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Introduction

Let U be a smooth quasi-projective variety over C and let f be a regular function

on U . Let D

U

be the sheaf of algebraic di�erential operators on U and let M be a

regular holonomic D

U

-module: here, regular means that there exists some smooth

compacti�cation X of U and some extension ofM as a D

X

-module which is regular

holonomic on X (one also may avoid the use of a smooth compacti�cation to de�ne

regularity, see [17]).

Let M

f

be the D

U

-module obtained from M by twisting by e

f

. By de�nition,

M

f

is equal toM as an O

U

-module; the operator r

f

:M

f

! 


1

U




O

U

M

f

is equal

to e

�f

re

f

, where r is the operator M ! 


1

U




O

U

M given by the D

U

-module

structure; we have r

2

f

= 0 because r

2

= 0 and this de�nes a D

U

-module structure

on M

f

.

Let DR(N ) be the algebraic de Rham complex of the holonomic D

U

-module N :

DR(N ) =

n

0 �! N

r

���! 


1

U




O

U

N

r

���! 


2

U




O

U

N

r

���! � � �

o

(�)

(it is now usual to consider that the term corresponding to 


dimU

is in degree 0,

but it will not matter here and we shall not shift this complex). We shall give a

formula for the hypercohomology of DR(M

f

), i.e. the cohomology of the complex

R�(U;DR(M

f

)). If U is a�ne, this is the cohomology of the complex DR(M

f

(U))

of global sections over U .

This result was conjectured in [1] in a particular case, where U is the complement

of an arrangement of hyperplanes in general position in C

`

and M is a rank one

locally free O

U

-module.

In fact, the global comparison theorem we give is essentially equivalent to the

one given in [8] (see also [15] and [22]).

We shall use this result to obtain vanishing theorems of the type given in [1]

under weaker assumptions on the arrangement or on the regular function.

We also prove a local version of the comparison theorem (see x0 for all the

following unde�ned notations): in the algebraic case for instance, if X is a com-

pacti�cation of U on which f extends as a function F : X ! P

1

, and if � denotes

the inclusion U ,! X, we shall give a topological formula to compute the analytic

(hence algebraic by GAGA) de Rham complex of the D

X

-module �

+

M

f

.

We deduce from this result that the irregularity complex ofM

f

(see [18]), which

is the cone of

DR

an

(�

+

M

f

) �! R�

�

DR

an

(M

f

)

has the same characteristic function as the nearby cycle complex  

1=F

(R�

�

DR

an

M).

Because the characteristic cycle of �

+

M

f

can be computed only in terms of

the characteristic function of the complex DR

an

(�

+

M), this result corroborates the

computation in [4].

The results proved in this article are more or less known to specialists, but do

not seem to exist with enough generality in the literature.
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We shall assume that the reader is familiar with the theories of algebraic D-

modules, derived categories and perverse sheaves. One is referred to [2], [16] and

[10] for more details on these. However we shall recall below some known facts in

these theories and give some more precise references.

0. A quick trip through the theory of holonomic D-modules

0.1. | We shall denote D

X

the sheaf of algebraic di�erential operators on a

smooth algebraic variety over C (see [3, p. 207] or [16, p. 24]). By a D

X

-module we

will mean a coherent left D

X

-module.

0.2. | Let ' : Y ! X be a proper morphism between smooth algebraic

varieties over C. We denote '

+

the direct image of D

Y

-modules (see [3, p. 240] or

[16, p. 61]). If M is a D

Y

-module, '

+

M is a bounded complex, the cohomology of

which is made of D

X

-modules (see [3, p. 275] or [16, p. 75]).

When ' is not proper, the previous result is not true in general, but remains

true when applied to holonomic D

Y

-modules. In this cas holonomicity is preserved

by '

+

(see [3, p. 292] or [16, p. 77]).

