eMx \ eNx

is an isomorphism. This follows from the flatness of eOx over eO(K) (see [Fri67]).
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8.8.9. Structure of coherent eDX -modules. Let eM be a coherent eDX -module. Its z-tor-
sion submodule is the submodule eM0 :=

S
k>1

Ker[z
k
: eM ! eM]. Since each sub-

module Ker[z
k
: eM! eM] is coherent (see Exercise 8.60) the union is locally finite

and eM0 has a locally finite filtration such that each successive quotient is a cohe-
rent eDX -module annihilated by z. The corresponding graded module gr eM0 is thus a
coherent (graded) (eDX/z eDX) = gr

FDX -module, on which the z-action is zero.
On the other hand, the quotient module eM00 := eM/ eM0 is strict by definition, hence

of the form RFM
00 for some coherent DX -module equipped with a coherent F -filtra-

tion F•M
00.

8.8.c. Support and characteristic variety. Let eM be a coherent eDX -module.
Being a sheaf on X, eM has a support Supp eM, which is the closed subset complement
to the set of x 2 X in the neighbourhood of which eM is zero.

8.8.10. Lemma. The support of a coherent eOX-module is a closed analytic subset of X.

Proof. This is standard if eOX = OX . On the other hand, if eOX = RFOX , let eI be
a graded ideal of eOX , locally generated by functions fjz

j with fj 2 OX . Then the
support of eOX/eI is that of OX/(fj)j .

Such a property extends to coherent eDX -modules:

8.8.11. Proposition. The support Supp eM of a coherent eDX-module eM is a closed an-
alytic subset of X.

Proof. The property of being an analytic subset being local, we may assume that eM
is generated over eDX by a coherent eOX -submodule eF (see Exercise 8.63(4)). Then
the support of eM is equal to the support of eF.

Let eM be a coherent eDX -module and let Z be a closed analytic subset of X. It
follows from Exercise 8.67 that the subsheaf �Z

eM consisting of local sections of eM
annihilated by some power of the ideal IZ is eDX -coherent. In particular, let us denote
by

S
j
Zj the decomposition of Supp eM into its irreducible components. Then �Zj

eM
is a coherent sub eDX -module of eM and eM/�Zj

eM is supported on
S

k 6=j
Zk. The

following lemma is then obvious.

8.8.12. Lemma. The kernel and cokernel of the natural morphism
L
j

�Zj

eM �! eM

have support everywhere of codimension > 1 in Supp eM.

The support is usually not the right geometric object attached to a eDX -module eM,
as it does not provide enough information on eM. A finer object is the characteristic
variety. Using the convention 8.1.11, we set eT ⇤X = T

⇤
X or eT ⇤X = T

⇤
X ⇥ Cz.
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8.8.13. Definition (Characteristic variety). Let eM be a coherent eDX -module. The char-
acteristic variety Char eM is the subset of the cotangent space eT ⇤X defined locally as
the support of grF eM for some (or any) local coherent filtration of eM.

8.8.14. Structure of the characteristic variety. The characteristic variety is additive
(see Exercise 8.68), so by using the notation of Remark 8.8.9 and after Exercise 8.66,
we have a decomposition

Char eM = Char eM0 [ (CharM00 ⇥ Cz),

where Char eM0 is contained in T
⇤
X = T

⇤
X ⇥ {0} ⇢ eT ⇤X.

It is known that CharM00 is involutive in T
⇤
X: the first proof has been given

by Sato, Kawai, Kashiwara [SKK73]. Next, Malgrange gave a very simple proof in
a seminar Bourbaki talk ([Mal78], see also [GM93, p. 165]). And finally, Gabber
gave the proof of a general algebraic version of this theorem (see [Gab81], see also
[Bjö93, p. 473]). A consequence is that any irreducible component of CharM00 has a
dimension > dimX.

On the other hand, there is no restriction on Char eM0, which is nothing but the
support of the gr

FDX -module gr eM0.

8.8.d. (Strictly) non-characteristic restriction. Let ◆Y : Y ,! X denote the
inclusion of a closed submanifold with ideal IY (in local coordinates (x1, . . . , xn), IY
is generated by x1, . . . , xp, where p = codimY ). The pullback functor D◆

⇤
Y

is defined
in Section 8.6.a. The case of left eDX -modules is easier to treat, so we will consider
left eDX-modules in this section.

Let us make the construction explicit in the case of a closed inclusion. A local
section ⇠ of ◆�1

Y
e⇥X (vector field on X, considered at points of Y only; we denote

by ◆
�1
Y

the sheaf-theoretic pullback) is said to be tangent to Y if, for every local
section g of eIY , ⇠(g) 2 eIY . This defines a subsheaf e⇥X|Y of ◆�1

Y
e⇥X . Then e⇥Y =

eOY ⌦◆
�1

Y

eOX

e⇥X|Y = ◆
⇤
Y
e⇥X|Y is a subsheaf of ◆⇤

Y
e⇥X .

Given a left eDX -module, the action of ◆�1
Y

e⇥X on ◆�1
Y

eM restricts to an action of e⇥Y

on ◆⇤
Y
eM = eOY ⌦◆

�1

Y

eOX

◆
�1
Y

eM. The criterion of Exercise 8.8 is fulfilled since it is fulfilled

for e⇥X and eM, defining therefore a left eDY -module structure on ◆⇤
Y
eM: this is D◆

⇤
Y
eM.

Without any other assumption, coherence is not preserved by D◆
⇤
Y

. For example,
D◆
⇤
Y
eDX is not eDY -coherent if codimY > 1. A criterion for coherence of the pullback

is given below in terms of the characteristic variety.
The cotangent map to the inclusion defines a natural bundle morphism

$ : T
⇤
X|Y ⇥ Cz �! T

⇤
Y ⇥ Cz,

the kernel of which is by definition the conormal bundle T ⇤
Y
X⇥Cz of Y ⇥Cz in X⇥Cz.

8.8.15. Definition (Non-characteristic property). Let eM be a coherent eDX -module with
characteristic variety Char eM ⇢ T

⇤
X⇥Cz. Let Y ⇢ X be a submanifold of X. We say

that Y is non-characteristic with respect to the holonomic eDX -module eM, or that eM
is non-characteristic along Y , if one of the following equivalent conditions is satisfied:
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• (T
⇤
Y
X ⇥ Cz) \ Char eM ⇢ T

⇤
X
X ⇥ Cz,

• $ : Char eM|Y⇥Cz
! T

⇤
Y ⇥ Cz is finite, i.e., proper with finite fibers.

For example, if eM is holonomic and strict with characteristic variety contained in
⇤⇥ Cz, where ⇤ ⇢ T

⇤
X is Lagrangean (see Section 8.8.g), the condition is achieved

if the usual one is, that is, T ⇤
Y
X \ ⇤ ⇢ T

⇤
X
X.

8.8.16. Theorem (Coherence of non-characteristic restrictions)
Assume that eM is eDX-coherent and that Y is non-characteristic with respect to eM.

Then D◆
⇤(0)
Y

eM is eDY -coherent and Char D◆
⇤(0)
Y

eM ⇢ $(Char eM|Y ).

Sketch of proof. The question is local near a point x 2 Y . We may therefore assume
that eM has a coherent filtration F•

eM.
(1) Set Fk(D◆

⇤(0)
Y

eM) = image[◆
⇤
Y
Fk

eM! ◆
⇤(0)
Y

eM]. Then, using Exercise 8.64(2), one
shows that F•(D◆

⇤(0)
Y

eM) is a coherent filtration with respect to F•(D◆
⇤(0)
Y

eDX).
(2) The module gr

F
D◆
⇤(0)
Y

eM is a quotient of ◆⇤
Y
gr

F eM, hence its support is contained
in Char eM|Y . By Remmert’s Theorem, it is a coherent gr

FeDY -module.
(3) The filtration F•D◆

⇤(0)
Y

eM is thus a coherent filtration of the eDY -module D◆
⇤(0)
Y

eM.
By Exercise 8.63(1), D◆

⇤(0)
Y

eM is eDY -coherent. Using the coherent filtration above, it
is clear that Char D◆

⇤(0)
Y

eM ⇢ $(Char eM|Y ).

8.8.17. Definition (Strictly non-characteristic property). In the setting of Definition
8.8.15, we say that eM is strictly non-characteristic along Y if eM is non-characteris-
tic along Y and, moreover, the complex D◆

⇤
Y
eM is strict, i.e., each of its cohomology

modules are strict.

8.8.18. Proposition. If eM is strictly non-characteristic along Y , then D◆
⇤
Y
eM = D◆

⇤(0)
Y

eM.

Proof. The result is known to hold for DX -modules (where the strictness assumption
is empty), and therefore it holds after tensoring with C[z, z

�1
]. As a consequence,

D◆
⇤(j) eM is a z-torsion module if j 6= 0. It is strict if and only if it is zero.

8.8.19. Remark. Assume that we have inclusions of closed submanifolds Y ⇢ H ⇢ X

with H of codimension one.
(1) Let M be a coherent DX -module. Then M is non-characteristic along Y if only

if it is non-characteristic along H in some neighborhood of Y and D◆
⇤
H

= D◆
⇤(0)
H

M is
non-characteristic along Y .

Indeed, assume that M is non-characteristic along Y . Then $Y : CharM|Y⇥Cz
!

T
⇤
H|Y ⇥ Cz is also finite finite, hence $H : CharM|H⇥Cz

! T
⇤
H ⇥ Cz is finite in

some neighborhood of Y , so that M is non-characteristic along H in this neighborhood.
Furthermore, Char D◆

⇤(0)
H

M ⇢ $H(CharM|H). Therefore, D◆
⇤(0)
H

M is also non-charac-
teristic along Y . The converse is proved similarly.

(2) For a coherent eDX -module eM only one direction of the previous equivalence
holds, namely, if eM is strictly non-characteristic along H in some neighborhood of Y
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and D◆
⇤
H
eM = D◆

⇤(0)
H

eM is strictly non-characteristic along Y , then eM is strictly non-
characteristic along Y .

Indeed, the non-characteristic property holds as in (1). Let ◆Y,H : Y ,! H the
inclusion. Then D◆

⇤
Y
eM ' D◆

⇤
Y,HD◆

⇤
H
eM. The assumption implies that D◆

⇤
H
eM = D◆

⇤(0)
H

eM
and D◆

⇤
Y,HD◆H⇤(0) eM = D◆

⇤(0)
Y,HD◆

⇤(0)
H

eM, so that

D◆H
eM = D◆

⇤(0)
H

eM = D◆
⇤(0)
Y,HD◆

⇤(0)
H

eM,

which is strict.

8.8.20. Definition ((Strictly) non-characteristic pullback). Let f : X
0 ! X be a mor-

phism between complex manifolds and let eM be a left eDX -module. We say that f is
non-characteristic with respect to eM if, decomposing f as p� ◆f : X

0
,! X

0⇥X ! X,
the pullback Dp

⇤ eM = Dp
⇤(0) eM is non-characteristic along ◆f (X 0). We say that f is

strictly non-characteristic with respect to eM if, moreover, the complex Df
⇤ eM is strict.

Due to the chain rule (Exercises 8.37 and 8.39) and to Remark 8.6.7, we note
that f is strictly non-characteristic with respect to eM if and only if the pullback
Dp
⇤ eM = Dp

⇤(0) eM is strictly non-characteristic along ◆f (X 0).

8.8.e. Coherence of the pushforward and strictness

8.8.21. Theorem (Coherence of the pushforward). Let f : X ! Y be a holomorphic
map between complex manifolds and let eM be a coherent eDX-module. Assume that eM
admits a coherent filtration F•

eM. Then, if f is proper on the support of eM, the
pushforward complex Df⇤ eM has eDY -coherent cohomology.

Proof. Assume first that eM is an induced right eDX -module eL ⌦eOX

eDX where eL is
a coherent eOX -module such that f is proper on its support. Due to the formula
of Exercise 8.53(3), the result follows from Grauert’s direct image theorem. As a
consequence, the same result holds for any bounded complex of such induced right
eDX -modules.

For eM arbitrary, it is enough by Remark 8.7.5(2) to prove the coherence of Df
(j)

⇤ eM
for j 2 [� dimX, 2 dimX]. Since the eDY -coherence is a local property on Y , it is
enough to prove the coherence property in the neighbourhood of any y 2 Y , and
therefore it is enough to show the existence, in the neighbourhood of the compact set
f
�1

(y), of a resolution of eM�N�1 ! · · · ! eM0 ! eM ! 0 of sufficiently large length
N+2, such that eMj is a coherent induced eDX -module for j = �N, . . . , 0 and f proper
on Supp eMj .

Since f
�1

(y) \ Supp eM is compact, there exists p such that Fp
eM⌦eOX

eDX is onto
in some neighbourhood of f

�1
(y) (i.e., the coherent eOX -module Fp

eM generates eM
as a eDX -module). Set Fq(Fp

eM ⌦eOX

eDX) = Fp
eM ⌦eOX

Fq�p eDX . This is a cohe-
rent filtration of Fp

eM ⌦eOX

eDX , which therefore induces a coherent filtration on
Ker[Fp

eM⌦eOX

eDX ! eM]. Continuing this way N +2 times, we obtained a resolution
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of length N +2 of eM by coherent induced right eDX -modules on some neighbourhood
of f�1(y), all supported on Supp eM.

Let us assume that eM is strict, that is, eM is the Rees module RFM of a cohe-
rent filtration F•M on a coherent DX -module M (see the proof of Proposition 8.8.5).
In general, for f : X ! Y proper (or proper on Supp eM), there is no reason that the
pushforward complex Df⇤ eM is strict, i.e., each of its cohomology modules is strict.
However, we will see that this property is satisfies when eM underlies a polarizable
Hodge module (Theorem 14.3.2(1)). We make explicit the meaning of this property
in terms of filtered complex. For that purpose, we make use of Formulas (8.52 ⇤) and
(8.52 ⇤⇤) for the pushforward.

Let eM = RFM be a strict coherent left eDX -module. We can write
eM⌦

f�1eOY

f
�1 eDY = RF (M⌦f�1OY

f
�1DY ),

with
Fp(M⌦f�1OY

f
�1DY ) =

X

i+j=p

(FiM)⌦f�1OY
(f
�1

FjDY ),

and therefore
e⌦n+•
X
⌦ ( eM⌦

f�1eOY

f
�1 eDY ) = RF

�
⌦

n+•
X
⌦ (M⌦f�1OY

f
�1DY )

�

with

Fp

�
⌦

n+k

X
⌦ (M⌦f�1OY

f
�1DY )

�
= ⌦

n+k

X
⌦ Fp�n�k(M⌦f�1OY

f
�1DY ).

There exists a spectral sequence

(8.8.22) E
p,q

1
= R

p+q
f⇤

⇣
gr

F

�p
�
⌦

n+•
X
⌦ (M⌦f�1OY

f
�1DY )

�⌘

=) gr
F

�pR
p+q

f⇤
�
⌦

n+•
X
⌦ (M⌦f�1OY

f
�1DY )

�
.

8.8.23. Proposition (Degeneration at E1). If eM is eDX-coherent and strict and if f is
proper on Supp eM, then the complex Df⇤ eM is strict if and only if the spectral sequence
(8.8.22) degenerates at E1, that is, for each k, p 2 Z, the natural morphism

R
k
f⇤

⇣
Fp

�
⌦

n+•
X
⌦ (M⌦f�1OY

f
�1DY )

�⌘
�! R

k
f⇤
�
⌦

n+•
X
⌦ (M⌦f�1OY

f
�1DY )

�

is injective.

For example, if Y is reduced to a point, the strictness of Df⇤ eM is equivalent to the
degeneration at E1 of the Hodge-to-deRham spectral sequence

H
k
�
X, gr

F

�p(⌦
n+•
X
⌦M)

�
=) gr

F

�pH
k
�
X, (⌦

n+•
X
⌦M)

�
.

Sketch of proof of Proposition 8.8.23. The image of the morphism in the proposition is
by definition FpR

k
f⇤
�
⌦

n+•
X
⌦(M⌦f�1OY

f
�1DY )

�
. Therefore, injectivity is equivalent

to the equality

R
k
f⇤

⇣
RF

�
⌦

n+•
X
⌦ (M⌦f�1OY

f
�1DY )

�⌘
= RFR

k
f⇤
�
⌦

n+•
X
⌦ (M⌦f�1OY

f
�1DY )

�
,

which in turn is equivalent to the left-hand side being C[z]-flat.
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8.8.24. Laumon’s formula. We give another consequence of strictness of Df⇤M. Let
(M, F•M) be a coherently F -filtered DX -module. The behaviour of grading with
respect to pushforward is treated in Exercises 8.55 and 8.56. For example, for right
DX -modules, Laumon’s formula is that, if f : X ! Y is a holomorphic map and if
Df⇤M is a strict complex, then for every i,

(8.8.24 ⇤) gr
F
Df

(i)

? M ' H
i
Rf?

�
gr

FM⌦L
Sym⇥X

f
⇤
Sym⇥Y

�
.

8.8.f. Künneth formula. Assume that X,Y are compact complex manifolds. Let
eMX , eMY be strict coherent eD-modules. The Künneth formula compares the deRham
cohomology of the external product eMX ⇥eD

eMY with that of the factors.

8.8.25. Theorem (Künneth formula). Let eMX , eMY be coherent eD-modules having a
coherent filtration. Assume that R�(Y,

p

DR eMY ) is strict, i.e., has strict cohomolo-
gies. Then for each k we have

(8.8.25 ⇤) H
k
�
X⇥Y, p

DR( eMX ⇥eD
eMY )

�
'

L
i+j=k

H
i
(X,

p

DR eMX)⌦eCH
j
(Y,

p

DR eMY ).

Note that, if eD = RFD, the existence of a coherent filtration for eM is ensured by
Proposition 8.8.5(2). Note also that the roles of eMX and eMY can be exchanged.

Proof. We denote by p : X ⇥ Y ! X and q : X ⇥ Y ! Y the projections. Let us
assume that eMX = eLX ⌦eOX

eDX and eMY = eLY ⌦eOY

eDY are induced eD-modules
such that eLX is an inductive limit of coherent eOX -modules and eLY is strict. One
computes that

eMX ⇥eD
eMY ' (eLX ⇥eO

eLY )⌦eOX⇥Y

eDX⇥Y ,

and thus
p

DR( eMX ⇥eD
eMY ) ' eLX ⇥eO

eLY = p
⇤eLX ⌦q�1eOY

q
�1eLY .

By the projection formula (see e.g. [KS90, Prop. 2.6.6]) and using the strictness
of eLY , we obtain

Rq⇤
p

DR( eMX ⇥eD
eMY ) ' (Rq⇤p

⇤eLX)⌦eOY

eLY ,

and by Exercise 8.73 the latter term is isomorphic to

(8.8.26) (eOY ⌦eC R�(X, eLX))⌦eOY

eLY ' R�(X, eLX)⌦eC
eLY .

Applying once more the projection formula we finally obtain in D
b
(eC):

R�
�
p

DR( eMX ⇥eD
eMY )

�
' R�

�
Y,Rq⇤

p

DR( eMX ⇥eD
eMY )

�

' R�
�
Y,R�(X, eLX)⌦eC

eLY

�

' R�(X, eLX)
L
⌦eC R�(Y, eLY )

' R�(X,
p

DR eMX)
L
⌦eC R�(Y,

p

DR eMY ).(8.8.27)

Let now eMX and eMY be as in the theorem. Each term of their canonical resolu-
tion (Proposition 8.5.2) satisfies the corresponding assumptions on eLX , eLY and thus
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(8.8.27) holds for each term of the corresponding resolution of eMX ⇥eD
eMY . As a con-

sequence, (8.8.27) holds for eMX ⇥eD
eMY . Strictness of R�(Y,

p

DR eMY ) then implies
Künneth formula (8.8.25 ⇤) (see e.g. [God64, Th. 5.5.2]).

8.8.g. Holonomic eDX-modules and duality

8.8.28. Definition (Smooth eDX -modules). A coherent eDX -module eM is said to be
smooth if it is eOX -locally free.

In particular, a smooth eDX -module is strict, and its characteristic variety is equal
to (T

⇤
X
X)⇥ eCz. (See Exercise 8.69 for the converse.)

8.8.29. Definition (Holonomic eDX -modules). A coherent eDX -module eM is said to be
holonomic if Char eM ⇢ ⇤⇥ Cz, where ⇤ is a Lagrangian closed subvariety of T ⇤X.

8.8.30. Remark. By Remarks 8.8.9 and 8.8.14, this is equivalent to asking that M00 is
holonomic and that the support of M0 is Lagrangian in T

⇤
X. In particular, if eM is

strict, holonomicity of eM is equivalent to that of the underlying DX -module M.

Such a Lagrangian subvariety is the union of its irreducible components, each of
which is usually written as T

⇤
Z
X, where Z is a closed irreducible subvariety of X and

T
⇤
Z
X means the closure, in the cotangent space T

⇤
X of the conormal bundle T

⇤
ZoX of

the smooth part Zo of Z. It is also known that, due to the existence of stratifications
satisfying Whitney condition (a), there exist a locally finite family (Z

o

i
)i2I of locally

closed sub-manifolds Z
o

i
of Z, with analytic closure and one of them being Z

o, such
that T

⇤
Z
X ⇢

F
i
T
⇤
Z

o

i

X.
For example, a smooth eDX -module, or a coherent eDX -module as in Exercise 8.69

or 8.70, is holonomic.

8.8.31. Pushforward of a holonomic eDX -module. Assume that the coherent eDX -mod-
ule eM has a coherent filtration. For example, assume that eDX = RFDX and eM
is strict (Proposition 8.8.5(2)). Then, the pushforward of eM by a proper holomor-
phic map f : X ! Y has coherent cohomology. Moreover, a theorem of Kashiwara
[Kas76] complements Theorem 8.8.21 with an estimate of the characteristic variety
of the pushforward cohomology eDY -modules in terms of the characteristic variety
of the source eDX -module. This estimate shows that holonomicity is preserved by
proper pushforward. (The theorem of Kashiwara is proved for holonomic DX -mod-
ules, but it extends in a straightforward way to holonomic eDX -modules.) Therefore,
the pushforward by a proper holomorphic map of a strict coherent eDX -module which
is holonomic has holonomic cohomologies when eDX = RFDX .

The eDX -modules Ext ieDX

( eM, eDX). Holonomicity is related with the vanishing of the
eDX -modules Ext ieDX

( eM, eDX). If eM is a right eDX -module, Ext ieDX

( eM, eDX) is equipped
with the left action coming from the left structure of eDX , and the corresponding right
eDX -module is Ext ieDX

( eM, e!X ⌦ eDX) (see Section 8.3.5) by playing with the two right
structures (triv and tens) on e!X ⌦ eDX .
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8.8.32. Lemma. For a coherent eDX-module eM, we have Ext ieDX

( eM, eDX) = 0 for i >
2n+ 1.

Proof. One can argue as in [Bjö93, §I.7].

For a right eDX -module eM, the right eDX -modules Ext ieDX

( eM, e!X ⌦ eDX) are thus
the cohomology modules of a complex D eM := RHom eDX

( eM, e!X⌦ eDX) in the derived
category D

b
(eDX).

The case of DX -modules is most useful. We will recall some fundamental results.

8.8.33. Proposition. Let M be a coherent DX-module. We have

Ext iDX
(M,DX) = 0 for i > n+ 1.

8.8.34. Theorem (see [Kas76]). Let M be a coherent DX-module and x 2 SuppM.
Then

2n� dimx CharM = inf{i 2 N | Ext iDX,x
(Mx,DX,x) 6= 0}.

8.8.35. Corollary. Let M be a coherent DX-module. Then M is holonomic if and only
if Ext iDX

(M,DX) = 0 for i 6= dimX.

If M is a right holonomic DX -module, the DX -module ExtdimX

DX
(M,!X ⌦ DX) is

called the dual of M, and is the unique nonzero cohomology of the complex DM.
We often identify both objects. For a left DX -module M, we define the left DX -mod-
ule or bounded complex D(M) as D(Mright

)
left.

8.8.36. Theorem (Bi-duality, see [Kas76]). Let M be a holonomic DX-module. Then
its dual module DM is holonomic and the natural functorial morphism from M to its
bi-dual module DDM is an isomorphism.

Let us now consider holonomicity and duality for strict coherent eDX -modules.
Recall that, for any coherent eDX -module eM, Ext ieDX

( eM, eDX) is also coherent for any i.

8.8.37. Definition (Strictly holonomic eDX -modules). Let eM be a holonomic eDX -mod-
ule. We say that eM is strictly holonomic if eM is strict and Ext ieDX

( eM, eDX) is a strict
eDX -module for every i.

If eM is strictly holonomic, then ExtneDX

( eM, eDX) takes the form RFM
_ for some

holonomic DX -module M_ and a unique coherent filtration on it. The complex D eM
has thus a unique nonzero cohomology module, which is the eDX -module obtained
after side-changing from ExtneDX

( eM, eDX). For example, if eM is a right eDX -module,
then D eM = ExtneDX

( eM, e!X ⌦ eDX). Then there exists a unique coherent filtration
F•DM such that D eM = RFDM.

We obtain the following results from Exercise 5.2.

8.8.38. Proposition (Cohen-Macaulay property of the graded module)
Assume that eM is strictly holonomic. Then the following properties hold.
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(1) Ext ieDX

( eM, eDX) = 0 for i 6= n = dimX;
(2) M_ is nothing but ExtnDX

(M,DX);
(3) if eM is written as RFM, then

gr
FExtnDX

(M,DX) ' Extn
grFDX

(gr
FM, gr

FDX) =: (gr
FM)

_
,

(4) and (Cohen-Macaulay property) Ext i
grFDX

(gr
FM, gr

FDX) = 0 for i 6= n;
(5) if for example eM is a right eDX-module, then we obtain the following isomor-

phism of right grFDX-module (see Caveat 8.2.7)

gr
F
(DM) ' !X ⌦ inv

⇤
(gr

FM)
_
(�n).

Proof. Let us check Properties (3) and (4). Property (2) is obtained by a similar
argument, and the other ones are easy to check. There exists a natural morphism
(see e.g. [Kas03, (A.10)])

RHom eDX

( eM, eDX)⌦L
eDX

(eDX/z eDX)

�! RHom eDX

( eM, eDX ⌦L
eDX

(eDX/z eDX)) = RHom eDX

( eM, gr
FDX),

which is an isomorphism since eM is eDX -coherent, where z acts by zero on gr
FDX

(check this with eM = eDX). On the other hand, the “associativity law” of [Kas03,
p. 241] provides an isomorphism in the derived category D

+
(gr

FDX)

RHom eDX/z eDX

( eM⌦L
eDX

(eDX/z eDX), gr
FDX)

= RHomgrFDX
( eM⌦L

eDX

gr
FDX , gr

FDX)

' RHom eDX

� eM,RHomgrFDX
(gr

FDX , gr
FDX)

�

= RHom eDX

( eM, gr
FDX).

Since eM is assume to be strict (by its strict holonomicity), it follows that

eM⌦L
eDX

(eDX/z eDX) = gr
FM,

and we finally obtain an isomorphism in D
+
(gr

FDX):

RHom eDX

( eM, eDX)⌦L
eDX

gr
FDX ' RHomgrFDX

(gr
FM, gr

FDX).

Strict holonomicity of eM also implies that RHom eDX

( eM, eDX) has nonzero cohomology
in degree n at most, and this cohomology is strict. Since the left-hand side also reads
RHom eDX

( eM, eDX) ⌦C[z] (C[z]/zC[z]), it has thus cohomology in degree n at most,
which reads gr

F ExtnDX
(M,DX). Therefore the right-hand side also has cohomology

in degree n at most, that is, Ext i
grFDX

(gr
FM, gr

FDX) = 0 for i 6= n, and we obtain
the isomorphism

gr
F ExtnDX

(M,DX) ' Extn
grFDX

(gr
FM, gr

FDX).

8.8.39. Proposition (Indpendence of strict holonomicity with respect to embeddings)
Let ◆ : Z ,! X be the closed inclusion of a smooth submanifold Z of X and let eM
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be a holonomic eDZ-module. Then eM is strictly holonomic if and only if the holonomic
eDX-module D◆⇤ eM is so.

Proof. The question is local and we can assume that X = Z ⇥ C
r with coordinates

x1, . . . , xr on C
r, and that ◆ is the inclusion induced by {0} ,! C

r. Using the notation
of external product as in Section 8.6.b, we can write D◆⇤ eM = eM ⇥eD

eC[e@x1
, . . . , e@xr

].
The proof of the following lemma is the subject of Exercise 8.74.

8.8.h. Duality, filtration and de Rham. If M is a holonomic DX -module, a cel-
ebrated theorem of Kashiwara [Kas75] asserts that the de Rham complex p

DRM is
a complex with constructible cohomology. Furthermore, the de Rham functors trans-
forms duality of holonomic DX -modules to Poincaré-Verdier duality of constructible
complexes: this is the local duality theorem (see [Nar04] for an account of various
proofs of this theorem). Although there is no reasonable notion of a constructible com-
plex with filtration (for example, one does not expect that p

DR eM is a constructible
complex of C[z]-modules; see however [MFS13, MFS19] for such a notion), one
can regard, for a filtered DX -module (M, F•M), the filtered de Rham complex as
a filtered differential complex and one has a “local duality theorem” in this context
(see [Sai88, §2.4]). Furthermore, the notion of perversity is meaningful in this context
(see [BSY98]).

In this section, we focus on the graded object grFM attached to a coherently filtered
right DX -module M. Recall (see Section 8.4.9) that the Spencer complex Sp(M) is
naturally filtered, so that we can consider the graded complex gr

F
Sp(M). We will

prove a coherent version of the local duality theorem for gr
F
Sp(M), that makes use

of the Grothendieck-Serre duality functor. We start with the following observation:

8.8.40. Lemma. For a filtered right DX-module (M, F•M), the filtered Spencer complex
satisfies

gr
F
Sp(M) ' gr

FM⌦L
grFDX

OX .

In other words, one can interpret the graded complex gr
F
Sp(M) as the O-module

pullback by the inclusion X ,! T
⇤
X (zero section) of grFM. In particular, if M is

coherently filtered, grF Sp(M) has OX -coherent cohomology (check this for M = DX).

Proof. Let us set eM = RFM. By Exercise 8.24 we have a natural isomorphism
eM⌦eDX

Sp(eDX) ' Sp( eM). Since all involved C[z]-modules are flat, we obtain, by ten-
soring with C[z]/zC[z], the isomorphism

gr
FM⌦grFDX

gr
F
Sp(DX) ' gr

F
Sp(M).

Recall (see Exercise 8.21) that gr
F
Sp(DX) is a resolution of OX by locally free

gr
FDX -modules. The conclusion follows.
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If (M, F•M) is a coherently filtered right DX -module, we define the dual grFDX -
module of grFM as the object of D+

coh
(gr

FDX):

Dgr
FM := RHomgrFDX

�
gr

FM, gr
F
(!X ⌦OX

DX)
�

' inv
⇤
RHomgrFDX

�
gr

FM, gr
F
(!X)⌦grFOX

gr
F
(DX)

�
(see Caveat 8.2.7),

where we recall that grFOX = OX is graded of degree zero and gr
F
!X = !X is graded

of degree �n. Therefore, if M is strictly holonomic we have, according to Proposition
8.8.38(5),

Dgr
FM ' gr

F
DM.

We regard gr
F
Sp(M) as an object of Db

coh
(OX) (Lemma 8.8.40) and its Grothen-

dieck-Serre dual object in D
b

coh
(OX) is defined as

D(gr
F
SpM) := RHomOX

�
gr

F
Sp(M), gr

F
(!X)

�
.

8.8.41. Proposition. If eM is strictly holonomic, we have an isomorphism in D
b

coh
(OX)

which depends functorially on eM:

D(gr
F
SpM) ' gr

F
Sp(DM).

Proof. We will use an argument similar to that of the proof of Proposition 8.8.38,
by justifying the following sequence of isomorphisms:

D(gr
F
SpM) = RHomOX

�
gr

F
Sp(M), gr

F
(!X)

�

(a)
' RHomgrFDX

�
gr

FM, gr
F
(!X ⌦DX)

�
⌦L

grFDX
gr

FOX

(b)
' RHom eDX

( eM, e!X ⌦eOX

eDX)⌦L
eDX

(eDX/z eDX)⌦L
grFDX

gr
FOX

(c)
' RHom eDX

( eM, e!X ⌦eOX

eDX)⌦L
eDX

(eOX/zeOX)

(d)
' (D eM⌦L

eDX

eOX)⌦L
eOX

(eOX/zeOX)

(e)
' Sp(D eM)⌦L

eOX

(eOX/zeOX)

(f)
' gr

F
Sp(DM).

For (a), we argue with [Kas03, (A.10)] and the “associativity law” to obtain

RHomgrFDX

�
gr

FM, gr
F
(!X ⌦DX)

�
⌦L

grFDX
gr

FOX

' RHomgrFOX

�
gr

FM⌦L
grFDX

gr
FOX , gr

F
(!X ⌦DX)⌦L

grFDX
gr

FOX

�
,

and by Lemma 8.8.40, the latter term is identified with

RHomgrFOX

�
gr

F
SpM, gr

F
Sp(!X ⌦DX)

�
' RHomOX

�
gr

F
Sp(M), gr

F
(!X)

�
.

For (b), the argument is the same as in the proof of Proposition 8.8.38 and similar
to the above. The isomorphism (c) is then clear, and (d) is obtained by identi-
fying • ⌦L

eDX

(eOX/zeOX) with (• ⌦L
eDX

eOX) ⌦L
eOX

(eOX/zeOX). Then (e) follows from
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Lemma 8.8.40 and (f) from the fact that each term of Sp(D eM) is strict, due to the
strictness of D eM.

8.8.i. Duality and operations

8.8.42. Lemma (Duality and external product). For i = 1, 2, let Mi be a coherent
DXi

-module on the complex manifold Xi. Then there exists a natural isomorphism in
D

b

coh
(DX1⇥X2

):
D(M1 ⇥D M2) ' (DM1)⇥D (DM2).

It is thus enough to prove that

(8.8.43) D(C[@x1
, . . . , @xr

]) ' C[@x1
, . . . , @xr

].

Indeed, this implies that, in this local setting, D◆⇤DM 'D(D◆⇤M), and one concludes
by observing that M is strict if and only if D◆⇤M is strict.

For the proof of (8.8.43), one can use Lemma 8.8.42 once more to reduce to the
case where r = 1. Then we have a simple two-term free resolution of C[@x] which
immediately gives the result.

8.8.44. Proposition (Duality and pushforward). Let eM be a coherent eDX-module ad-
mitting a coherent F -filtration and let f : X ! X

0 be a proper morphism. Then there
exists a functorial isomorphism in D

b
(eDX0):

Df⇤(D eM) 'D(Df⇤ eM).

Indication of proof. For DX -modules, this is a classical result. One can find a proof
in [Bjö93, §II.11] and [Kas03, §4.9] for the analytic case, and in [HTT08, §2.7.2]
for the algebraic case, for example. The adaptation to eDX -modules is straight-
forward. The main point is to adapt the construction of the trace morphism
Df⇤e!X [dimX] ! e!X0 [dimX

0
]. In the analytic setting that we consider here,

we argue as for the C
1 Spencer complex of Section 8.4.13, by replacing the bi-

complex of currents (Db
p,q

, d
0
, d
00
) with the bicomplex (fDb

p,q
, ed0, d00) having terms

fDb
p,q

= e⌦p

X
^Db

(0,q)

X
[z].

8.8.45. Corollary (A criterion for the commutation of D with Df
(k)

⇤ )
In the setting of Proposition 8.8.44, assume that

• the eDX-module eM is strictly holonomic,
• the decomposition theorem holds for the pushforward complex Df⇤ eM, that is,

Df⇤ eM '
L

k2Z Df
(k)

⇤ eM[�k], and
• each holonomic eDX0-module Df

(k)

⇤ eM is strictly holonomic.
Then there exists an isomorphism, for each k 2 Z,

Df
(�k)
⇤ (D eM) 'D(Df

(k)

⇤ eM).

Proof. By assumption, D eM has cohomology in degree zero only, so that the k-th coho-
mology of Df⇤(D eM) is Df

(k)

⇤ (D eM). On the other hand, the assumption also implies
that the complex D(Df⇤ eM) decomposes as

L
k2Z D(Df

(k)

⇤ eM)[k], where D(Df
(k)

⇤ eM)
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has cohomology in degree zero only. The isomorphism of Proposition 8.8.44 yields
the conclusion after taking the k-th cohomology of both sides.

For a morphism f : X
0 ! X of complex manifolds, we denote by Modcoh,f (

eDX)

the full subcategory of Modcoh(
eDX) consisting of coherent eDX -modules eM such that

Df
⇤ eM has eDX0 -coherent cohomology. We then define D

b

coh,f
(eDX) as the full subcat-

egory of Db

coh
(eDX) consisting of complexes having cohomology in Modcoh,f (

eDX).
• If f is smooth, then Modcoh,f (

eDX) = Modcoh(
eDX).

• If f decomposes as X
0 g�! Z

h�! X, we define D
b

coh,g,h
(eDX) as the full subcat-

egory of D
b

coh
(eDX) consisting of complexes eM with coherent cohomology such that

Dh
⇤ eM has eDZ-coherent cohomology and Df

⇤ eM ' Dg
⇤
(Dh
⇤ eM) has eDX0 -coherent coho-

mology.
The next theorem is classical in the theory of DX -modules (see e.g. [HTT08,

§2.7.1]) and its proof can be adapted in a straightforward way to eDX -modules, due
to the results of Section 8.8.d. We give details in Section 8.9

8.8.46. Theorem (Duality and smooth pullback). Let f : X
0 ! X be a morphism of

complex manifolds.
(1) There exists a canonical morphism of functors D

b

coh,f
(eDX)! D

b
(eDX0)

↵f (•) : D Df
⇤
(•) �! Df

⇤
D(•).

(2) If f decomposes as X
0 g�! Z

h�! X, then there exists an isomorphism

↵f (•) ' Dg
⇤
↵h(•) � ↵g(Dh

⇤
(•))

of functors D
b

coh,g,h
(eDX)! D

b
(eDX0).

(3) If f is a smooth morphism, then D
b

coh,f
(eDX) = D

b

coh
(eDX) and for each eM 2

D
b

coh
(eDX), ↵f (

eM) is an isomorphism.
(4) In the non-filtered setting, if f is non-characteristic with respect to (each coho-

mology module of) M 2 D
b

coh
(DX), then M 2 D

b

coh,f
(DX) and ↵f (M) is an isomor-

phism.

8.8.47. Corollary. Assume that f is a smooth morphism and eM is strictly holonomic.
Then Df

⇤ eM = Df
⇤(0) eM is also strictly holonomic.

Proof. The equality Df
⇤ eM = Df

⇤(0) eM as well as strictness of the latter, is due to flat-
ness of f and is not related to strict holonomicity, hence we have the same properties
for D eM. Since ↵f (

eM) is an isomorphism by (3), it follows that D(Df
⇤(0) eM) is in

degree zero only, and it is strict.

8.9. Appendix A: Some fundamental results on eDX-modules

In this section, we provide a proof of Theorem 8.8.46 and take this opportunity to
state in the framework of eDX -modules and their derived categories various classical
results for DX -modules.
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8.9.a. Some fundamental identities. We work in the categories of left eD-modules.
For a morphism f : X

0 ! X of complex manifold and an object eM of Db
(eDX), we

denote by Df
⇤
: D

b
(eDX)! D

b
(eDX0) the eD-module derived pullback:

Df
⇤ eM = eDX0!X ⌦L

eDX

eM.

that is expressed as Df
⇤ eM = Sp

X0!X
⌦

f�1 eDX

f
�1 eM and similarly for a morphism

' : eM ! eN, where Sp
X0!X

is the relative Spencer complex, which is a f
�1 eDX -

locally free resolution of eDX0!X by (eDX0 , f
�1 eDX) bimodules. We thus have a natural

morphism

Hom
Db(eDX)

( eM, eN) �! Hom
Db(eD

X0 )
(Df
⇤ eM, Df

⇤eN)

' 7�! Df
⇤
'.

(8.9.1)

On the other hand, we denote by eM ⌦D eN the derived tensor product over eOX .
By taking flat eDX -resolutions (which are thus also eOX -flat), this defines a bifunctor
• ⌦D •

D
�
(eDX)⇥ D

�
(eDX) �! D

�
(eDX).

If the complexes on the left are bounded, their image has bounded cohomology, hence
by truncation can be regarded as an object in D

b
(eDX). For a morphism f : X

0 ! X

of complex manifolds, there exists a canonical bi-functorial isomorphism in D
b
(eDX)

(see [HTT08, Prop. 1.5.18]), for eM, eN 2 D
b
(eDY ),

(8.9.2) Df
⇤
( eM

D

⌦ eN) ' (Df
⇤ eM)

D

⌦ (Df
⇤eN).