0.3. | The dual D

X

M of a holonomic D

X

-module M is also a holonomic

D

X

-module: in this case, D

X

M is the left D

X

-module associated with the right

D

X

-module Ext

dimX

D

X

(M;D

X

).

The duality functor is in fact de�ned at the level of complexes. Moreover there

is a biduality theorem D

X

(D

X

M) 'M (see [3, p. 277] or [16, p. 40]).

When ' : Y ! X is proper, the duality functor commutes with direct images

(up to a shift of complexes depending on the convention), namely '

+

D

Y

= D

X

'

+

(see [3, p. 278] or [16, p. 74]).

However, when ' is not proper, it will not commute in general and we de�ne a

new functor (we must restrict here to holonomic objects) '

y

= D

X

'

+

D

Y

.

0.4. | We will consider '

y

in the case where ' = � : U ,! X is the inclusion of

a Zariski open set such that X �U is a divisor D. IfM is a holonomic D

U

-module,

�

+

M is the only holonomic D

X

-module such that

(1) �

+

M

jU

=M,

(2) if h is a local equation for D, multiplication by h is bijective on �

+

M (i.e.

multiplication by h

�1

is de�ned on �

+

M).

Using (0.3) we can also de�ne �

y

M but its characteristic properties are more

di�cult to state directly.

0.5. | Given a holonomic D

X

-module M, the constructibility theorem of

Kashiwara (see [9] and also [19] or [20]) asserts that the analytic de Rham complex

DR

an

M (de�ned as the algebraic one (�) using holomorphic forms) is a bounded
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complex with constructible cohomology on X (in other words a constructible com-

plex). We will denote

p

DR = DR[dimX],

p

DR

an

= DR

an

[dimX].

For ' : Y ! X as above and M a holonomic D

Y

-module, there exists a natural

morphism

p

DR

an

('

+

M) �! R'

�

p

DR

an

(M)(��)

where '

�

denotes the direct image of sheaves and R'

�

denotes its right derived

functor.

When ' is proper, (��) is a quasi-isomorphism. When ' is not proper and even

if M is holonomic, it need not be so.

0.6. | If ' = � : U ,! X as above, (��) is a quasi-isomorphism if �

+

M has

regular singularities along D (see [3, p. 326] or [17]). If M is only holonomic, the

cone of (��) is de�ned to be the irregularity complex of �

+

M along D (see [18]).

0.7. | There is a duality functor for constructible complexes called Verdier

duality, which gives usual Poincar�e duality at the cohomology level. This functor

D

X

is compatible with the duality of holonomic D

X

-modules via

p

DR

an

, namely

D

X

p

DR

an

M =

p

DR

an

D

X

M (see [3, p. 326] or [16, p. 56]).

Consequently for ' : Y ! X as above and under regularity assumptions on the

holonomic D

Y

-moduleM, the functor '

y

de�ned for holonomic modules corresponds

via DR

an

to the functor '

!

of direct image with proper supports de�ned at the level

of sheaves, namely '

!

p

DR

an

M =

p

DR

an

'

y

M.

0.8. | Let F be a constructible complex on X. For each x 2 X, put �

x

(F) =

P

i

(�1)

i

dimH

i

(F)

x

, where H

i

(F) is the ith cohomology sheaf of F , which is by

assumption a constructible sheaf on X. Then x 7! �

x

(F) is a constructible function

on X with values in Z: it is constant on the strata of some algebraic strati�cation

of X.

When F = DR

an

M,M a holonomic D

X

-module, this function allows one to re-

cover the characteristic cycle ofM (a union of Lagrangian varieties in the cotangent

bundle T

�

X with multiplicities) (see for instance [6]).

The global Euler characteristics �(X;F) =

P

i

(�1)

i

dimH

i

(X;F), where H

i

denotes the ith hypercohomology group of the complex F , can also be recovered

from the characteristic function of F and the usual Euler characteristics of the

strata on which it is constant. For instance, if F is a local system on X, we have

�

x

(F) = dimF

x

= r for all x and �(X;F) = r � �(X).