Furthermore, we can also consider this bifunctor with the first term and the target
being right eDX -modules.

We denote by D eM the dual eDX -module, defined in such a way that

e!X

D

⌦D eM = RHom eDX

( eM, eDX)[n],

or equivalently, denoting by eDright

X
the ring eDX with its right structure,

D eM = RHom eDright

X

(e!X

D

⌦ eM, eDright

X
)[m].

The eDX ⌦eC
eDright

X
-linear Yoneda pairing eM⌦eC RHom eDX

( eM, eDX)! eDright

X
yields

a natural morphism

eM �! RHom eDright

X

�
RHom eDX

( eM, eDX), eDright

X

�

which is an isomorphism if eM 2 D
b

coh
(eDX), since it is so if eM = eDX . One deduces a

functorial biduality isomorphism for such an eM:

eM ⇠�!D(D( eM)).

There exists a canonical isomorphism of bifunctors

D
�
coh

(eDX)
op ⇥ D

b
(eDX) �! D

+
(eCX)
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given by (see [Kas03, Prop. 3.12 or (A.10)])

(8.9.3) RHom eDX

( eM, eDX)⌦L

eDX

eN ⇠�! RHom eDX

( eM, eN).

There exists a canonical tri-functorial isomorphism in D
b
(eCX) for eL 2 D

b
(eDright

X
)

and eM, eN 2 D
b
(eDX) (see [HTT08, Prop. 1.5.19]):

(8.9.4) (eL
D

⌦ eM)⌦L

eDX

eN ' eL⌦L

eDX

( eM
D

⌦ eN) ' (eL
D

⌦ eN)⌦L

eDX

eM,

which, for eDX -modules, is simply obtained by switching the entries of the tensor
products (on noting that this is well-defined). Here, we have used ⌦D in both its
configurations.

8.9.5. Example. We illustrate these properties by showing the existence of a canonical
bi-functorial isomorphism in D

b
(eCX), for eM, eN 2 D

b

coh
(eDX) (see [Kas03, (3.14)]):

RHom eDX

( eM, eN)
⇠�! RHom eDX

(DeN,D eM).

Proof. It is obtained as follows:

RHom eDX

( eM, eN) ' (e!X

D

⌦D eM)⌦L

eDX

eN[�n] by (8.9.3)(8.9.6)

' (e!X

D

⌦ eN)⌦L

eDX

D eM[�n] by (8.9.4)

' RHom eDX

(DeN,D eM) by (8.9.3).

This morphism induces a natural isomorphism

Hom
Db(eDX)

( eM, eN) �! Hom
Db(eDX)

(DeN,D eM).

Let us check for example that, if eN = eM, then IdfM is mapped to IdDfM. Since the
question is local, it is enough to check this for eM = eDX . For the sake of simplicity,
we use the duality functor such that e!X ⌦D

D
0
(•) = RHom eDX

(•, eDX). We fix a local
section edx of e!X and its dual section (edx)�1 of e!�1

X
.

The section 1 of Hom eDX

(eDX , eDX) writes edx ⌦D
((edx)�1 ⌦ 1) 2 e!X ⌦D

D
0
(eDX).

It is identified with the section (edx ⌦D
1) ⌦eDX

((edx)�1 ⌦ 1) of (e!X ⌦D eDX) ⌦eDX

D
0
(eDX). The biduality isomorphism eDX ' D

0
D
0 eDX identifies the section 1 with

the section (edx)�1 ⌦ s of e!�1
X
⌦Hom eDX

(D
0 eDX , eDX) such that s((edx)�1 ⌦ 1) = 1.

We deduce that the section 1 of Hom eDX

(eDX , eDX) is sent, by (8.9.6), to the section
s ⌦eDX

((edx)�1 ⌦ 1) of Hom eDX

(D
0 eDX , eDX) ⌦eDX

D
0 eDX , and it corresponds to the

section of Hom eDX

(D
0 eDX ,D

0 eDX) that sends (edx)�1 ⌦ 1 to itself, as wanted.

By means of (8.9.4), one also obtains a canonical bi-functorial isomorphism for
eM 2 D

b

coh
(eDX) and eN 2 Dcoh(

eDX) (see [HTT08, Prop. 2.6.14])

(8.9.7) RHom eDX

( eM, eN) ' RHom eDX

(eOX ,D eM
D

⌦ eN).
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Indeed, Applying (8.9.4) to (8.9.6) yields

RHom eDX

( eM, eN) ' e!X ⌦L

eDX

(D eM
D

⌦ eN)[�n]

' RHom eDX

(eOX ,D eM
D

⌦ eN).

We deduce a bi-functorial isomorphism

(8.9.8) Hom
Db(eDX)

( eM, eN) ' Hom
Db(eDX)

(eOX ,D eM
D

⌦ eN).

8.9.b. Proof of Theorem 8.8.46

Proof of Theorem 8.8.46(1). For eM, eN 2 D
b

coh,f
(eDX), we first construct a morphism

(8.9.9) Hom
Db(eDX)

( eM, eN) �! Hom
Db(eD

X0 )
(D(Df

⇤eN), Df
⇤
D eM),

that we also denote by (8.9.9)fM,eN, as follows:

Hom
Db(eDX)

( eM, eN) ' Hom
Db(eDX)

(eOX ,D eM
D

⌦ eN) by (8.9.8)

�! Hom
Db(eD

X0 )
(Df
⇤eOX , Df

⇤
(D eM

D

⌦ eN)) by (8.9.1)

' Hom
Db(eD

X0 )
(eOX0 , Df

⇤
D eM

D

⌦ Df
⇤eN) by (8.9.2)(8.9.10)

' Hom
Db(eD

X0 )
(eOX0 , Df

⇤eN
D

⌦ Df
⇤
D eM)

' Hom
Db(eD

X0 )
(D(Df

⇤eN), Df
⇤
D eM) by biduality.

For eM in D
b

coh
(eDX), we set

↵f (
eM) = (8.9.9)fM,fM(IdfM) 2 Hom

Db(eD
X0 )

(D(Df
⇤ eM), Df

⇤
D eM).

We will check functoriality. Let ' : eM ! eN be a morphism. We aim at proving the
relation

(8.9.11) Df
⇤
D' � ↵f (

eN) = ↵f (
eM) �D(Df

⇤
').

For that purpose, we consider the following diagram:

Hom
Db(eDX)

( eM, eM)

(8.9.9)fM,fM
//

' �
✏✏

Hom
Db(eD

X0 )
(D(Df

⇤ eM), Df
⇤
D eM)

�D(Df
⇤
')

✏✏

Hom
Db(eDX)

( eM, eN)

(8.9.9)fM,eN
// Hom

Db(eD
X0 )

(D(Df
⇤eN), Df

⇤
D eM)

Hom
Db(eDX)

(eN, eN)

(8.9.9)eN,eN
//

� '
OO

Hom
Db(eD

X0 )
(D(Df

⇤eN), Df
⇤
DeN)

D(Df
⇤
') �

OO

That it is commutative follows from the bi-functoriality of the morphisms in (8.9.10).
Then, since ' � IdfM = ' = IdeN �', this implies that both terms in (8.9.11) are equal
to (8.9.9)fM,eN(').
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Proof of Theorem 8.8.46(3). We will rely on 8.8.46(2) proved below. The question is
local, so we can assume that f is the projection X

0
= Y ⇥ X ! X. Furthermore,

since eM admits a bounded local resolution by free eDX -modules of finite rank, it is
enough, by the functoriality property of ↵f , to consider the case where eM = eDX .
We are thus reduced to proving that ↵f (

eDX) is an isomorphism.
For yo 2 Y , we consider a decomposition Id : X ,

gyo�! Y ⇥X f�! X, where gyo
is the

inclusion X ' {yo} ⇥X ,! Y ⇥X. We conclude from 8.8.46(2) that Dg
⇤
yo
↵f (

eDX) :

Dg
⇤
yo
D(Df

⇤ eDX) ! Dg
⇤
yo
(Df
⇤
D eDX) is onto for any yo 2 Y . In local coordinates,

we identify up to the same shift both D(Df
⇤ eDX) and Df

⇤
(D eDX) with eOX0he@xi '

eDX0/eDX0 e@y (with e@x = (e@x1
, . . . , e@xm

) and e@y = (e@y1
, . . . , e@yp

)). The morphism
↵f (

eD0
X
) is the right multiplication by the operator ↵f (

eD0
X
)(1) =

P
a,k

ca,k(y, x)z
ke@a

x
.

Since any surjective morphism eDX ! eDX must send 1 to an invertible holomorphic
function in OX , ca,k(yo, x) = 0 unless z = 0 and a = 0, and c0,0(yo, x) is an invertible
holomorphic function for any yo, hence the same properties hold for ca,k(y, x). As a
consequence, ↵f (

eDX) is an isomorphism.

Proof of Theorem 8.8.46(2). The proof uses the existence of an isomorphism

Df
⇤ ' Dg

⇤ � Dh
⇤
.

One notices that the following diagram, where the horizontal morphisms are obtained
by applying Dg

⇤, is commutative:

Hom
Db(eDZ)

(Dh
⇤eOX , Dh

⇤
(D eM ⌦D eN)) //

o
✏✏

Hom
Db(eD

X0 )
(Df
⇤eOX , Df

⇤
(D eM ⌦D eN))

o
✏✏

Hom
Db(eDZ)

(eOZ , Dh
⇤
D eM ⌦D

Dh
⇤eN) //

o
✏✏

Hom
Db(eD

X0 )
(eOX0 , Df

⇤
D eM ⌦D

Df
⇤eN)

o
✏✏

Hom
Db(eDZ)

(eOZ , Dh
⇤eN ⌦D

Dh
⇤
D eM) // Hom

Db(eD
X0 )

(eOX0 , Df
⇤eN ⌦D

Df
⇤
D eM)

and this leads to the desired isomorphism.

8.10. Appendix B: Differential complexes and the Gauss-Manin connec-
tion

In this section we switch to the case of DX -modules as in Section 8.1 (see Remark
8.10.9). Let M be a left DX -module and let f : X ! Y be a holomorphic mapping.
On the one hand, we have defined the direct images Df⇤M or Df!M of M viewed as
DX -modules. These are objects in D

+
(DY )

left. On the other hand, when f is a smooth
holomorphic mapping, a flat connection called the Gauss-Manin connection is defined
on the relative de Rham cohomology of M. We will compare both constructions,
when f is smooth. Such a comparison has essentially already been done when f is
the projection of a product X = Y ⇥ T ! Y (see Examples 8.7.10 and 8.7.11).
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In this section we also introduce the derived category of differential complexes on
a complex manifold X, that is, complexes of OX -modules with differential morphisms
as differential. This derived category is shown to be equivalent to that of DX -modules
(Theorem 8.10.15). It is sometimes useful to work in this category (see e.g. the proof
of Theorem 8.10.21).

8.10.a. Differential complexes. Given an OX -module L, there is a natural OX -
linear morphism (with the right structure on the right-hand term)

L �! L⌦OX
DX , ` 7�! `⌦ 1.

There is also a (only) C-linear morphism

(8.10.1) L⌦OX
DX �! L

defined at the level of local sections by `⌦P 7! P (1)`, where P (1) is the result of the
action of the differential operator P on 1, which is equal to the degree 0 coefficient
of P if P is locally written as

P
↵
a↵(x)@

↵

x
. In an intrinsic way, consider the natural

augmentation morphism DX ! OX , which is left DX -linear, hence left OX -linear;
then apply L⌦OX

• to it. Notice however that (8.10.1) is an OX -linear morphism by
using the left OX -module structure on L⌦OX

DX .
Let L,L0 be two OX -modules. A (right) DX -linear morphism

(8.10.2) v : L⌦OX
DX �! L0 ⌦OX

DX

is uniquely determined by the OX -linear morphism

(8.10.3) w : L �! L0 ⌦OX
DX

that it induces (where the right OX -module structure is chosen on L0 ⌦OX
DX). In

other words, the natural morphism

HomOX
(L,L0 ⌦OX

DX) �! HomDX
(L⌦OX

DX ,L0 ⌦OX
DX)

is an isomorphism. We also have, at the sheaf level,

(8.10.4) HomOX
(L,L0 ⌦OX

DX)
⇠�! HomDX

(L⌦OX
DX ,L0 ⌦OX

DX).

Notice that HomOX
(L,L0⌦OX

DX) is naturally equipped with an OX -module struc-
ture by using the left OX -module structure on L0 ⌦OX

DX (see Remark 8.5.1), and
similarly HomOX

(L,L0 ⌦OX
DX) is a �(X,OX)-module.

Now, w induces a C-linear morphism

(8.10.5) u : L �! L0,

by composition with (8.10.1): L0 ⌦OX
DX ! L0. By Exercise 8.75, u is nothing but

the morphism

H
0
(
p

DR(v)) : H
0
�
p

DR(L⌦OX
DX)

�
�! H

0
�
p

DR(L0 ⌦OX
DX)

�
.

8.10.6. Definition (Differential operators between two OX -modules)
The C-vector space HomDi↵(L,L

0
) of differential operators from L to L0 is the

image of the morphism HomDX
(L⌦OX

DX ,L0 ⌦OX
DX)! HomC(L,L0).
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Similarly we define the sheaf of C-vector spaces HomDi↵(L,L
0
).

8.10.7. Definition (The category Mod(OX ,Di↵X)). We denote by Mod(OX ,Di↵X) the
category whose objects are OX -modules and morphisms are differential operators
between OX -modules (this is justified by Exercise 8.76(4)).

In particular, Mod(OX) is a subcategory of Mod(OX ,Di↵X), since any OX -linear
morphism is a differential operator (of degree zero).

We will now show that the correspondence L 7! L ⌦OX
DX induces a functor

Mod(OX ,Di↵X) 7! Modi(DX). In order to do so, one first needs to show that to any
differential morphism u corresponds at most one v.

8.10.8. Lemma. The morphism

HomDX
(L⌦OX

DX ,L0 ⌦OX
DX) �! HomC(L,L

0
)

v 7�! u

is injective.

Proof. Recall that, for any multi-index �, we have @↵
x
(x

�
) = 0 if �i < ↵i for some i,

and @
↵

x
(x

↵
) = ↵!. Assume that u = 0. Let ` be a local section of L and, using local

coordinates (x1, . . . , xn), write in a unique way w(`) =
P

↵
w(`)↵ ⌦ @↵x , where the

sum is taken on multi-indices ↵ and w is as in (8.10.3). If w(`) 6= 0, let � be minimal
(with respect to the usual partial ordering on N

n) among the multi-indices ↵ such
that w(`)↵ 6= 0. Then,

0 = u(x
�
`) =

X

↵

@
↵

x
(x

�
)w(`)↵ = �!w(`)� ,

a contradiction.

8.10.9. Remark. A similar lemma would not hold in the category of induced graded
RFDX -modules because of possible z-torsion: one would only get that z

k
u(x

�
`) = 0

for some k. One thus cannot just replace DX with eDX in this section. On the other
hand, it is possible to restrict to eOX -modules which have no z-torsion, in other words,
to filtered OX -modules. This leads to considering derived categories in the framework
of exact but non abelian categories. We will need such a construction in Chapter 10.

According to Lemma 8.10.8, the following definition is meaningful.

8.10.10. Definition (The inverse de Rham functor). The functor
diff

DR
-1

: Mod(OX ,Di↵X) �! Modi(DX)

is defined by diff
DR

-1

(L) = L⌦OX
DX and diff

DR
-1

(u) = v.

8.10.11. Remarks.
(1) The notation is justified by the fact that p

DR(L ⌦OX
DX) ' L (see Exercise

8.29(5)).
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(2) By the isomorphism of Exercise 8.79, HomDi↵(L,L
0
) is equipped with the struc-

ture of a �(X,OX)-module. Similarly,

HomDX
(L⌦OX

DX ,L0 ⌦OX
DX) �! HomC(L,L

0
)

is injective, and and this equips the image sheaf HomDi↵(L,L
0
) with the structure of

an OX -module.
(3) When considered as taking values in Mod(DX), the functor diff

DR
-1 is not,

however, an equivalence of categories, i.e., is not essentially surjective. The reason is
that, first, not all DX -modules are isomorphic to some L⌦OX

DX and, next, its natural
quasi-inverse would be the de Rham functor p

DR which takes values in a category
of complexes. Nevertheless, if one extends suitably these functors to categories of
complexes, they become equivalences (see below Theorem 8.10.15).

8.10.b. The deRham complex as a differential complex. Given an induced
D-module, its deRham complex gives enough information to recover it, according
to Remark 8.10.11(1). On the other hand, given a bounded complex of induced
D-modules, its de Rham complex does not give enough information to recover its
differentials. We will refine the functor p

DR to a functor diff
DR, which takes values

in differential complexes, and has quasi-inverse induced by diff
DR

-1.
According to Exercise 8.78, one may consider the category C

?
(OX ,Di↵X) of

?-bounded complexes of objects of Mod(OX ,Di↵X) (with ? = ?,+,�, b), and
the category K

?
(OX ,Di↵X) of ?-bounded complexes up to homotopy (see [KS90,

Def. 1.3.4]). These are called ?-bounded differential complexes.
There is a natural forgetful functor Forget from Mod(OX ,Di↵X) to Mod(CX), and

by extension a functor Forget at the level of C? and K
?. Exercise 8.80 shows that we

can decompose the p

DR functor as

Mod(DX)
diff

DR

//

p

DR

))

C
b
(OX ,Di↵X)

Forget

// C
b
(CX)

and

K
?
(DX)

diff
DR

//

p

DR

))

K
?
(OX ,Di↵X)

Forget

// K
?
(CX)

In order to define the “derived category” of the additive category Mod(OX ,Di↵X),
one needs to define the notion of null system in K

?
(OX ,Di↵X) and localize the cat-

egory with respect to the associated multiplicative system. A possible choice would
be to say that an object belongs to the null system if it belongs to the null sys-
tem of C

?
(CX) when forgetting the Di↵ structure, i.e., which has zero cohomology

when considered as a complex of sheaves of C-vector spaces. This is not the choice
made below. One says that a differential morphism u : L ! L0 as in (8.10.5) is a
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Di↵-quasi-isomorphism if the corresponding v as in (8.10.2) is a quasi-isomorphism
of right DX -modules.

The functor diff
DR

-1 of Definition 8.10.10 extends as a functor C
?
(OX ,Di↵X) 7!

C
?

i
(DX) and K

?
(OX ,Di↵X) 7! K

?

i
(DX) in a natural way, and is a functor of triangu-

lated categories on K. Moreover, according to the last part of Exercise 8.79, it is an
equivalence of triangulated categories.

We wish now to define acyclic objects in the triangulated category K
?
(OX ,Di↵X),

and show that they form a null system in the sense of [KS90, Def. 1.6.6].

8.10.12. Definition. We say that a object L• of K
?
(OX ,Di↵X) is Di↵-acyclic if

diff
DR

-1

(L•
) is acyclic in K

?

i
(DX) (equivalently, in K

?
(DX)).

Define, as in [KS90, (1.6.4)], the family S(N) as the family of morphisms which
can be embedded in a distinguished triangle of K?

(OX ,Di↵X), with the third term
being an object of N. We call such morphisms Di↵-quasi-isomorphisms. Clearly, they
correspond exactly via diff

DR
-1 to quasi-isomorphisms in K

?
(DX).

We now may localize the category K
?
(OX ,Di↵X) with respect to the null system N

and get a category denoted by D
?
(OX ,Di↵X). By construction, we still get a functor

(8.10.13) diff
DR

-1

: D
?
(OX ,Di↵X) �! D

?

i
(DX) �! D

?
(DX).

We note that the first component is an equivalence by definition of the null system
(since we have an equivalence at the level of the categories K?). The second component
is also an equivalence, according to Corollary 8.5.3. We will show below (Theorem
8.10.15) that diff

DR is a quasi-inverse functor.

8.10.14. Remark. The category Mod(OX ,Di↵X) is also naturally a subcategory of the
category Mod(CX) of sheaves of C-vector spaces because HomDi↵(L,L

0
) is a subset of

HomC(L,L0). We therefore have a natural functor Forget : K?
(OX ,Di↵X)! K

?
(CX),

forgetting that the differentials of a complex are differential operators, and forgetting
also that the homotopies should be differential operators too. As a consequence of
Theorem 8.10.15, we will see in Exercise 8.85 that any object in the null system N

defined above is sent to an object in the usual null system of K
?
(CX), i.e., objects

with zero cohomology. In other words, a Di↵-quasi-isomorphism is sent into a usual
quasi-isomorphism. But there may exist morphisms in K

?
(OX ,Di↵X) which are quasi-

isomorphisms when viewed in K
?
(CX), but are not Di↵-quasi-isomorphisms.

8.10.15. Theorem. The functors diff
DR and diff

DR
-1 induce quasi-inverse and induce

equivalences of categories

D
?
(DX)

diff
DR

))

D
?
(OX ,Di↵X).

diff
DR

-1

ii



8.10. DIFFERENTIAL COMPLEXES AND THE GAUSS-MANIN CONNECTION 281

8.10.16. Lemma. There is an isomorphism of functors diff
DR

-1 � diff
DR

⇠�! Id from
D

?
(DX) (right DX-modules) to itself.

This lemma enables one to attach to each object of D?
(DX) a canonical resolution

by induced DX -modules since diff
DR

-1 takes values in D
?

i
(DX).

Proof. Let us recall that there exists an explicit side-changing isomorphism of com-
plexes p

DRMleft ' p

DRMright which is given by termwise OX -linear morphisms.
If we regard these complexes as objects of C

b
(OX ,Di↵), we deduce that the side-

changing isomorphism is an isomorphism in this category. In other words, we have
diff

DR(Mleft
) ' diff

DR(Mright
).

For the proof of the lemma, start with a left DX -module Mleft. By definition,
diff

DR
-1 diff

DRMleft
= (⌦

n+•
X
⌦ Mleft

) ⌦ DX with differential diff
DR

-1

(r). This is
nothing but the complex ⌦

n+•
X
⌦ (Mleft⌦DX) where the differential is the connection

on the left DX -module (Mleft ⌦ DX)tens. Furthermore, this identification is right
DX -linear with respect to the (right)triv structure on both terms.

We note that
⇥
(Mleft⌦OX

DX)
right

⇤
tens
' (Mright⌦OX

DX)tens, i.e., both with the
tensor structure, respectively left and right, and this isomorphism is compatible with
the right DX -structure (right)triv on both terms. By side-changing we find

⇥
p

DR(Mleft ⌦OX
DX)tens

⇤
triv
'

⇥
p

DR(Mright ⌦OX
DX)tens

⇤
triv

,

and by using the involution of Exercise 8.19,
⇥

p

DR(Mright ⌦OX
DX)tens

⇤
triv
'

⇥
p

DR(Mright ⌦OX
DX)triv

⇤
tens

.

Lastly, we have
p

DR(Mright ⌦OX
DX)triv = Mright ⌦OX

Sp
•
(DX) 'Mright ⌦OX

OX = Mright
,

and the remaining right DX -structure is deduced from the tens one, which is the nat-
ural right structure on Mright. We conclude that, functorially, diff

DR
-1 diff

DRMleft '
Mright. Since diff

DRMleft ' diff
DRMright, the lemma follows.

Proof of Theorem 8.10.15. From the previous lemma, it is now enough to show
that, if L• is a complex in C

?
(OX ,Di↵X), there exists a a Di↵-quasi-isomorphism

diff
DR

diff
DR

-1 L• ! L•, and, by definition, this is equivalent to showing the existence
of a quasi-isomorphism diff

DR
-1 diff

DR
diff

DR
-1 L• ! diff

DR
-1 L•, that we know from

the previous result applied to M =
diff

DR
-1 L•.

8.10.17. Remark. The functor diff
DR

-1 diff
DR, regarded as a functor D

?
(DX) !

D
?

i
(DX), is nothing but that of Corollary 8.5.3.

8.10.18. Remark (The Godement resolution of a differential complex)
Let L• be an object of C+

(OX ,Di↵X). Then God
•
L• is maybe not a differen-

tial complex (see Exercise 8.49(2)). However, God
•

diff
DR

diff
DR

-1 L• is a differential
complex, being equal to diff

DRGod
•

diff
DR

-1 L•. Therefore, the composite functor
God

•
diff

DR
diff

DR
-1 plays the role of Godement resolutions in the category of differ-

ential complexes.
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8.10.c. The Gauss-Manin connexion. We assume in this section that f : X ! Y

is a smooth holomorphic map. The cotangent map T
⇤
f : f

⇤
⌦

1

Y
! ⌦

1

X
is then

injective, and we will identify f
⇤
⌦

1

Y
with its image. We set n = dimX, m = dimY

and d = n�m (we assume that X and Y are pure dimensional, otherwise one works
on each connected component of X and Y ).

Consider the Leray filtration Ler
• on the complex (⌦

•
X
, d), defined by

Ler
p
⌦

i

X
= Im(f

⇤
⌦

p

Y
⌦OX

⌦
i�p
X
�! ⌦

i

X
).

[With this notation, Ler
p
⌦

i

X
can be nonzero only when i 2 [0, n] and p 2

[0,min(i,m)].]
Then, as f is smooth, we have (by computing with local coordinates adapted to f),

gr
p

Ler
⌦

i

X
= f

⇤
⌦

p

Y
⌦OX

⌦
i�p
X/Y

,

where ⌦
k

X/Y
is the sheaf of relative differential forms: ⌦k

X/Y
= ^k⌦1

X/Y
and ⌦

1

X/Y
=

⌦
1

X

�
f
⇤
⌦

1

Y
. Notice that ⌦

k

X/Y
is OX -locally free.

Let M be a left DX -module or an object of D
+
(DX)

left. As f is smooth, the
sheaf DX/Y of relative differential operators is well-defined and by composing the flat
connection r : M ! ⌦

1

X
⌦OX

M with the projection ⌦
1

X
! ⌦

1

X/Y
we get a relative

flat connection rX/Y on M, and thus the structure of a left DX/Y -module on M. In
particular, the relative de Rham complex is defined as

p

DRX/Y M = (⌦
•
X/Y

⌦OX
M,rX/Y ).

We have p

DRM = (⌦
•
X
⌦OX

M,r) (see Definition 8.4.1) and the Leray filtration
Ler

p
⌦

•
X
⌦OX

M is preserved by the differential r. We can therefore induce the
filtration Ler

• on the complex p

DRM. We then have an equality of complexes

gr
p

Ler

p

DRM = f
⇤
⌦

p

Y
⌦OX

p

DRX/Y M[�p].

Notice that the differential of these complexes are f
�1OY -linear.

The complex f⇤God
• p

DRM (resp. the complex f! God
• p

DRM) is filtered by sub-
complexes f⇤God

•
Ler

p p

DRM (resp. f! God
•
Ler

p p

DRM). We therefore get a spec-
tral sequence (the Leray spectral sequence in the category of sheaves of C-vector
spaces, see, e.g. [God64]). Using the projection formula for f! and the fact that ⌦

p

Y

is OY -locally free, one obtains that the E1 term for the complex f! God
• p

DRM is
given by

(8.10.19) E
p,q

1,!
= ⌦

p

Y
⌦OY

R
q
f!

p

DRX/Y M,

and the spectral sequence converges to (a suitable graded object associated with)
R

p+q
f!

p

DRM. If f is proper on SuppM or if M has DX -coherent cohomology, one
can also apply the projection formula to f⇤ (see [MN93, §II.5.4]).

By definition of the spectral sequence, the differential d1 : E
p,q

1
! E

p+1,q

1
is the

connecting morphism (see Exercise 8.88 below) in the long exact sequence associated
to the short exact sequence of complexes

0 �! gr
p+1

Ler

p

DRM �! Ler
p p

DRM
�
Ler

p+2 p

DRM �! gr
p

Ler

p

DRM �! 0

after applying f! God
• (or f⇤God

• if one of the previous properties is satisfied).
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8.10.20. Lemma (The Gauss-Manin connection). The morphism

rGM
:= d1 : R

q
f!

p

DRX/Y M = E
0,q

1
�! E

1,q

1
= ⌦

1

Y
⌦OY

R
q
f!

p

DRX/Y M

is a flat connection on R
q
f!

p

DRX/Y M, called the Gauss-Manin connection and the
complex (E

•,q
1

, d1) is equal to the deRham complex diff
DRY (R

q
f!

p

DRX/Y M,rGM
).

Sketch of proof of Lemma 8.10.20. Instead of using the Godement resolution, one can
use the C

1 de Rham complex E•
X
⌦OX

M, with the differential D defined by

D(⌘ ⌦m) = d⌘ ⌦m+ (�1)k⌘ ^rm,

if ⌘ is C
1 differential k-form, that is, a local section of Ek

X
(k 6 0). By a stan-

dard argument (Dolbeault resolution) analogous to that of Exercise 8.52(5), this C
1

de Rham complex is quasi-isomorphic to the holomorphic one, and is equipped with
the Leray filtration. The quasi-isomorphism is strict with respect to Ler

•. One can
therefore compute with the C

1 de Rham complex. Moreover, the assertion is local
with respect to Y .

Assume first that, in the neighbourhood of f�1(y), X is diffeomorphic to a product
X ' Z ⇥ Y . This occurs for example if f is proper (Ehresmann’s theorem). Then
we identify Ep+q

X
with Ep

Y
⌦ Eq

X/Y
and the differential D decomposes accordingly as

DY + DX/Y . The flatness of D implies the flatness of DX/Y and DY . Given a
section µ of f!

�
Ep

Y
⌦ (Eq

X/Y
⌦ M)

�
which is closed with respect to DX/Y , we can

identify it with its lift eµ (see Exercise 8.88), and d1µ is thus the class of DY µ, so the
C
1 Gauss-Manin connection D

GM in degree zero induces d1 in any degree.
In general, choose a partition of unity (�↵) such that for every ↵, when restricted

to some open neighbourhood of Supp�↵, f is locally the projection from a product
to one of its factors. We set D =

P
↵
�↵D =

P
↵
D

(↵) and we apply the previous
argument to each D

(↵).

8.10.21. Theorem. Let f : X ! Y be a smooth holomorphic map and let M be left
DX-module—or more generally an object of D+

(DX)
left. Then there is a functorial

isomorphism of left DY -modules

R
k
f!

p

DRX/Y M �! Df
(k)

!
M

when one endows the left-hand term with the Gauss-Manin connection rGM. The
same result holds for Df⇤ instead of Df! if f is proper on SuppM or M is DX-coherent
(or has coherent cohomology).

Proof. Recall (Exercise 8.26) that, for a left DX -module M, we have

Mright ⌦DX
Sp

•
X!Y

(DX) ' ⌦
•
X
(M⌦f�1OY

f
�1DY )[n],

so that the direct image of M, regarded as a right DY -module, is

(8.10.22) (Df!M)
right

= Rf!
p

DRX(M⌦f�1OY
f
�1DY )[m],

by Exercise 8.52(3). We conclude that
diff

DRY Df!M ' diff
DRY

�
Rf!

p

DRX(M⌦f�1OY
f
�1DY )

�
.
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There is a Leray filtration Ler
• p

DRX(M ⌦f�1OY
f
�1DY ). Notice that the graded

complex gr
p

Ler

p

DRX(M⌦f�1OY
f
�1DY ) is equal to the complex

f
�1

⌦
p

Y
⌦f�1OY

p

DRX/Y M⌦f�1OY
f
�1DY [�p],

with differential induced by rX/Y on M (remark that the part of the differential
involving T

⇤
f is killed by taking gr

p

Ler
). The differential is now f

�1OY -linear.
The filtered complex Rf!Ler

• p

DRX(M ⌦f�1OY
f
�1DY ) gives rise to a spectral

sequence in the category of right DY -modules. By the previous computation, the E
p,q

1

term of this spectral sequence is the right DY -module

R
p+q

f!

�
f
�1

⌦
p

Y
⌦f�1OY

p

DRX/Y M⌦f�1OY
f
�1DY [�p]

�

' ⌦
p

Y
⌦OY

R
q
f!

p

DRX/Y M⌦OY
DY ,

which is an induced DY -module, whose diff
DRY is equal to the corresponding Gauss-

Manin term (8.10.19). We claim, as will show below, that the differential d1 becomes
the Gauss-Manin d1 after applying diff

DRY . This will prove that the Gauss-Manin E1

complex is equal to diff
DRY of the E1 complex of right DY -modules.

Notice now that Lemma 8.10.20 shows in particular that the E1 complex considered
there is a complex in C

+
(OY ,Di↵Y ), and

diff
DR

�1

Y
(E

•,q
1

, d1) ' (R
q
f!

p

DRX/Y M,rGM
)
right

[�m],

since, for a left DY -module N, we have, according to Theorem 8.10.15,
diff

DR
�1

Y

diff
DRY (N) =

diff
DR

�1

Y

diff
DRY (N

right
)[�m] ' Nright

[�m].

The claim above, together with Lemma 8.10.16, implies that the E1 com-
plex of the DY -Leray spectral sequence has cohomology in degree m only, hence
this spectral sequence degenerates at E2, this cohomology being isomorphic to
(R

q
f!

p

DRX/Y M,rGM
)
right

[�m]. But the spectral sequences converges (the Leray
filtration is finite) and its limit is

L
p
gr

p
(Df

(q�m)

!
M)

right for the induced filtration
on (Df!M

(q�m)
)
right, according to (8.10.22). We conclude that this implicit filtration

is trivial and that (Df
(q)

!
M)

right
= (R

q
f!

p

DRX/Y M,rGM
)
right, as wanted, after side

changing.
Let us now compare the d1 of both spectral sequences. As the construction is

clearly functorial with respect to M, we can replace M by the flabby sheaf God
` M

for every `. We then have

Rf!

�
⌦

•
X
⌦OX

God
` M⌦f�1OY

f
�1DY

�

= Rf!

�
God

`
(⌦

•
X
⌦OX

M)⌦f�1OY
f
�1DY

�
(Exercise 8.49)

= Rf!

�
God

`
(⌦

•
X
⌦OX

M)
�
⌦OY

DY (projection formula)

= f!

�
God

`
(⌦

•
X
⌦OX

M)
�
⌦OY

DY (flabbiness of God
`)

= f!

�
⌦

•
X
⌦OX

God
` M

�
⌦OY

DY (Exercise 8.49)

= f!

�
⌦

•
X
⌦OX

God
` M⌦f�1OY

f
�1DY

�
(projection formula).
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It is also enough to make the computation locally on Y , so that we can write
f = (f1, . . . , fm), using local coordinates (y1, . . . , ym). If µ is a section of ⌦k

X
⌦M

and 1Y is the unit of DY , then (8.6.1) can be written as

rX
(µ⌦ 1Y ) = (rµ)⌦ 1Y +

mX

j=1

µ ^ dfj ⌦ @yj
.

Using the definition of d1 given by Exercise 8.88 and an argument similar to that of
Exercise 8.86, one gets the desired assertion.

8.11. Exercises

8.11.a. Exercises for Section 8.1

Exercise 8.1. Let E be a locally free OX -module of rank d and let E_ be its dual.
Show that, given any local basis e = (e1, . . . , ed) of E with dual basis e

_, the sectionP
d

i=1
ei⌦e_

i
of E⌦OX

E_ does not depend on the choice of the local basis e and extends
as a global section of E⌦OX

E_. Show that it defines, up to a constant, an OX -linear
section OX ! E ⌦OX

E_ of the natural duality pairing E ⌦OX
E_ ! OX . Conclude

that we have a natural global section of ⌦1

X
⌦OX

⇥X given, in local coordinates, byP
i
dxi ⌦ @xi

.

Exercise 8.2. Show that a differential operator P of order 6 1 satisfying P (1) = 0 is
a derivation of OX , i.e., a section of ⇥X .

Exercise 8.3 (Local computations). Let U be an open set of C
n with coordinates

x1, . . . , xn. Denote by @x1
, . . . , @xn

the corresponding vector fields.
(1) Show that the following relations are satisfied in D(U):

[@xi
, f ] =

@f

@xi

, 8 f 2 O(U), 8 i 2 {1, . . . , n},

[@xi
, @xj

] = 0 8 i, j 2 {1, . . . , n}.

with standard notation concerning multi-indices ↵,�.
(2) Show that any element P 2 D(U) can be written in a unique way as

P
↵
a↵@

↵

x

or
P

↵
@
↵

x
b↵with a↵, b↵ 2 O(U). Conclude that DX is a locally free module over OX

with respect to the action on the left and that on the right.
(3) Show that max{|↵| ; a↵ 6= 0} = max{|↵| ; b↵ 6= 0}. It is denoted by ordxP .
(4) Show that ordxP does not depend on the coordinate system chosen on U .
(5) Show that PQ = 0 in D(U) =) P = 0 or Q = 0.
(6) Identify FkDX with the subsheaf of local sections of DX having order 6 k

(in some or any local coordinate system). Show that it is a locally free OX -module of
finite rank.

(7) Show that the filtration F•DX is exhaustive (i.e., DX =
S

k
FkDX) and that

it satisfies
FkDX · F`DX = Fk+`DX .

(The left-hand term consists by definition of all sums of products of a section of FkDX

and a section of F`DX .)
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(8) Show that the bracket [P,Q] := PQ � QP induces for every k, ` a C-bilinear
morphism FkDX ⌦C F`DX ! Fk+`�1DX .

(9) Conclude that the graded ring gr
FDX is commutative.

Exercise 8.4 (The graded sheaf gr
FDX ). We consider the sheaf DX of holomorphic

differential operators on X with its order filtration F•DX (Definition 8.1.3). The goal
of this exercise is to show that the sheaf of commutative graded OX -algebras gr

FDX

can be canonically identified with the sheaf of graded OX -algebra Sym⇥X .
(1) Identify ⇥X with the sheaf of functions on the cotangent space T

⇤
X which

are linear in the fibers, and Sym⇥X with the sheaf of functions on T
⇤
X which are

polynomial in the fibers.
(2) Show that gr

F

1
DX = ⇥X and that gr

FDX is a sheaf of commutative graded
OX -algebras. [Hint : Use Exercise 8.3.]

(3) Deduce the existence of a unique morphism of commutative graded OX -algebras
Sym⇥X ! gr

FDX which extends the identity OX �⇥X

⇠�! gr
F

0
DX � gr

F

1
DX .

(4) Show that this morphism is an isomorphism. [Hint : Check this in local coor-
dinates.]

Exercise 8.5 (The universal connection).
(1) Show that the natural left multiplication of ⇥X on DX can be written as a

connection
r : DX �! ⌦

1

X
⌦OX

DX ,

i.e., as a C-linear morphism satisfying the Leibniz rule r(fP ) = df ⌦ P + frP ,
where g is any local section of OX and P any local section of DX . [Hint : r(1) is the
global section of ⌦1

X
⌦OX

⇥X considered in Exercise 8.1.]
(2) Extend this connection for every k > 1 as a C-linear morphism

(k)r : ⌦
k

X
⌦OX

DX �! ⌦
k+1

X
⌦OX

DX

satisfying the Leibniz rule written as
(k)r(! ⌦ P ) = d! ⌦ P + (�1)k! ^rP.

(3) Show that (k+1)r � (k)r = 0 for every k > 0 (i.e., r is integrable or flat).
(4) Show that the morphisms (k)r are right DX -linear (but not left OX -linear).

Exercise 8.6. More generally, show that a left DX -module M is nothing but an OX -
module with an integrable connection r : M ! ⌦

1

X
⌦OX

M. [Hint : To get the
connection, tensor the left DX -action DX⌦OX

M!M by ⌦
1

X
on the left and compose

with the universal connection to get DX ⌦M! ⌦
1

X
⌦M; compose it on the left with

M ! DX ⌦ M given by m 7! 1 ⌦ m.] Define similarly the iterated connections
(k)r : ⌦

k

X
⌦OX

M! ⌦
k+1

X
⌦OX

M. Show that (k+1)r � (k)r = 0.

Exercise 8.7.
(1) Show that eDX has a universal connection er for which er(1) =

P
i
edxi⌦e@xi

.
(2) Show the equivalence between graded left eDX -modules and graded eOX -modules

equipped with an integrable connection.
(3) Extend the properties shown in Exercises 8.5 and 8.6 to the present case.
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8.11.b. Exercises for Section 8.2

Exercise 8.8 (Generating left eDX -modules). Let eM be an eOX -module and let 'left
:

e⇥X ⌦eCX

eM ! eM be a eC-linear morphism such that, for any local sections g of eOX ,
⇠, ⇠
0 of e⇥X and m of eM, one has
(1) 'left

(g⇠ ⌦m) = g'
left

(⇠ ⌦m),
(2) 'left

(⇠ ⌦ gm) = g'
left

(⇠ ⌦m) + ⇠(g)m,
(3) 'left

([⇠, ⇠
0
]⌦m) = '

left
(⇠ ⌦ 'left

(⇠
0 ⌦m))� 'left

(⇠
0 ⌦ 'left

(⇠ ⌦m)).
Show that there exists a unique structure eMleft of left eDX -module on eM such that
⇠m = '

left
(⇠ ⌦m) for every ⇠,m.