0.9. | Let h : X ! C be a regular function on X and let F be a constructible

complex on X. The nearby cycle complex  

h

F is a constructible complex on h

�1

(0)

(see for instance [10, p. 350] for the de�nition). It depends only on the restriction

of F to X � h

�1

(0). If for instance this restriction is a local system of rank r, the

characteristic function x 7! �

x

( 

h

F) (x 2 h

�1

(0)) is computed in the following way:
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let F

x

denote the Milnot �ber of h at x; then �

x

( 

h

F) = r�(F

x

) where � in the

RHS is the usual Euler characteristics of F

x

.

Coming back to the general situation one can also de�ne (see for instance [10,

p. 350]) the vanishing cycle complex �

h

F as the cone of the natural morphism

i

�1

h

�1

(0)

F !  

h

F where i

h

�1

(0)

: h

�1

(0) ,! X denotes the inclusion.

1. A global comparison theorem

In order to formulate the result, denote U

an

the complex analytic manifold un-

derlying U and DR

an

(N ) the corresponding de Rham complex of N . It is a bounded

complex with constructible cohomology on U

an

(for instance it can be a local system

on U). Let � be the family of closed sets of U

an

on which e

�f

is rapidly decreasing

(a more precise de�nition will be given later).

Theorem 1.1. | One has H

k

(U;DR(M

f

)) = H

k

�

(U

an

;DR

an

(M)) for all

k.

This theorem is essentially proved in [8] (see also [15] and [22]). Indeed, as we

shall see below, the RHS can be better understood: let � > 0 and denote H

�

the

half-space Re(�t) � � in C; let U

�

= f

�1

(H

�

) � U

an

. Then we shall show that

the RHS is equal to the relative hypercohomology H

k

(U

an

; U

�

; DR

an

(M)) for � big

enough. The restriction map

H

k

(U

an

; U

�

; DR

an

(M)) �!H

k

(U

an

; f

�1

(t); DR

an

(M))

induces then an isomorphism for t 2 H

�

and so the LHS is also isomorphic to

the relative hypercohomology group H

k

(U

an

; f

�1

(t); DR

an

(M)) for a general �ber

f

�1

(t). With this formulation, the result is proved in [8], [15] and [22] when U = C

`

,

but the proof extends easily to the general case. We shall give below another proof

(in the style of [15]) which can be adapted to prove also the local comparison theorem

5.1.

In particular we obtain an equality of Euler characteristics (see x 0.8):

Corollary 1.2. | AssumeM is smooth of rank r on U and that U is a�ne.

Then

�(DR(M

f

(U))) = r

h

�(U

an

)� �(f

�1

(t))

i

where t is a generic value for f . 2

Proof of theorem 1.1. | We shall shea�fy the formulation of the theorem.

This will be useful for the local comparison theorem 5.1. In fact we shall reduce the

global comparison theorem to a local one in dimension 1.

Let � :

e

P

1

! P

1

be the oriented real blow-up of P

1

at in�nity. This is the space

of polar coordinates at in�nity, which is di�eomorphic to the disc, and �

�1

(1) = S

1
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is the circle of directions at 1. We shall write

e

P

1

= C [ S

1

. One has

e

P

1

� f0g '

R

+

� S

1

and � is given by 1=t = �e

i�

.

Let X be a compacti�cation of U such that f extends as a projective map

F : X ! P

1

. One can extend F to

e

F :

f

X !

e

P

1

, where

f

X is the �ber product

X �

P

1

e

P

1

. It is a real semi-algebraic space and

e

F is a semi-algebraic map.

Let I be the open interval in S

1

de�ned as the set of directions in the neigbour-

hood of which e

�t

is decreasing, i.e. � 2]� �=2; �=2[. Denote

f

X

I

the inverse image

of C [ I in

f

X. The family � of closed sets considered in the theorem is de�ned as

follows: a closed set A of U is in � if its closure in

f

X is contained in

f

X

I

.