Exercise 8.9 (Generating right eDX -modules). Let eM be an eOX -module and let 'right
:

eM ⌦eCX

e⇥X ! eM be a eC-linear morphism such that, for any local sections g of eOX ,
⇠, ⇠
0 of e⇥X and m of eM, one has
(1) 'right

(mg ⌦ ⇠) = '
right

(m⌦ g⇠) ('right is in fact defined on eM⌦eOX

e⇥X),
(2) 'right

(m⌦ g⇠) = '
right

(m⌦ ⇠)g �m⇠(g),
(3) 'right

(m⌦ [⇠, ⇠
0
]) = '

right
('

right
(m⌦ ⇠)⌦ ⇠0)� 'right

('
right

(m⌦ ⇠0)⌦ ⇠).
Show that there exists a unique structure eMright of right eDX -module on eM such that
m⇠ = '

right
(m⌦ ⇠) for every ⇠,m.

Exercise 8.10 (OX is a simple left DX -module). We consider here the setting of Sec-
tion 8.1.

(1) Use the left action of ⇥X on OX to define on OX the structure of a left DX -mod-
ule.

(2) Let g be a nonzero holomorphic function on C
n. Show that there exists a

multi-index ↵ 2 N
n such that (@

↵
gm)(0) 6= 0.

(3) Conclude that OX is a simple left DX -module, i.e., does not contain any proper
non trivial DX -submodule. Is it simple as a left OX -module?

(4) Show that RFOX is not a simple graded RFDX -module. [Hint : Consider
zRFOX ⇢ RFOX .]

Exercise 8.11 (!X is a simple right DX -module). Same setting as in Exercise 8.10.
(1) Use the right action of ⇥X on !X to define on !X the structure of a right

DX -module.
(2) Show that it is simple as a right DX -module.
(3) Show that RF!X is not a simple graded right RFDX -module.

Exercise 8.12 (Tensor products over eOX ).
(1) Let eMleft and eNleft be two left eDX -modules.

(a) Show that the eOX -module eMleft ⌦eOX

eNleft has the structure of a left
eDX -module when setting, by analogy with the Leibniz rule,

⇠ · (m⌦ n) = ⇠m⌦ n+m⌦ ⇠n.
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(b) If eMleft and eNleft are regarded as eOX -modules with connection (Proposi-
tion 8.1.4 and Exercise 8.7), show that the connection on eMleft⌦eOX

eNleft coming
from the left eDX -module structure above is equal to er⌦ IdeN +IdfM⌦er.

(c) Notice that, in general, m⌦ n 7! (⇠m)⌦ n (or m⌦ n 7! m⌦ (⇠n)) does
not define a left eDX -action on the eOX -module eM⌦eOX

eN.
(d) Let ' : eM ! eM0 and  : eN ! eN0 be eDX -linear morphisms. Show that

'⌦  is eDX -linear.
(e) Show the associativity

( eMleft ⌦eOX

eNleft
)⌦eOX

Pleft
= eMleft ⌦eOX

(eNleft ⌦eOX

Pleft
).

(2) Let eMleft be a left eDX -module and eNright be a right eDX -module.
(a) Show that eNright ⌦eOX

eMleft has the structure of a right eDX -module by
setting

(n⌦m) · ⇠ = n⇠ ⌦m� n⌦ ⇠m,

and prove the analogue of (1d).
Remark: one can define a right eDX -module structure on eMleft ⌦eOX

eNright

by using the natural involution eMleft ⌦eOX

eNright ⇠�! eNright ⌦eOX

eMleft, so this
brings no new structure.

(b) Show the associativity

(eNright ⌦eOX

eMleft
)⌦eOX

Pleft
= eNright ⌦eOX

( eMleft ⌦eOX

Pleft
).

(3) Assume that eMright and eNright are right eDX -modules. Does there exist a (left
or right) eDX -module structure on eMright⌦eOX

eNright defined with analogous formulas?

Exercise 8.13 (Hom over eOX ).
(1) Let eM, eN be left eDX -modules. Show that Hom eOX

( eM, eN) has a natural struc-
ture of left eDX -module defined by

(⇠ · ')(m) = ⇠ · ('(m)) + '(⇠ ·m),

for any local sections ⇠ of e⇥X , m of eM and ' of Hom eOX

( eM, eN).
(2) Similarly, if eM, eN are right eDX -modules, then Hom eOX

( eM, eN) has a natural
structure of left eDX -module defined by

(⇠ · ')(m) = '(m · ⇠)� '(m) · ⇠.

Exercise 8.14 (Compatibility of side-changing functors). Show that the natural mor-
phisms

eMleft �! Hom eOX

(e!X , e!X ⌦eOX

eMleft
), e!X ⌦eOX

Hom eOX

(e!X , eMright
) �! eMright

are isomorphisms of graded eDX -modules.

Exercise 8.15 (Side-changing on morphisms). To any left eDX -linear morphism '
left

:

eMleft

1
! eMleft

2
is associated the eOX -linear morphism '

right
= Ide!X

⌦'left
: eMright

1
!

eMright

2
.
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(1) Show that 'right is right eDX -linear.
(2) Define the reverse correspondence 'right 7! '

left.
(3) Conclude that the left-right correspondence Mod

left
(eDX) 7! Mod

right
(eDX) is a

functor, as well as the right-left correspondence Mod
right

(eDX) 7! Mod
left

(eDX).

Exercise 8.16 (Compatibility of side-changing functors with tensor product)
Let eMleft and eNleft be two left eDX -modules and denote by eMright

, eNright the
corresponding right eDX -modules (see Definition 8.2.3). Show that there is a natu-
ral isomorphism of graded right eDX -modules (by using the right structure given in
Exercise 8.12(2)):

eNright ⌦eOX

eMleft ⇠�! eMright ⌦eOX

eNleft

(! ⌦ n)⌦m 7�! (! ⌦m)⌦ n

and that this isomorphism is functorial in eMleft and eNleft.

Exercise 8.17 (Local expression of the side-changing functors)
Let U be an open set of Cn.

(1) Show that there exists a unique eC-linear involution P 7! t
P from eD(U) to itself

such that
• 8 g 2 eO(U), t

g = g,
• 8 i 2 {1, . . . , n}, te@xi

= �e@xi
,

• 8P,Q 2 eD(U), t
(PQ) =

t
Q · tP .

(2) Let eM be a left eDX -module and let t eM be eM equipped with the right eDX -mod-
ule structure

m · P :=
t
Pm.

Show that z
�nt eM ⇠�! eMright, that is, t eM(n)

⇠�! eMright. [Hint : Use that Fp
tOX =

Fp�n!X , hence RF
tOX = RF [n]!X , so teOX = e!X(�n), according to Remark 5.1.5(2).]

Argue similarly starting with a right eDX -module.

Exercise 8.18 (Tensor product of a left eDX -module with eDX )
Let eMleft be a left eDX -module. Notice that eMleft ⌦eOX

eDX has two commuting
structures of eOX -module. Similarly eDX ⌦eOX

eMleft has two such structures. The goal
of this exercise is to extend them as eDX -structures and examine their relations.

(1) Show that eMleft ⌦eOX

eDX has the structure of a left and of a right eDX -module
which commute, given by the formulas:

( eMleft ⌦eOX

eDX)tens :

⇢
f · (m⌦ P ) = (fm)⌦ P = m⌦ (fP ),

⇠ · (m⌦ P ) = (⇠m)⌦ P +m⌦ ⇠P,(left)

( eMleft ⌦eOX

eDX)triv :

⇢
(m⌦ P ) · f = m⌦ (Pf),

(m⌦ P ) · ⇠ = m⌦ (P ⇠),
(right)
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for any local vector field ⇠ and any local holomorphic function g. Show that a left
eDX -linear morphism ' : eMleft

1
! eMleft

2
extends as a bi-eDX -linear morphism ' ⌦ 1 :

eMleft

1
⌦eOX

eDX ! eMleft

2
⌦eOX

eDX .
(2) Similarly, show that eDX ⌦eOX

eMleft also has such structures which commute
and are functorial, given by formulas:

(eDX ⌦eOX

eMleft
)triv :

⇢
f · (P ⌦m) = (fP )⌦m,

⇠ · (P ⌦m) = (⇠P )⌦m,
(left)

(eDX ⌦eOX

eMleft
)tens :

⇢
(P ⌦m) · f = P ⌦ (fm) = (Pf)⌦m,

(P ⌦m) · ⇠ = P ⇠ ⌦m� P ⌦ ⇠m.
(right)

(3) Show that both morphisms
eMleft ⌦eOX

eDX �! eDX ⌦eOX

eMleft eDX ⌦eOX

eMleft �! eMleft ⌦eOX

eDX

m⌦ P 7�! (1⌦m) · P P ⌦m 7�! P · (m⌦ 1)

are left and right eDX -linear, induce the identity eMleft ⌦ 1 = 1 ⌦ eMleft, and their
composition is the identity of eMleft⌦eOX

eDX or eDX⌦eOX

eMleft, hence both are reciprocal
isomorphisms. Show that this correspondence is functorial (i.e., compatible with
morphisms).

(4) Let eM be a left eDX -module and let eL be an eOX -module. Justify the following
isomorphisms of left eDX -modules and eOX -modules for the action on the right:

eM⌦eOX

(eDX ⌦eOX

eL) ' ( eM⌦eOX

eDX)⌦eOX

eL

' (eDX ⌦eOX

eM)⌦eOX

eL ' eDX ⌦eOX

( eM⌦eOX

eL).

Assume moreover that eM and eL are eOX -locally free. Show that eM⌦eOX

(eDX ⌦eOX

eL)
is eDX -locally free.

Exercise 8.19 (Tensor product of a right eDX -module with eDX )
Let eMright be a right eDX -module.

(1) Show that eMright ⌦eOX

eDX has two structures of right eDX -module denoted
triv and tens (tensor; the latter defined by using the left structure on eDX and
Exercise 8.12(2)), given by:

( eMright ⌦eOX

eDX)triv :

⇢
(m⌦ P ) ·triv f = m⌦ (Pf),

(m⌦ P ) ·triv ⇠ = m⌦ (P ⇠),
(right)

( eMright ⌦eOX

eDX)tens :

⇢
(m⌦ P ) ·tens f = mf ⌦ P = m⌦ fP,

(m⌦ P ) ·tens ⇠ = m⇠ ⌦ P �m⌦ (⇠P ).
(right)

(2) Show that there is a unique involution ◆ : eMright ⌦eOX

eDX

⇠�! eMright ⌦eOX

eDX

which exchanges both structures and is the identity on eMright ⌦ 1, given by
(m ⌦ P )triv 7! (m ⌦ 1) ·tens P . [Hint : Show first the properties of ◆ by using local
coordinates, and glue the local constructions by uniqueness of ◆.]

(3) For every p > 0, consider the p-th term Fp
eDX of the filtration of eDX by the

order (see Exercise 8.1.3) with both structures of eOX -module (one on the left, one on
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the right) and equip similarly eMright ⌦eOX

Fp
eDX with two structures of eOX -modules.

Show that, for every p, ◆ preserves eMright⌦eOX

Fp
eDX and exchanges the two structures

of eOX -modules.
(4) Let eMright be a right eDX -module and let eL be an eOX -module. By consider-

ing the natural eOX -module structure on eMright ⌦eOX

eL, we define an induced right
eDX -module

⇥
( eMright⌦eOX

eL)⌦eOX

eDX

⇤
triv

. Here, the eDX -module structure on eMright

is not used.
On the other hand, considering the canonical left eDX -module structure on

eDX ⌦eOX

eL and using Exercise 8.12(2), we obtain a right eDX -module structure
⇥ eMright ⌦eOX

(eDX ⌦eOX

eL)
⇤
tens

. Here, the eDX -module structure on eMright is used in
an essential way.

Prove that the canonical eOX -linear morphism

eMright ⌦eOX

eL �! eMright ⌦eOX

(eDX ⌦eOX

eL)
m⌦ ` 7�! m⌦ (1⌦ `)

extends in a unique way as a eDX -linear morphism
h
( eMright ⌦eOX

eL)⌦eOX

eDX

i

triv

�!
h
eMright ⌦eOX

(eDX ⌦eOX

eL)
i

tens

which is an isomorphism. [Hint : Argue as in (2).]

8.11.c. Exercises for Section 8.4

Exercise 8.20. Check that Sp( eM) is indeed a complex, i.e., that e� � e� = 0.

Exercise 8.21 (Sp(eDX) is a resolution of eOX as a left eDX -module)
The natural surjective morphism eDX ! eOX of left eDX -modules has kernel the

image of eDX ⌦ e⇥X ! eDX . In other words, we have a morphism of complexes of left
eDX -modules

Sp(eDX) �! eOX

(where eOX is regarded as a complex with a nonzero term in degree zero only), which
induces an isomorphism

H
0
Sp(eDX)

⇠�! eOX .

In this exercise, one proves that H
k
(Sp(eDX)) = 0 for k 6= 0, so that the morphism

above is a quasi-isomorphism.
Let F•

eDX be the filtration of eDX by the order of differential operators. Filter the
Spencer complex Sp(eDX) by the subcomplexes Fp(Sp(

eDX)) defined as

· · ·
e���! Fp�k eDX ⌦ e⇥X,k

e���! Fp�k+1
eDX ⌦ e⇥X,k�1

e���! · · ·

(1) Show that, locally on X, using coordinates x1, . . . , xn, the graded com-
plex gr

F
Sp(eDX) :=

L
p
gr

F

p
Sp(eDX) is equal to the Koszul complex of the ring

eOX [⇠1, . . . , ⇠n] with respect to the regular sequence ⇠1, . . . , ⇠n.
(2) Conclude that gr

F
Sp(eDX) is a resolution of eOX .
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(3) Check that Fp Sp(
eDX) = 0 for p < 0, F0 Sp(

eDX) = gr
F

0
Sp(eDX) is isomorphic

to eOX and deduce that the complex

gr
F

p
Sp(eDX) := {· · ·

e���! gr
F

p�k
eDX ⌦ e⇥X,k

e���! gr
F

p�k+1
eDX ⌦ e⇥X,k�1

e���! · · · }

is acyclic (i.e., quasi-isomorphic to 0) for p > 0.
(4) Show that the inclusion F0 Sp(

eDX) ,! Fp Sp(
eDX) is a quasi-isomorphism for

every p > 0 and deduce, by passing to the inductive limit, that the Spencer complex
Sp(eDX) is a resolution of eOX as a left eDX -module by locally free left eDX -modules.

Exercise 8.22 (pDR(eDX) is a resolution of e!X as a right eDX -module)
Show similarly that the natural morphism of right eDX -modules

e!X ⌦eOX

eDX �! e!X

defined as the right action of eDX on e!X extends as a morphism of complexes of right
eDX -modules

p

DR(eDX) �! e!X .

Show that H
k
(DR eDX) = 0 for k 6= n, so that the shifted complex DR(eDX)[n] is a

resolution of e!X as a right eDX -module by locally free right eDX -modules.

Exercise 8.23 (Tensor product over eDX ). Let eMleft
, eNleft be two left eDX -modules. One

can consider the tensor products eMright ⌦eDX

eNleft and eNright ⌦eDX

eMleft. Both are
bi-functors with values in the category of sheaves of eC-vector spaces (a priori they
do not have any other structure). Show that there is a natural eC-linear isomorphism
eMright ⌦eDX

eNleft ⇠�! eNright ⌦eDX

eMleft induced by

(e! ⌦eO m)⌦eD n 7�! (e! ⌦eO n)⌦eD m.

[Hint : Show that, for any holomorphic vector field ⇠, one has the equality
(e! ⌦m)⌦ ⇠n = (e! ⌦ n)⌦ ⇠m.]

Exercise 8.24 (The Spencer complex: tensoring over eDX with Sp(eDX))
(1) Let eMright be a right eDX -module. Show that the natural morphism

eMright⌦eDX

(eDX ⌦eOX

e⇥X,k) �! eMright⌦eOX

e⇥X,k

defined by m⌦ (P ⌦ ⇠) 7! mP ⌦ ⇠ induces an isomorphism of complexes

eMright ⌦eDX

Sp(eDX)
⇠�! p

DR( eMright
).

[Hint : The point is to check that the differential Id⌦e�eD on the left corresponds to
the differential e�fM on the right.]

(2) Let eMleft be a left eDX -module. Similar question for
p

DR(eDX)⌦eDX

eMleft �! p

DR( eMleft
).
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Exercise 8.25 (The unshifted de Rham complex: Hom eDX

(Sp(eDX), eM))
For left eDX -modules eM, eN, the sheaf Hom eDX

( eM, eN) is a priori only a eC-module.
If eN is also a right eDX -module, like eDX , Hom eDX

( eM, eN) comes equipped with the
structure of right eDX -module inherited from that of eN. In particular, for each k,
Hom eDX

(eDX ⌦eOX

e⇥X,k,
eDX) is a right eDX -module and Hom eDX

(Sp(eDX), eDX) is a
complex of right eDX -modules whose term in degree k is Hom eDX

(eDX⌦eOX

e⇥X,k,
eDX).

(1) Identify the complex of right eDX -modules Hom eDX

(Sp(eDX), eDX) (where the
right structure comes from the second term eDX) with the unshifted complex DR eDX

up to changing the sign of the differential in the latter complex. [Hint :
(a) Identify first the right eDX -module Hom eDX

(eDX ⌦eOX

e⇥X,k,
eDX) with

Hom eOX

(e⇥X,k,
eDX), then to Hom eOX

(e⇥X,k,
eOX)⌦eOX

eDX , hence to e⌦k

X
⌦eOX

eDX ;
(b) In local coordinates, for I, I

0 ⇢ {1, . . . , n} such that #I,#I
0
= k, set

edxI = edxi1
^ · · · ^ edxik

with i1 < · · · < ik, and similarly for e@x
I0 ; consider

the pairing hedxI ,
e@x

I0 i = (�1)k(k�1)/2 if I = I
0, and = 0 otherwise (see Section

8.1.a); recall that ed(edxI ⌦ 1) =
P

j /2I
edxI ^ edxj ⌦ e@xj

in e⌦k+1

X
⌦ eDX , and if

J = {i1, . . . , ik+1}, e�(1 ⌦ e@xJ
) =

P
k+1

j=1
(�1)j e@xij

⌦ e@Jrij
in eDX ⌦ e⇥X,k; then

show that for any such I, J , one has hedxI⌦1, e�(1⌦ e@xJ
)i = �hed(edxI⌦1), 1⌦ e@xJ

i
and conclude.]

(2) Conclude that, for a left eDX -module eM, one has

DR eM ' DR(eDX)⌦eDX

eM ' Hom eDX

(Sp(eDX), eDX)⌦eDX

eM

' Hom eDX

(Sp(eDX), eM).

Exercise 8.26 (Side-changing for the de Rham functors).
(1) If eM is any left eDX -module and eMright

= e!X ⌦eOX

eM is the associated right
eDX -module, show that ◆ defined in Lemma 8.4.7 induces an isomorphism

eMright ⌦eDX

Sp(eDX)
⇠�! p

DR(eDX)⌦eDX

eM

which is termwise eOX -linear. [Hint : Use Exercise 8.23 to identify eMright⌦eDX

Sp(eDX)

with (e!X ⌦eOX

Sp(eDX))⌦eDX

eM.]
(2) Interpret the isomorphism ◆ of Lemma 8.4.7 as the composition of the inverse

of the isomorphism
⇥
(e!X ⌦eOX

e⇥X,k)⌦eOX

eDX

⇤
triv

⇠�! [e!X ⌦eOX

(eDX ⌦eOX

e⇥X,k)
⇤
tens

of Exercise 8.19(4), with .
(3) Argue as in Lemma 8.4.7 (with the interpretation above) to show that the

eOX -linear isomorphism

e!X ⌦eOX

eM⌦eOX

e⇥X,k

⇠�! e!X ⌦eOX

e⇥X,k ⌦eOX

eM ⇠�! e⌦n�k
X
⌦eOX

eM

given on e!X ⌦eOX

eM⌦eOX

e⇥X,k by

! ⌦m⌦ ⇠ 7�! !(⇠ ^ •)⌦m
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induces a functorial isomorphism p

DR( eMright
)
⇠�!p

DR( eM) for any left eDX -module eM,
which is termwise eOX -linear.

Exercise 8.27 (Interior product with a 1-form). Let x1, . . . , xn be local coordinates. Fix
k > 1 and set e@x = e@x1

^· · ·^e@xk
and, for i 2 {1, . . . , k}, e@xbı =

e@x1
^· · ·^ce@xi

^· · ·^e@xk
.

Show the following equalities for i 6= j 2 {1, . . . , k}:

e@x edxi = (�1)k�ie@xbı ,
e@xb|

edxi =

8
<

:
(�1)k�i+1e@x bı| if i < j,

(�1)k�ie@x bı| if i > j.

[Hint : Use (8.4.6⇤⇤) and (8.4.6⇤).]

Exercise 8.28 (The C
1 Spencer complex). Let eM be a right eDX -module and let us

denote by e�0fM the differential of the Spencer complex p

DR( eM).
(1) Show that, for each j, the formula (for i, j > 0)

eM⌦eOX

e⇥X,i ⌦eOX

eE(0,j)

e�01fM����! eM⌦eOX

e⇥X,i�1 ⌦eOX

eE(0,j)

m⌦ ⇠
i
⌦ ' 7��! e�0fM(m⌦ ⇠

i
)⌦ '+m⌦ ⇠

i
ed0'

defines the differential of a complex eM⌦eOX

e⇥X,• ⌦eOX

eE(0,j). Show that

e�01fM d
00
+ d
00e�01fM = 0,

and deduce a complex p

DR
1
( eM) := ( eM ⌦eOX

fSp1,•
X

, e�01fM + d
00
) (notation of Sec-

tion 8.4.13).
(2) Show that the natural morphism

p

DR( eM) �! p

DR
1
( eM)

is a quasi-isomorphism.
(3) Argue as in Exercise 8.24(1) to define an isomorphism of complexes

eM⌦eDX

Sp
1
(eDX)

⇠�! p

DR
1
( eM).

(4) Argue as in Exercise 8.26 to define the side-changing isomorphism
p

DR
1
( eMright

)
⇠�! p

DR
1
( eMleft

).

8.11.d. Exercises for Section 8.5

Exercise 8.29. Let eL be an eOX -module.
(1) Show that, for every k, we have a (termwise) exact sequence of complexes

0! eL⌦eOX

Fk�1(Sp(eDX))! eL⌦eOX

Fk(Sp(
eDX))! eL⌦eOX

gr
F

k
(Sp(eDX))! 0.

[Hint : Use that the terms of the complexes Fj(Sp(
eDX)) and gr

F

k
(Sp(eDX)) are eOX -

locally free.]
(2) Show that eL⌦eOX

gr
F
Sp(eDX) is a resolution of eL as an eOX -module.

(3) Show that eL⌦eOX

Sp(eDX) is a resolution of eL as an eOX -module.
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(4) Identify the Spencer complex Sp(eL⌦eOX

eDX) with eL⌦eOX

Sp(eDX) as complexes
of “left” eOX -modules.

(5) Conclude that p

DR(eL⌦eOX

eDX) ' eL.

Exercise 8.30 (A local resolution of a right eDX -module eM). Assume that X = C
n

with coordinates x1, . . . , xn. Let eM be a right eDX -module. Equip eM ⌦eOX

eDX

with the trivial right eDX -module structure and, for i = 1, . . . , n, consider the
eDX -linear morphisms ·tense@xi

, recalling that the right tens structure commutes
with the right triv structure (see Exercise 8.19). Show that the Koszul complex
K(( eM ⌦eOX

eDX)triv, (·tense@xi
)i=1,...,n) is a resolution of eM with the following steps.

Recall that gr
F eDX ' eOX [⇠1, . . . , ⇠n] with ⇠i = [e@xi

] 2 gr
F

1
eDX .

(1) Show that the morphism induced by e@xi
on eM⌦eOX

gr
F eDX is 1⌦ ⇠i.

(2) Deduce that the Koszul complex K( eM ⌦eOX

gr
F eDX , (⇠i)i=1,...,n) is exact in

negative degrees.
(3) Deduce that the Koszul complex K( eM⌦eOX

eDX , (e@xi
)i=1,...,n) is exact in neg-

ative degrees, and conclude.

Exercise 8.31 (Canonical resolution of eM: tensoring over eOX with Sp(eDX))
This is an intrinsic version of Exercise 8.30.

(1) Let eM be a right eDX -module. Regarding Sp(eDX) as a resolution of eOX as
a left eDX -module, the complex eM ⌦eOX

Sp(eDX) is regarded as a complex of right
eDX -module, by using the tensor right eDX -module structure on each term.

(a) Show that eM⌦eOX

Sp(eDX) is a resolution of eM. [Hint : use the functori-
ality of the tensor right eDX -module structure and the local eOX -freeness of each
term of Sp(eDX).]

(b) Show that the differential of this complex is expressed as follows, for local
sections m of eM, ⇠i of e⇥X and P of eDX , and setting

b⇠
i
= ⇠1 ^ · · · ^ ⇠i�1 ^ ⇠i+1 ^ · · · ^ ⇠k,

and a similar meaning for b⇠
i,j

:

(Id⌦e�)
⇥
(m⌦ (1⌦ ⇠)) ·tens P

⇤
=

⇥
(Id⌦e�)(m⌦ (1⌦ ⇠))

⇤
·tens P

=


m⌦

h kX

i=1

(�1)i�1⇠i ⌦ b⇠
i
+

X

i<j

(�1)i+j
1⌦ ([⇠i, ⇠j ] ^ b⇠

i,j
)

i�
·tens P.

(c) Consider the involution

eM⌦eOX

(eDX ⌦eOX

e⇥X,k) ' ( eM⌦eOX

e⇥X,k)⌦eOX

eDX

exchanging the tens structure on the left-hand side with the triv structure on
the right hand side. Show that the differential becomes e�triv, with

e�triv
⇥
(m⌦ ⇠)⌦ P

⇤
= e�triv

⇥
(m⌦ ⇠)⌦ 1

⇤
·triv P
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and

e�triv
⇥
(m⌦ ⇠)⌦ 1

⇤
=

kX

i=1

(�1)i�1(m⇠i ⌦ b⇠
i
)⌦ 1

�
kX

i=1

(�1)i�1(m⌦ b⇠
i
)⌦ ⇠i +

X

i<j

(�1)i+j
(m⌦ ([⇠i, ⇠j ] ^ b⇠

i,j
))⌦ 1

=
⇥e�fM(m⌦ ⇠)

⇤
⌦ 1�

kX

i=1

(�1)i�1(m⌦ b⇠
i
)⌦ ⇠i,

where e�fM is the differential occurring in the complex Sp eM. [Hint : write

m⌦ (⇠i ⌦ b⇠
i
) = m⇠i ⌦ (1⌦ b⇠

i
)� [m⌦ (1⌦ b⇠

i
)] · ⇠i.]

(d) Conclude that the complex of induced eDX -modules
�
( eM⌦eOX

e⇥X,•)⌦eOX

eDX , e�triv
�

is a resolution of eM.
(2) Let eM be a left eDX -module. Show that the complex

p

DR(eDX ⌦eOX

eM)

is a resolution of eMright
= e!X ⌦eOX

eM by right eDX -modules, where the left and right
structures of eDX ⌦eOX

eM are those of Exercise 8.18(2), and the left one is used to
compute the deRham complex.

8.11.e. Exercises for Section 8.6

Exercise 8.32 (Definition of the pullback of a left eDX -module)
(1) Show that the connection erX on f

⇤eN := eOX ⌦f�1eOY

f
�1eN is integrable.

(2) Show that, if eN also has a right eDY -module structure commuting with the left
one, then erX is right f

�1 eDY -linear, and Df
⇤(0)eN is a right f

�1 eDY -module.

Exercise 8.33.
(1) Express the previous connection in local coordinates on X and Y .
(2) Show that, if eM is any left eDX -module and eN any left f

�1 eDY -module, then
eM ⌦

f�1eOY

f
�1eN may be equipped with a left eDX -module structure: if ⇠ is a local

z-vector field on X, i.e., a local section of e⇥X , set

⇠ · (m⌦ n) = (⇠m)⌦ n+ Tf(⇠)(m⌦ n).

[Hint : Identify eM⌦
f�1eOY

f
�1eN with eM⌦eOX

Df
⇤eN and use Exercise 8.32.]

Exercise 8.34 (Local computation of eDX!Y ).
(1) Show that Df

⇤(0) eDY is a locally free eOX -module. [Hint : Use that eDY is a
locally free eOY -module.]
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(2) Choose local coordinates x1, . . . , xn on X and y1, . . . , ym on Y . Show that
eDX!Y = eOX [e@y1

, . . . , e@ym
] and, with this identification, the left eDX -structure is

given by

e@xi
·
X

↵

a↵(x)
e@↵
y
=

X

↵

⇣
z
@a↵

@xi

+

mX

j=1

a↵(x)
@fj

@xi

e@yj

⌘
e@↵
y
.

Exercise 8.35 (eDX!Y for a closed embedding). Assume that ◆ : X ,! Y is the closed
immersion of a complex submanifold of Y of codimension d.

(1) Show that the canonical section 1 of eDX!Y = eOX⌦◆�1eOY

◆
�1 eDY is a generator

of eDX!Y as a right ◆�1 eDY -module.
(2) Assume that X is defined by g1 = · · · = gd = 0, where the gi are holomorphic

functions on Y . Show that
eDX!Y = eDY

�P
d

i=1
gi
eDY

with its natural right eDY structure. In local coordinates (x1, . . . , xn, y1, . . . , yd) such
that gi = yi, show that eDX!Y = eDX [e@y1

, . . . , e@yd
].

Conclude that, if f is an embedding, the sheaves eDX!Y and eDY X are locally
free over eDX .

Exercise 8.36 (eDX!Y for a flat morphism). Let 0 ! eN0 ! eN ! eN00 ! 0 be an exact
sequence of left eDY -modules.

(1) Show that the sequence Df
⇤(0)eN0 ! Df

⇤(0)eN! Df
⇤(0)eN00 ! 0 is exact.

(2) Assume that f : X ! Y is flat, i.e., eOX is f
�1eOY -flat (for example, a smooth

map, i.e., locally isomorphic to the projection of a product, is flat). Show that the
sequence 0 ! Df

⇤(0)eN0 ! Df
⇤(0)eN ! Df

⇤(0)eN00 ! 0 is exact. Conclude that eDX!Y

is f
�1 eDY -flat.

Exercise 8.37 (The chain rule). Consider holomorphic maps f : X!Y and f
0
: Y !Z.

(1) Construct a canonical isomorphism eDX!Y ⌦f�1 eDY

f
�1 eDY!Z

⇠�! eDX!Z as
right (f

0 � f)�1 eDZ-modules. [Hint : Show that the contraction morphisms

(eOX ⌦f�1eOY

f
�1 eDY )⌦f�1 eDY

(f
�1eOY ⌦(f 0�f)�1eOZ

(f
0 � f)�1 eDZ)

�! eOX ⌦f�1eOY

(f
�1eOY ⌦(f 0�f)�1eOZ

(f
0 � f)�1 eDZ)

�! eOX ⌦(f 0�f)�1eOZ

(f
0 � f)�1 eDZ

yield such an isomorphism, whose inverse is the morphism '⌦Q 7! ('⌦1)⌦ (1⌦Q).]
(2) Use the chain rule to show that this isomorphism is left eDX -linear.

Exercise 8.38 (Restriction to z = 1). Show that

(Df
⇤(0)eN)/(z � 1)Df

⇤(0)eN = Df
⇤(0)

(eN/(z � 1)eN).

Exercise 8.39.
(1) Show that Definition 8.6.6 coincides with that of Exercise 8.32(1).
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(2) Let f : X ! Y , f 0 : Y ! Z be holomorphic maps and let eN be a left eDZ-mod-
ule. Show that D(f

0 � f)⇤eN ' Df
⇤
(Df
0⇤eN).

8.11.f. Exercises for Section 8.7

Exercise 8.40 (The relative Spencer complex Sp
X!Y

( eM)). Let f : X ! Y be a holo-
morphic map and let eM be a right eDX -module. The goal of this exercise is to identify
the complex eM⌦eDX

Sp
X!Y

(eDX) entering in the definition of the pushforward with
the complex

Sp
X!Y

( eM) :=
�
( eM⌦eOX

e⇥X,k)⌦f�1eOY

f
�1 eDY ,

e�fM,Y
),

where e�fM,Y
is given by the formula

e�fM,Y
((m⌦ ⇠)⌦Q) = e�fM(m⌦ ⇠)⌦Q+

kX

i=1

(�1)i(m⌦ ⇠bı)⌦ Tf(⇠i)Q.

Here, e�fM is given by the formula of Definition 8.4.3 and we use the notation of Exercise
8.31. The first part concerns the complex Sp

X!Y
(eDY ).

(1) Let eL be a locally free eOX -module. Consider on (eDX ⌦eOX

eL)⌦eOX

eDX!Y the
following (eDX , f

�1 eDY ) bi-module structures:
(a) (eDX⌦eOX

eL)⌦
f�1eOY

f
�1 eDY also called the tens structure, where the right

f
�1 eDY is the trivial one and the left eDX -module structure is the left tensor one

on (eDX ⌦eOX

eL)⌦eOX

(eOX ⌦f�1eOY

f
�1 eDY ) (see Exercise 8.12(1)). In particular,

f
�1eOY acts on the left on (eDX ⌦eOX

eL).
(b) eDX ⌦eOX

(eL⌦
f�1eOY

f
�1 eDY ) also called the triv structure, where we use

the trivial f
�1 eDY -module structure on the right and the trivial eDX -module

structure on the left (on the other hand, the right eOX -module structure is used
on eDX for the tensor product).

Show that there exists a unique isomorphism of (eDX , f
�1 eDY ) bi-modules

eDX ⌦eOX

(eL⌦
f�1eOY

f
�1 eDY )

⇠�! (eDX ⌦eOX

eL)⌦
f�1eOY

f
�1 eDY

inducing the identity on eL = eOX ⌦eOX

eL ⌦
f�1eOY

f
�1eOY . [Hint : Show that the

morphism P ⌦ `⌦Q 7! P ·tens (1⌦ `⌦Q) is well-defined by using that eDX is locally
free over eOX , and is an isomorphism by considering the top degree part of P .]

(2) Recall that the differential on the complex Sp(eDX) ⌦eOX

eDX!Y is e� ⌦ Id,
with e� = e�eD (see Exercise 8.12(1d)). Show that e�eD,Y

is linear with respect to the
triv (eDX , f

�1 eDY )-bimodule structure, and that the following diagram commutes, by
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checking first on 1⌦ e⇥X,• ⌦ f
�1 eDY :

eDX ⌦eOX

(e⇥X,k ⌦f�1eOY

f
�1 eDY )

e�eD,Y
✏✏

⇠
// (eDX ⌦eOX

e⇥X,k)⌦f�1eOY

f
�1 eDY

e� ⌦ Id
✏✏

eDX ⌦eOX

(e⇥X,k�1 ⌦f�1eOY

f
�1 eDY )

⇠
// (eDX ⌦eOX

e⇥X,k�1)⌦f�1eOY

f
�1 eDY

and conclude that Sp
X!Y

(eDX)! Sp(eDX)⌦eOX

eDX!Y is an isomorphism.
(3) Deduce that the terms of the complex Sp(eDX)⌦eOX

eDX!Y are locally free left
eDX -modules. [Hint : Check this for the complex Sp

X!Y
(eDX).]

(4) Conclude that Sp
X!Y

( eM)! eM⌦eDX

(Sp(eDX)⌦eOX

eDX!Y ) is an isomorphism.
[Hint : Check that Sp

X!Y
( eM) ' eM⌦eDX

Sp
X!Y

(eDX).]

Exercise 8.41 (The relative Spencer complex of eDX ).
(1) Let eL• be a bounded resolution by left eDX -modules of eOX (as a left eDX -mod-

ule). Let eM be a left eDX -module. Show that, if the terms eLk are eOX -locally free,
eL•⌦eOX

eM (with the tensor product structure of left eDX -module) is a resolution of eM
as a eDX -module.

(2) Deduce that Sp(eDX)⌦eOX

eDX!Y is a resolution of eDX!Y as a bimodule.
(3) Let Sp

Y
(eDX!Y ) be the Spencer complex of eDX!Y considered as a right

eDY -module. Show that Sp
Y
(eDX!Y ) is a resolution of eOX as a left eDX -module.

(4) Show that gr
FDX!Y = RFDX!Y /zRFDX!Y is identified with ⇡

⇤
Sym⇥Y

as a graded (Sym⇥X)-module (see Exercise 8.4). For example, if Y = pt, so that
DX!Y = OX , grFOX = OX is regarded as a (Sym⇥X)-module: in local coordinates,
we have Sym⇥X = C{x1, . . . , xn}[⇠1, . . . , ⇠n] and

C{x1, . . . , xn} = C{x1, . . . , xn}[⇠1, . . . , ⇠n]/(⇠1, . . . , ⇠n).

(5) For f = Id : X ! X, the complex Sp(eDX) ⌦eOX

eDX!X = Sp(eDX) ⌦eOX

eDX

is a resolution of eDX!X = eDX as a left and right eDX -module (notice that the left
structure of eDX is used for the tensor product).

(6) For f : X ! pt, the complex Sp(eDX)⌦eOX

eDX!pt = Sp(eDX) is a resolution of
eDX!pt =

eOX .

Exercise 8.42. Extend Df⇤ and Df! as functors from D
+
(eDX) (or Db

(eDX)) to D
+
(eDY ).

[Hint : Replace first eM• ⌦eDX

Sp
X!Y

(eDX) with the associated simple complex.]
As in Remark 8.7.5(2), show that if eM• has bounded amplitude, then so has Df!

eM•.

Exercise 8.43. Let eM be a left eDX -module.
(1) Show that

⇥
e!X ⌦eOX

eDX!Y

⇤
⌦eDX

eM ' (e!X ⌦eOX

eM)⌦eDX

eDX!Y

as right f
�1 eDY -modules. [Hint : Use Exercise 8.16 and show that the corresponding

isomorphism is compatible with the right f
�1 eDY -action.]
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(2) Same question by replacing eDX!Y with Sp
X!Y

(eDX).
(3) Conclude that

Sp
Y X

(eDX)⌦eDX

eM ' Hom
f�1eOY

�
f
�1e!Y ,

eMright ⌦eDX

Sp
X!Y

(eDX)
�

'
� eMright ⌦eDX

Sp
X!Y

(eDX)
�
⌦

f�1eOY

f
�1e!Y .

(4) Deduce from the first line, by using that f
�1 is left adjoint to Rf⇤, that

Rf⇤(SpY X
(eDX)⌦eDX

eM) '
⇥
Df⇤( eMright

)
⇤left

,

and deduce from the second line (and justify the identification of the eDY -module
structures), by the projection formula for f!, that

Rf!(SpY X
(eDX)⌦eDX

eM) '
⇥
Df!(

eMright
)
⇤left

.

Exercise 8.44. Show that the formula for the pushforward in Example 8.7.11 is ob-
tained by side-changing from that of Example 8.7.10. [Hint : Adapt Exercise 8.26 in
the relative case of a projection.]

Exercise 8.45 (Pushforward by a closed inclusion). Assume that ◆ : X ,! Y is a closed
inclusion. For a eDX -module eM, show that D◆⇤ eM is generated by eM ⌦ 1 over eDY .
[Hint : Use Exercise 8.35.]

Exercise 8.46 (Pushforward by a graph inclusion (see Example 8.7.7))
Let f : X ! Y a holomorphic map and let ◆f : X ,! X⇥Y be the graph inclusion.

In local coordinates y1, . . . , ym on Y , set fj = yj � f .

(1) Let eM be a right eDX -module. Show that D◆f⇤ eM ' ◆f⇤ eM[e@y1
, . . . , e@ym

] with
right eDX⇥Y structure given locally by

µe@↵
y
· e@yj

= µe@↵+1j

y
,

µe@↵
y
· e@xi

= (µe@xi
)e@↵

y
�

mX

j=1

µ
@fj

@xi

e@↵+1j

y
.

(2) Let eM be a left eDX -module. Show that D◆f⇤ eM ' ◆f⇤ eM[e@y1
, . . . , e@ym

](m) with
left eDX⇥Y structure given locally by (omitting edy_ in the notation)

e@yj
· µe@↵

y
= �µe@↵+1j

y
,

e@xi
· µe@↵

y
= (e@xi

µ)e@↵
y
�

mX

j=1

@fj

@xi

µ e@↵+1j

y
.

[Hint : For the shift (m) of the grading, use Remark (8.2.3 ⇤).]

Exercise 8.47 (Compatibility of Spencer with D◆⇤ (right case))
Let ◆ : X ,! Y be a closed embedding. The goal of this exercise is to make explicit

the isomorphism Sp
Y
(D◆!

eM) ' ◆⇤ SpX
eM (equivalently, ◆�1 Sp

Y
(D◆!

eM) ' Sp
X

eM) for
a right eDX -module eM.
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(1) By using that eDX!Y is eDX -locally free (Exercise 8.35), show that

◆
�1

Sp
Y
(D◆!

eM) ' ( eM⌦eDX

eDX!Y )⌦◆�1 eDY

◆
�1

Sp
Y
(eDY )

' eM⌦eDX

(eOX ⌦◆�1eOY

◆
�1 eDY )⌦◆�1 eDY

◆
�1

Sp
Y
(eDY )

' eM⌦eDX

(eOX ⌦◆�1eOY

◆
�1

Sp
Y
(eDY )).

(2) By using the natural eOX -linear injective morphism e⇥X ! eOX ⌦◆�1eOY

◆
�1e⇥Y ,

deduce a natural eOX -linear injective morphism for each k > 0:

eDX ⌦eOX

e⇥X,k �! eOX ⌦◆�1eOY

◆
�1

(eDY ⌦eOY

e⇥Y,k).

(3) In local coordinates (x1, . . . , xn, y1, . . . , yp) where X is defined by y1 = · · · =
yp = 0, and for multi-indices ↵ 2 N

n and � 2 N
p, we use the notation e@^↵

x
for

e@↵1

x1
^ · · · ^ e@↵n

xn
, and similarly for e@^�

y
. Then express the above morphism as the

composition of the two natural inclusions
L

|↵|=k

eDX⌦e@^↵
x

,�!
L

|↵|=k

eDX [e@y1
, . . . , e@yp

]⌦e@^↵
x
⇢

L
|↵|+|�|=k

eDX [e@y1
, . . . , e@yp

]⌦(e@^↵
x
^e@^�

y
)

(4) Show that the left action of eDX on the right-hand side of the morphism in (2)
comes from the standard left action on eDX [e@y1

, . . . , e@yp
]⌦ (e@^↵

x
^ e@^�

y
).

(5) Show that the following diagram commutes:

eDX ⌦eOX

e⇥X,k
//

e�X
✏✏

eOX ⌦◆�1eOY

◆
�1

(eDY ⌦eOY

e⇥Y,k)

Id⌦e�Y
✏✏

eDX ⌦eOX

e⇥X,k�1 //
eOX ⌦◆�1eOY

◆
�1

(eDY ⌦eOY

e⇥Y,k�1)

[Hint : Use the local expression of (3) for the horizontal morphisms.]
(6) Show similarly that for a right eDX -module eM, the natural quasi-isomorphism

of complexes Sp
X
( eM)! ◆

�1
Sp

Y
(D◆⇤ eM) is locally termwise described as

L
|↵|=k

eM⌦ e@^↵
x

,�!
L

|↵|=k

eM[e@y1
, . . . , e@yp

]⌦ e@^↵
x
⇢

L
|↵|+|�|=k

eM[e@y1
, . . . , e@yp

]⌦ (e@^↵
x
^ e@^�

y
).

Exercise 8.48 (Compatibility of Spencer with D◆⇤ (left case))
The setting is as in Exercise 8.47. Let eM be a left eDX -module.

(1) Show that D◆⇤ eM ' ◆⇤ eM[e@y] ⌦ edy_. [Hint : let eN be the RHS; prove that
(edx ^ edy)⌦ eN ' (edx⌦ ◆⇤ eM)[e@y].]

(2) Show that the isomorphism p

DRX( eM) ' ◆
�1 p

DRY (D◆⇤ eM) is given termwise,
for any local section ⌘x of e⌦n+k

X
by

e⌦n+k

X
⌦ eM 3 ⌘x ⌦m 7�! (⌘x ^ edy)⌦ (m⌦ edy_

) 2 e⌦n+p+k

X
⌦ D◆⇤ eM.

[Hint : Apply Exercise 8.47(6) to eN considered in (1), and then the side-changing
formula of Lemma 8.4.7.]
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Exercise 8.49 (Compatibility with the Godement functor).
(1) Show by induction on k that, for every k > 0, the functor God

k is exact
(see [God64, p. 168]). Given an exact sequence 0 ! eL0 ! eL ! eL00 ! 0 of sheaves,
show that we have an exact sequence of complexes

0 �! God
• eL0 �! God

• eL �! God
• eL00 �! 0.

Similarly, show that the functors f? God
k are exact (with ? = ⇤ or ? = !) and deduce

an exact sequence of complexes

0 �! f? God
• eL0 �! f? God

• eL �! f? God
• eL00 �! 0.

Deduce also that, for every k > 0 and a complex eL•, we have

H
i
(f? God

k eL•
) ' f? God

k
H

ieL•
.

(2) Show that, if eL and eF are eOX -modules and if eF is locally free, then we have
a natural inclusion C0

(eL) ⌦eOX

eF ,! C0
(eL ⌦eOX

eF), which is an equality if eF has
finite rank. More generally, show by induction that we have a natural morphism
Ck

(eL)⌦eOX

eF ! Ck
(eL⌦eOX

eF), which is an equality if eF has finite rank.
(3) With the same assumptions, show that both complexes God

•
(eL) ⌦eOX

eF and
God

•
(eL⌦eOX

eF) are resolutions of eL⌦eOX

eF. Conclude that the natural morphism of
complexes God

•
(eL)⌦eOX

eF ! God
•
(eL⌦eOX

eF) is a quasi-isomorphism, and an equality
if eF has finite rank.

(4) Let eM be a right eDX -module. Show that the natural morphism of complex

(God
• eM)⌦eOX

Sp eDX �! God
•
( eM⌦eOX

Sp eDX)

is a quasi-isomorphism.
(5) Let eM be a right eDX -module. Show that

Sp(God
• eM) = God

•
Sp eM.

(6) If f : X = Y ⇥ T ! Y is the projection, show that, for ? = ⇤, !,

Df?
eM = f? God

•� eM⌦eOX

e⇥X/Y,•

�
.

[Hint : Use Example 8.7.10.]

Exercise 8.50 (Restriction to z = 1).
(1) Show that the Godement functor applied to sheaves of eC-modules restricts, for

z = 1, to the Godement functor applied to sheaves of C-vector spaces.
(2) Show that Sp

X!Y
(DX) = Sp

X!Y
(eDX)/(z � 1) Sp

X!Y
(eDX).

(3) Conclude that Df?
eM/(z � 1)Df?

eM = Df?(
eM/(z � 1) eM) and, for every i,

Df
(i)

?
eM/(z � 1)Df

(i)

?
eM = Df

(i)

? ( eM/(z � 1) eM) (? = ⇤, !).

Exercise 8.51 (Computation of the pushforward with the C
1 Spencer complex)

We take up the notation of Exercise 8.28. Let f : X ! Y be a holomorphic map.
For a right eDX -module eM, we define on

Sp
1
X!Y

( eM) := eM⌦eOX

fSp1,•
X
⌦eOX

eDX!Y ' eM⌦eOX

fSp1,•
X
⌦

f�1eOY

f
�1 eDY
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the right f
�1 eDY -linear differential

e�1fM,Y

�
(m⌦⇠)⌦'⌦Q

�
:= e�0fM,Y

�
(m⌦⇠)⌦'⌦Q

�
+(m⌦(⇠ ed0'))⌦Q+(m⌦⇠)⌦ed00'⌦Q,

where the first term is naturally defined from the formula in Exercise 8.40, and the
second and third terms are as in Exercise 8.28.

(1) Show that each term of the complex Sp
1
X!Y

(eDX) = eDX⌦eOX

fSp1,•
X
⌦eOX

eDX!Y

is eDX -flat.
(2) Show that e�1fM,Y

is indeed a differential and that Sp
X!Y

( eM)! Sp
1
X!Y

( eM) is
a quasi-isomorphism.

(3) Show that Sp
1
X!Y

( eM) ! eM ⌦eDX

Sp
1
X!Y

(eDX) is an isomorphism. [Hint :
Argue as in Exercises 8.24 and 8.28.]

Exercise 8.52 (Computation of the pushforward with differential forms)
Let f : X ! Y be a holomorphic map. The formula for the pushforward has a

simpler expression when we regard it as producing, from a left eDX -module, a complex
of right eDY -modules. This exercise gives such a formula.

Let eM be a left eDX -module. As eDX!Y is a left eDX -module,
eM⌦eOX

eDX!Y = eM⌦
f�1eOY

f
�1 eDY

has a natural structure of left eDX -module (by setting ⇠(µ⌦ 1Y )=⇠µ⌦1Y +µ⌦Tf(⇠),
see Exercise 8.12(2)) and of course a compatible structure of right f

�1 eDY -module.
(1) Show that the deRham complex

e⌦n+•
X
⌦ ( eM⌦eOX

eDX!Y ) =
e⌦n+•
X
⌦ ( eM⌦eOX

f
⇤ eDY ) =

e⌦n+•
X
⌦ ( eM⌦

f�1eOY

f
�1 eDY )

is isomorphic to eMright ⌦eDX

Sp
X!Y

(eDX), as a complex of right f�1 eDY -modules, by
using the isomorphism (see Lemma 8.4.7)

! ⌦ µ⌦ ⇠ ⌦ 1Y 7�! !(⇠ ^ •)⌦ µ⌦ 1Y (⇠ 2 ^k e⇥X).

[Hint : see Exercise 8.26.]
(2) Check that the connection induced on eM ⌦eOX

f
⇤ eDY by the left eDX -module

structure is er⌦ Id+ IdfM⌦erX , where erX is obtained from the universal connection
erY on eDY by the formula (8.6.1).

(3) Conclude that, for ? = ⇤, !,

Df?(
eMright

) = Rf?

⇥e⌦n+•
X
⌦ ( eMleft ⌦

f�1eOY

f
�1 eDY )

⇤
,(8.52 ⇤)

Df?(
eMleft

) = Rf?

⇥e⌦n+•
X
⌦ ( eMleft ⌦

f�1eOY

f
�1 eDY )

⇤left
,(8.52 ⇤⇤)

where (8.52 ⇤) is the complex of right eDY -modules associated to the double complex

f? God
•⇥e⌦n+•

X
⌦ ( eM⌦

f�1eOY

f
�1 eDY )

⇤
.

Show that this complex is quasi-isomorphic to the complex

f?

⇥e⌦n+•
X
⌦ (God

• eM⌦
f�1eOY

f
�1 eDY )

⇤
.

[Hint : Use Exercise 8.49.]
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(4) Show that the latter complex is the single complex associated with the
double complex having terms f?(

e⌦n+i

X
⌦ God

j eM) ⌦eOY

eDY and first differential
(�1)nf?(er ⌦ Id+ IdfM⌦erX

) (the second differential is induced by the Godement
differential).

(5) It is often more convenient to replace the Godement resolution by a Dolbeault
resolution. Prove that

(Df?
eM)

right ' f?

⇥eEn+•
X
⌦ ( eM⌦

f�1eOY

f
�1 eDY )

⇤
,

Df?
eM ' f?

⇥eEn+•
X
⌦ ( eM⌦

f�1eOY

f
�1 eDY )

⇤left
,

where the differential in the latter complexes is obtained in the usual way from the
holomorphic differential of 8.52(1) and the anti-holomorphic differential d00.

Other properties of the pushforward functor
Exercise 8.53 (Pushforward of induced eD-modules). Let eL be an eOX -module and let
eM = eL ⌦eOX

eDX be the associated induced right eDX -module. Let f : X ! Y be a
holomorphic map.

(1) Show that eL⌦eOX

Sp
X!Y

(eDX)! eL⌦eOX

eDX!Y is a quasi-isomorphism. [Hint :
Use that eDX is eOX -locally free.]

(2) Deduce that

eM⌦eDX

Sp
X!Y

(eDX) = eM⌦eDX

eDX!Y = eL⌦
f�1eOY

f
�1 eDY .

(3) Show that Df!(
eL⌦eOX

eDX) is quasi-isomorphic to (Rf!
eL)⌦eOY

eDY . [Hint : Use
the projection formula.]

Exercise 8.54 (Pushforward of eD-modules and pushforward of eO-modules)
Let f : X ! Y be a holomorphic map and let eM be a right eDX -module. It is also

an eOX -module. The goal of this exercise is to exhibit natural eOY -linear morphisms
(? = ⇤, !)

R
i
f?

eM �! Df
(i)

?
eM.

(1) Show that eDX ⌦f�1eOY

f
�1 eDY has a natural global section 1.

(2) Show that there is a natural f�1eOY -linear morphism of complexes

eM �! eM⌦eDX

Sp
X!Y

(eDX), m 7�! m⌦ 1,

where eM is considered as a complex with eM in degree 0 and all other terms equal
to 0, so the differential are all equal to 0. [Hint : Use Exercise 8.18(3) to iden-
tify Sp

0

X!Y
(eDX) = eDX ⌦eOX

eDX!Y with its twisted left eDX -structure (denoted by
eDX!Y ⌦eOX

eDX in loc. cit.) with eDX ⌦eOX

eDX!Y , where the tensor product uses the
right eOX -structure on eDX and the left eDX structure is the trivial one, and then with
eDX ⌦f�1eOY

f
�1eOY with trivial left eDX -structure and tensor product using the right

eOX -structure of eDX . Identify then eM⌦eDX

(eDX⌦eOX

eDX!Y ) with eM⌦
f�1eOY

f
�1 eDY .]

(3) Conclude with the existence of the desired morphisms.
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Exercise 8.55 (Grading and pushforward, right case). Let (M, F•M) be a filtered right
DX -module. Set M = RFM, so that gr

FM = M/zM.
(1) Show that

(M⌦RFDX
SpRFDX!Y )⌦C[z] C[z]/zC[z] ' gr

FM⌦L
Sym⇥X

f
⇤
Sym⇥Y .

[Hint : Use the associativity of ⌦ and Exercise 8.41(4).]
(2) Assume that Df?M is strict (i.e., the complex of Corollary 8.7.15 is strict in

the sense of Definition 5.1.6 or 10.2.2). Show that, for every i, we have, as graded
modules

gr
F
Df

(i)

? M ' H
i
Rf?

�
gr

FM⌦L
Sym⇥X

f
⇤
Sym⇥Y

�
.

Exercise 8.56 (Grading and pushforward, left case). With the assumptions as in Exer-
cise 8.55(2), but assuming that M is a left DX -module, show that

gr
F
Df

(i)

? M ' H
i
Rf?

�
!X/Y ⌦OX

gr
F

•+n�mM⌦L
Sym⇥X

f
⇤
Sym⇥Y

�
,

where !X/Y := !X ⌦OX
f
⇤
!

_
Y

, and we have set n = dimX, m = dimY . (Notice
the shift of the filtration, which comes from e!X/Y = z

n�m
!X/Y .) For example, if

Y = pt, deduce that

gr
F
H

i
(X,

p

DRM) 'H
i
�
X,!X ⌦ (gr

F

•+n
M⌦L

Sym⇥X
OX)

�
.

Exercise 8.57 (Trace for a finite map, preliminaries). We take up the notation of Ex-
ample 8.7.31, so that f : X = C

n ! Y = C
n is defined by fi(x1, . . . , xn) = x

ri

i
, with

ri 2 N
⇤ and ri > 2 if and only if i = 1, . . . , `. We set D = {

Q
`

i=1
xi = 0} and we have

f(D) = {
Q

`

i=1
yi = 0}.

(1) Define Trf : f⇤eOX ! eOY as an eOY -linear morphism such that, composed
with adj

f
: eOY ! f⇤eOX , it yields the identity eOY ! eOY . [Hint : Set Trf (g)(y) =

(1/#g
�1

(y))
P

x2f�1(y)
g(x).]

(2) Show that for any holomorphic function g on X, there exists a holomorphic
function g

0 on Y such that edg/g = f
⇤
(edg0/g0) (where f

⇤ means T
⇤
f).

(3) Show that there exists an eOY -linear morphism

Trf : f⇤e⌦1

X
(logD) �! e⌦1

Y
(log f(D))

satisfying the following properties:
(a) Trf (

edxi/xi) = (1/ri)
edyi/yi for i = 1, . . . , ` and Trf (

edxj) =
edxj for j >

`+ 1,
(b) Trf (

edg/g) = edg0/g0, with g
0 as above,

(c) Trf (h · edg/g) = Trf (h) · edg0/g0.
(4) Deduce that there exists an eOY -linear morphism Trf : f⇤e⌦1

X
! e⌦1

Y
such that

the composition

e⌦1

Y

f⇤(T
⇤
f)

�������! f⇤e⌦1

X

Trf����! e⌦1

Y

is the identity, and satisfies edTrf (g) = Trf (
edg) for any holomorphic function g on X.
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(5) Extend Trf as a morphism of complexes (f⇤(e⌦•
X
), f⇤(ed)) ! (e⌦•

Y
, ed) such that

the composition

(e⌦•
Y
, ed)

f⇤(T
⇤
f)

�������! (f⇤(e⌦•
X
), f⇤(ed))

Trf����! (e⌦•
Y
, ed)

is the identity.

Exercise 8.58 (Trace for a finite map). Let f : X ! Y be as in Exercise 8.57 and let eM
be a left eDY -module. Show that

(Df⇤(Df
⇤(0) eM))

right ' (f⇤e⌦n+•
X
⌦eOY

eDY )⌦eOY

eM.

[Hint : Use that Ri
f⇤(•) = 0 for i > 0 and argue as in the proof of Proposition 8.7.30.]

Deduce that there exist morphisms whose composition is the identity:

eMright
adj

f����! (Df
(0)

⇤ (Df
⇤(0) eM))

right
Trf����! eMright

,

and conclude that eMright is a direct summand in (Df
(0)

⇤ (Df
⇤(0) eM))

right.

8.11.g. Exercises for Section 8.8

Exercise 8.59.
(1) Prove the coherence of the sheaf of rings grFeDX in a way similar to that of eDX .
(2) Let D ⇢ X be a hypersurface and let eOX(⇤D) be the sheaf of meromorphic

functions on X with poles on D at most (with arbitrary order). Prove similarly that
eOX(⇤D) is a coherent sheaf of rings.

(3) Prove that eDX(⇤D) := eOX(⇤D)⌦eOX

eDX is a coherent sheaf of rings.
(4) Let ◆ : Y ,! X denote the inclusion of a smooth submanifold. Show that

i
⇤ eDX := eOY ⌦eOX

eDX is a coherent sheaf of rings on Y .
(5) Let Y ⇢ X be a smooth hypersurface of X. Show that V0

eDX (see Section 9.2)
is a coherent sheaf of rings.

Exercise 8.60.
(1) Let eM ⇢ eN be a eDX -submodule of a coherent eDX -module eN. Show that, if eM

is locally finitely generated, then it is coherent.
(2) Let � : eM ! eN be a morphism between coherent eDX -modules. Show that

Ker� and Coker� are coherent.

Exercise 8.61 (Non-validity of Cartan Theorem B for D-modules)
(1) Let X be an open disc with coordinate x, of radius r (possibly1) in C, and let

(xi)i2N be a sequence of points in X such that limi(r � |xi|) = 0. Let ' : ON
X
! ON

X

be the diagonal morphism equal to (x � xi) on the i-th component. Let Cxi
denote

the skyscraper sheaf supported on xi. Show that
(a) Coker' =

L
i
Cxi

and H
0
(X,Coker') =

Q
i
H

0
(X,Cxi

);
(b) Coker[H

0
' : H

0
(X,ON

X
)! H

0
(X,ON

X
)] =

L
i
H

0
(X,Cxi

).
(2) Deduce that H

1
(X,ON

X
) 6= 0.
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(3) Let OX(⇤0) be the sheaf of meromorphic functions on X with poles at x = 0

at most. Show that H
1
(X,OX(⇤0)) 6= 0. [Hint : Use Cartan Theorem B for OX and

apply the previous result to OX(⇤0)/OX .]

Exercise 8.62 (Characterization of coherent filtrations).
(1) Show that the following properties are equivalent:

(a) F•
eM is a coherent filtration;

(b) for every k 2 Z, Fk
eM is eOX -coherent, and, for every x 2 X, there exists a

neighbourhood U of x and k0 2 Z such that, for every k > 0, Fk
eDX|U ·Fk0

eM|U =

Fk+k0

eM|U ;
(c) the graded module gr

F eM is gr
FeDX -coherent.

(2) Conclude that, if F•
eM, G•

eM are two coherent filtrations of eM, then, locally
on X, there exists k0 such that, for every k, we have

Fk�k0

eM ⇢ Gk
eM ⇢ Fk+k0

eM.

Exercise 8.63 (Local existence of coherent filtrations). Let F•
eM be a filtration of eM.

(1) Write RF
eM =

L
k
Fk

eM⇣
k, where ⇣ is a new variable, and show that, if eM

has a coherent filtration, then it is eDX -coherent. [Hint : Use that the tensor product
C[⇣]/(⇣ � 1)⌦C[⇣] • is right exact.]

(2) Conversely, show that any coherent eDX -module admits locally a coherent fil-
tration. [Hint : Choose a local presentation eDq

X |U
'�! eDp

X |U ! eM|U ! 0, and show
that the filtration induced on eM|U by F•

eDp

X |U is coherent by using Exercise 8.62: Set
eK = Im' and reduce the assertion to showing that Fj

eDX \ eK is eOX -coherent; prove
that, up to shrinking U , there exists ko 2 N such that '(Fk

eDq

X |U ) ⇢ Fk+ko

eDp

X |U

for every k; deduce that '(Fk
eDq

X |U ), being locally of finite type and contained in
a coherent eOX -module, is eOX -coherent for every k; conclude by using the fact that
an increasing sequence of coherent eOX -modules in a coherent eOX -module is locally
stationary.]

(3) Show that a coherent filtration F•
eM satisfies Fp

eM = 0 for p⌧ 0 locally [Hint :
Use that this holds for the filtration constructed in (2) and apply Exercise 8.62(2).]

(4) Show that, locally, any coherent eDX -module is generated over eDX by a coherent
eOX -submodule.

(5) Let eM be a coherent eDX -module and let eF be an eOX -submodule which is
locally finitely generated. Show that eF is eOX -coherent. [Hint : Choose a coherent
filtration F•

eM and show that, locally, eF ⇢ Fk
eM for some k; apply then the analogue

of Exercise 8.60(1) for eOX -modules.]

Exercise 8.64.
(1) Show statements similar to those of Theorem 8.8.7 for RF

eDX -modules, grFeDX -
modules, eOX(⇤D)-modules, eDX(⇤D)-modules and i

⇤ eDX -modules (see Exercise 8.59).
(2) Let eM be a coherent eDX -module. Show that eDX(⇤D) ⌦eDX

eM is eDX(⇤D)-
coherent and that i

⇤ eM is i
⇤ eDX -coherent.
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Exercise 8.65. Similarly to Corollary 8.8.8, prove that if ' : eM ! eN is a surjective
morphism of coherent eDX -modules and if F•

eM is coherent, then F•
eN := '(F•

eM) is
coherent as well.

Exercise 8.66.
(1) Show that RFDX is naturally filtered by locally free graded OX [z]-modules of

finite rank by setting (locally)
Fk(RFDX) =

X

|↵|6k

OX [z]@
↵

x
.

(2) Show that gr
F
(RFDX) = C[z]⌦C gr

FDX with the tensor product grading.
(3) For a filtered DX -module (M, F•M), show that, if one defines the filtration

Fk(RFM) =

X

j6k

FjM⌦C z
j
C[z],

then F•(RFM) is an F•(RFDX)-filtration and gr
F
(RFM) can be identified with

C[z]⌦C gr
FM, equipped with the tensor product grading.

Exercise 8.67. Recall (see e.g. [ST71, Prop. 1.9]) that, for a coherent sheaf F of
eOX -modules and a closed analytic subset Z ⇢ X, the sheaf �ZF consisting of local
sections which vanish away from Z is also the sheaf of local sections annihilated by
some power of IZ , and is a coherent sheaf of eOX -modules. Deduce a similar property
for coherent eDX -modules. [Hint : Prove that the assertion is local and apply the
result for eOX -modules for a large step of a coherent filtration of eM.]

Exercise 8.68. Let 0 ! eM0 ! eM ! eM00 ! 0 be an exact sequence of eDX -modules.
Show that Char eM = Char eM0[Char eM00. [Hint : Take a coherent filtration on eM and
induce it on eM0 and eM00.]

Exercise 8.69 (Coherent eDX -modules with characteristic variety T
⇤
X
X)

Assume that eM is coherent with characteristic variety contained in T
⇤
X
X ⇥ Cz.

(1) Show that, for any local coherent filtration F•
eM, the graded module gr

F eM is
locally of finite type, hence coherent (see Exercise 8.63(5)) over eOX .

(2) Deduce that, locally on X, there exists po such that gr
F

p
eM = 0 for p > po.

(3) For a DX -module M, deduce that M is locally free of finite rank.

Exercise 8.70 (Coherent DX -modules with characteristic variety contained in T
⇤
Y
X)

In this exercise, we switch to the case of DX -modules. Let ◆ : Y ,! X be the
inclusion of a smooth codimension p closed submanifold. Define the p-th algebraic
local cohomology with support in Y by R

p
�[Y ]OX = lim�!k

Extp(OX/Ik
Y
,OX), where IY

is the ideal defining Y . R
p
�[Y ]OX has a natural structure of DX -module. In local

coordinates (x1, . . . , xn) where Y is defined by x1 = · · · = xp = 0, we have

R
p
�[Y ]OX '

OCn [1/x1 · · ·xn]P
p

i=1
OCn(xi/x1 · · ·xn)

.

Denote this DX -module by BY X.
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(1) Show that BY X has support contained in Y and characteristic variety equal
to T

⇤
Y
X.

(2) Identify BY X with D◆⇤OY .
(3) Let M be a coherent DX -module with characteristic variety equal to T

⇤
Y
X.

Show that M is locally isomorphic to (BY X)
d for some d.

Exercise 8.71. Let M be a coherent DX -module equipped with a coherent filtration
F•M. Set M = RFM.

(1) Show that Char(RFM) = (CharM)⇥Cz, so that M is holonomic (in the sense
of Definition 8.8.29) if and only if M is holonomic. (In other words, for a strict coherent
eDX -module M, M/(z � 1)M is holonomic if and only if M itself is holonomic.)

(2) In such a case, show that Ext i
RFDX

(RFM, RFDX) consists of z-torsion if i 6=
dimX.

Exercise 8.72 (Characteristic variety of the external product, see [Kas03, §4.3])
Consider the setting of Lemma 8.6.10. Assume moreover that the filtrations

F•MX , F•MY are coherent. Show that F•(MX ⇥D MY ) is coherent. Conclude that
Char(MX ⇥D MY ) = CharMX ⇥ CharMY .

Exercise 8.73 (Projection formula for eO-modules). Let X,Y be complex manifolds,
X being compact, let eLX be an eOX -module and let us denote by p : X ⇥Y ! X and
q : X ⇥ Y ! Y the projections.

(1) Show that there exists a natural morphism eOY ⌦eC R�(X, eLX) ! Rq⇤p
⇤eLX .

[Hint : Justify the following composition of morphisms

eOY ⌦eC R�(X, eLX)
⇠�! eOY ⌦eC Rq⇤p

�1eLX ' Rq⇤(q
�1eOY ⌦eC p

�1eLX) �! Rq⇤p
⇤eLX

and conclude.]

The goal of the remaining part is to prove (8.8.26), that is, if eLX is the inductive
limit of its coherent eOX -submodules this morphism is an isomorphism.

(2) Reduce the statement to the case where eLX is eOX -coherent. [Hint : Proper
pushforward commutes with inductive limits.]

(3) Consider first the case of OX -modules. Use Grauert’s theorem (see e.g. [BS76,
Th. 4.12]) to prove the result.

(4) For eOX -modules, apply the previous result to each graded piece and conclude.

Exercise 8.74 (Proof of Lemma 8.8.42). Let eMi (i = 1, 2) be left eDX -modules (consider
right modules as left modules on eDop

X
).

(1) Show that

RHom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2,

eDX1
⇥eC

eDX2
)

' RHom eDX1

( eM1,
eDX1

)⇥eC RHom eDX2

( eM2,
eDX2

)
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[Hint : let I
•
i

(resp. I•) be a eDXi
⌦ eDop

Xi
(resp. (eDX1

⇥eC
eDX2

) ⌦ (eDX1
⇥eC

eDX2
)
op)-

injective resolution of eDXi
(resp. I•

1
⇥eC I

•
2
). Show the existence of a (eDX1

⇥eC
eDX2

)
op-

linear morphism

Hom eDX1

( eM1, I
•
1
)⇥eC Hom eDX2

( eM2, I
•
2
) = Hom eDX1

⇥eC
eDX2

( eM1 ⇥eC
eM2, I

•
1
⇥eC I

•
2
)

�! Hom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2, I

•
)

That it is an isomorphism is a local question, and as each eMi is coherent, by taking a
local free resolution of eMi, it is enough to check this for eDXi

, for which the assertion
is easy.]

(2) Show that there exists a natural morphism (in D
+
(eDop

X1⇥X2
)):

RHom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2,

eDX1
⇥eC

eDX2
)⌦eDX1

⇥eC
eDX2

eDX1⇥X2

�! RHom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2,

eDX1⇥X2
),

where eDX1⇥X2
is regarded as a eDX1

⇥eC
eDX2

-module and as a eDop

X1⇥X2
-module. [Hint :

consider an injective resolution J
• of eDX1

⇥eC
eDX2

as a (eDX1
⇥eC

eDX2
)⌦(eDX1

⇥eC
eDX2

)
op-

module. Deduce a natural morphism of eDop

X1⇥X2
-modules:

Hom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2, J

•
)⌦eDX1

⇥eC
eDX2

eDX1⇥X2

�! Hom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2, J

• ⌦eDX1
⇥eC

eDX2

eDX1⇥X2
).

Then choose an injective resolution K
• of J•⌦eDX1

⇥eC
eDX2

eDX1⇥X2
as a (eDX1

⇥eC
eDX2

)⌦
eDop

X1⇥X2
-module, and obtain the desired morphism.]

Show moreover that, if eMi are eDXi
-coherent, then this morphism is an isomorphism

in D
b
(eDop

X1⇥X2
). [Hint : the assertion is local, so by taking a local free resolution of

eMi, reduce to the case where eMi =
eDXi

and conclude.]
(3) Lastly, show that there exists a natural morphism

RHom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2,

eDX1⇥X2
) �! RHom eDX1⇥X2

( eM1 ⇥eD
eM2,

eDX1⇥X2
).

[Hint : as eDX1⇥X2
is eDX1

⇥eC
eDX2

-flat, an injective eDX1⇥X2
-module is also an injective

eDX1
⇥eC

eDX2
-module. Take an injective resolution I

• of eDX1⇥X2
as a eDX1⇥X2

⌦
eDop

X1⇥X2
-module, show the existence of a morphism of eDop

X1⇥X2
-complexes

Hom eDX1
⇥eC

eDX2

( eM1 ⇥eC
eM2, I

•
) �! Hom eDX1⇥X2

( eM1 ⇥ eM2, I
•
),

and obtain the desired morphism.]
Moreover, show as in (2) that it is an isomorphism if eMi are eDXi

-coherent.
By using the usual shifts, deduce

D eM1 ⇥eD D eM2 'D( eM1 ⇥eD
eM2).

[Hint : the left-hand term is that considered in (2), after (1), and the right-hand term
is the second one in (3).]
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8.11.h. Exercises for Section 8.10

Exercise 8.75. Let L be an OX -module. Recall (Exercise 8.29) that Sp(L⌦OX
DX) is

a resolution of L as an OX -module. Show that the morphism (8.10.1) is the augmen-
tation morphism Sp

0
(L⌦OX

DX)! L.

Exercise 8.76.
(1) Show that any OX -linear morphism u : L! L0 is a differential operator from L

to L0 and that a corresponding v is u⌦ 1.
(2) Assume that L,L0 are right DX -modules. Let u : L! L0 be DX -linear. Show

that the corresponding v is DX -linear for both structures (right)triv and (right)tens
(see Exercise 8.19) on L(0) ⌦OX

DX .
(3) Show that HomDi↵(OX ,OX) = DX .
(4) Show that the morphism in Definition 8.10.6 is compatible with composition.

Conclude that the composition of differential operators is a differential operator and
that it is associative.

Exercise 8.77 (Integrable connections are differential operators)
Let M be an OX -module and let r : M! ⌦

1

X
⌦OX

M be an integrable connection
on M.

(1) Show that r is a differential morphism, by considering the right DX -linear
morphism

v(m⌦ P ) := r(m)⌦ P +m⌦r(P ),

for any local section m of M and P of DX , and where rP is defined in Exercise 8.5.
Extend this result to connections (k)r.

(2) Let M0,M00 be OX -submodules of M such that (k)r induces a C-linear mor-
phism (k)r0 : ⌦k

X
⌦OX

M0 ! ⌦
k+1

X
⌦OX

M00. Show that (k)r0 is a differential morphism.

Exercise 8.78. Show that Mod(OX ,Di↵X) is an additive category, i.e.,
• HomDi↵(L,L

0
) is a C-vector space and the composition is C-bilinear,

• the 0 OX -module satisfies HomDi↵(0, 0) = 0,
• HomDi↵(L1 � L2,L

0
) = HomDi↵(L1,L

0
) � HomDi↵(L2,L

0
) and similarly with

L0
1
,L0

2
.

Exercise 8.79 (De Rham and inverse de Rham on induced D-modules)
(1) Let L be an OX -module. Show that H

k
�
p

DR(L⌦OX
DX)

�
= 0 for k 6= 0 and

H
0
�
p

DR(L⌦OX
DX)

�
= L. [Hint : Use Exercise 8.29.]

(2) Show that H
0
(
p

DR) defines a functor Modi(DX) 7! Mod(OX ,Di↵X), which
will be denoted by diff

DR.
(3) Show that diff

DR
-1

: Mod(OX ,Di↵X) 7! Modi(DX) is an equivalence of cate-
gories, a quasi-inverse functor being diff

DR : L⌦OX
DX 7! L, diff

DR(v) = u.
(4) Show that the composed functor Mod(OX ,Di↵X) 7! Modi(DX) 7! Mod(DX),

still denoted by diff
DR

-1, is fully faithful, i.e., it induces a bijective morphism

HomDi↵(L,L
0
)
⇠�! HomDX

(L⌦OX
DX ,L0 ⌦OX

DX).
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(One may think that we “embed” the additive (non abelian) category Mod(OX ,Di↵X)

in the abelian category Mod(DX); we will use this “embedding” to define below acyclic
objects).

Exercise 8.80 (The de Rham functor diff
DR).

(1) Show that the deRham complex of a left DX -module M is a complex in
C
b
(OX ,Di↵X). [Hint : Use Exercise 8.76(1).]
(2) By using Exercise 8.26(1), show that the de Rham complex of a right DX -mod-

ule M is a complex in C
b
(OX ,Di↵X)

(3) Show that the de Rham complex of a ?-bounded complex of right DX -modules
has its associated single complex in C

?
(OX ,Di↵X). [Hint : Use Exercise 8.24.]

(4) Conclude that p

DR induces a functor diff
DR : C

?
(DX) 7! C

?
(OX ,Di↵X).

(5) Extend this functor as a functor of triangulated categories K
?
(DX) !

K
?
(OX ,Di↵X).

Exercise 8.81. Let M be a DX -module. Show that God
•

diff
DRM is a differential

complex. [Hint : Identify this complex with diff
DRGod

•
M.]

Exercise 8.82. Show that the family N of Di↵-acyclic objects forms a null system in
K
?
(OX ,Di↵X), i.e.,
• the object 0 belongs to N,
• an object L• belongs to N iff L•

[1] does so,
• if L• ! L0• ! L00• ! L•

[1] is a distinguished triangle of K?
(OX ,Di↵X), and if

L•
,L0• are objects in N, then so is L00•.

[Hint : Use that the extension of diff
DR

-1 to the categories K
? is a functor of triangu-

lated categories.]

Exercise 8.83 (The functor D
?
(OX) 7! D

?
(OX ,Di↵X)). Using Exercise 8.76(1), define

a functor C?
(OX) 7! C

?
(OX ,Di↵X) and K

?
(OX) 7! K

?
(OX ,Di↵X). By using that DX

is OX -flat, show that if L• is acyclic in K
?
(OX), then L•⌦OX

DX is acyclic in K
?
(DX).

Conclude that the previous functor extends as a functor D
?
(OX) 7! D

?
(OX ,Di↵X).

Exercise 8.84. Show that the following diagram commutes:

D
?
(DX)

diff
DR

//

p

DR

))

D
?
(OX ,Di↵X)

Forget

// D
?
(CX)

Exercise 8.85. Assume that L• is Di↵-acyclic. Show that ForgetL• is acyclic. [Hint :
By definition, diff

DR
-1

(L•
) is acyclic; then p

DR
diff

DR
-1

(L•
) is also acyclic and quasi-

isomorphic to ForgetL•.]
Conclude that Forget induces a functor D

?
(OX ,Di↵X) 7! D

?
(CX), and that we

have an isomorphism of functors
p

DR
diff

DR
-1 ⇠�! Forget : D

?
(OX ,Di↵X) 7�! D

?
(CX).

Compare with Exercise 8.29.
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Exercise 8.86. Let L,L0 be two OX -modules and

v : M = L⌦OX
DX �!M0 = L0 ⌦OX

DX

a DX -linear morphism. It defines a f
�1DY -linear morphism

v ⌦ 1 : M⌦DX
DX!Y �!M0 ⌦DX

DX!Y ,

where 1 is the section introduced in Exercise 8.54(1). This is therefore a morphism

ev : L⌦f�1OY
f
�1DY �! L0 ⌦f�1OY

f
�1DY .

Show that diff
DRY (ev) = diff

DRX(v).
[Hint : Since the problem is local, argue with coordinates on X and Y and write

f = (f1, . . . , fm). Let ` be a local section of L, and let 1X be the unit of DX . Set
v(`⌦ 1X) = w(`) =

P
↵
w(`)↵ ⌦ @↵x and ev(`⌦ 1X) = v(`⌦ 1X)⌦ 1X!Y . Show that,

if ↵i 6= 0,

@
↵i

xi
⌦ 1X!Y = @

↵i�1
xi

X

j

@fj

@xi

⌦ @yj
.

Deduce that the image of ev(` ⌦ 1X) by the map L ⌦f�1OY
f
�1DY ! L is equal to

the image of w(`)0, which is nothing but u(`) by definition of u := H
0
DRX(v).]

Exercise 8.87.
(1) Show that the Leray filtration is a decreasing finite filtration and that it is

compatible with the differential.
(2) Show that, locally, being in Ler

p means having at least p factors dyj in any
summand.

Exercise 8.88 (The connecting morphism). Let 0 ! C
•
1
! C

•
2
! C

•
3
! 0 be an exact

sequence of complexes. Let [µ] 2 H
k
C

•
3

and choose a representative in C
k

3
with

dµ = 0. Lift µ as eµ 2 C
k

2
.

(1) Show that deµ 2 C
k+1

1
and that its differential is zero, so that the class [deµ] 2

H
k+1

C
•
1

is well-defined.
(2) Show that � : [µ] 7! [deµ] is a well-defined morphism H

k
C

•
3
! H

k+1
C

•
1
.

(3) Deduce the existence of the cohomology long exact sequence, having � as its
connecting morphism.

8.12. Comments

Most of the results in this chapter are now classical and explained in various refer-
ence books (e.g. [MS93a, MS93b], [Bjö93], [MN04], [Kas03], [HTT08]). We have
emphasized their adaptation to the case of filtered D-modules, or more precisely to the
case of eD-modules, in a way similar to what is done in [Sab05] with the analytifica-
tion R with respect to the variable z of the sheaf eD, and [Moc07, Moc11a, Moc15].

The notion of induced D-module and the idea of inverting the de Rham func-
tor is due to M. Saito [Sai89a]. The comparison of the notion of pushforward of a
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D-module with the Katz-Oda construction of the Gauss-Manin connection is taken
from [DMSS00].

The pushforward of a holonomic D-module M by a finite morphism (or finite on
the support of M) is worth considering in detail. This is done in [Käl18] in the
algebraic setting. In particular, the decomposition theorem holds without any Hodge
assumption for such morphisms.