In order to shea�fy the previous construction, consider the following inclusions

U ,

�

���!

f

X

I

,

�

���!

f

X

and denote �

!

the direct image of sheaves with proper support by the map �. The

hypercohomology with supports in � considered in the theorem is the hypercoho-

mology on

f

X of the complex of sheaves �

!

R�

�

DR

an

(M).

Remark. | In contrast, the comparison theorem for regular holonomic modules

applied to M implies that R�(U;DR(M)) is the hypercohomology on

f

X of the

complex R�

�

R�

�

DR

an

(M).

Now, the hypercohomologyH

k

(

f

X; �

!

R�

�

DR

an

(M)) is also equal to the relative

hypercohomology H

k

(

f

X;

f

X �

f

X

I

;R�

�

R�

�

DR

an

(M)), and this one is isomorphic

to H

k

(U; U

�

; DR

an

(M)) for � large enough.

By direct image by f we shall now reduce to the case where U = C and f = Id

(butM is replaced with a bounded complex with regular holonomic cohomology on

C). First, let f

+

be the direct image functor for D

U

-modules (see x 0.2). Then one

has

f

+

(M

f

) = (f

+

M)

Id

= (f

+

M)
 e

t

:

Moreover, using the relative comparison theorem for regular holonomic modules

(because f is not proper) we have (see x 0.5)

p

DR

an

(f

+

M) = Rf

�

p

DR

an

(M):

If we continue to denote � and � the inclusions C ,! C[ I and C[ I ,!

e

P

1

we are

reduced to showing that

DR(N

�

Id

(C)) = R�(

e

P

1

; �

!

R�

�

DR

an

(N

�

))

for any bounded complex N

�

on C with regular holonomic cohomology (we shall

apply this to f

+

M).

We shall prove this equality at the sheaf level. In order to do this, we must realize

the LHS as the hypercohomology of a complex of sheaves on

e

P

1

. Let j : C ,! P

1

6



denote the inclusion and j

+

be the corresponding direct image of D

C

-modules. We

then have

DR(N

�

Id

(C)) = R�(P

1

;DR(j

+

N

�

Id

)) by de�nition

= R�(P

1

;DR

an

(j

+

N

�

Id

)) by GAGA.

Following Malgrange (see [14, Chap. IV x 4]) we shall construct on

e

P

1

a complex

denoted

g

DR

mod

(j

+

N

�

Id

) such that

DR

an

(j

+

N

�

Id

) = R�

�

g

DR

mod

(j

+

N

�

Id

):

We shall then compare the two complexes

g

DR

mod

(j

+

N

�

Id

) and �

!

R�

�

DR

an

(N

�

)

which both live on

e

P

1

.

Let A

mod

� �

�

�

�

O

an

C

be the subsheaf of sections with moderate growth along

S

1

. It is equal to O

an

C

outside S

1

. One has

Lemma 1.3. | �

�

A

mod

= O

an

P

1

[�(1)] and R

i

�

�

A

mod

= 0 for i 6= 0.

Sketch of proof. | The sheaf A

mod

admits a resolution by currents with mod-

erate growth along S

1

(the dual of the sheaf of C

1

functions wich are 
at along S

1

)

and by direct image by � one gets the Dolbeaut-Grothendieck complex (of currents

with moderate growth at the origin) on C which is a resolution of O

an

P

1

[�(1)]. 2

It is easy to verify that A

mod

is 
at over �

�1

O

an

P

1

so if we put

g

DR

mod

(j

+

N

�

Id

)

def

= A

mod




�

�1

O

an

P

1

DR

an

(j

+

N

�

Id

)

we have, due to the projection formula

DR

an

(j

+

N

�

Id

) = R�

�

g

DR

mod

(j

+

N

�

Id

):

We want to show that there exists a quasi-isomorphism

g

DR

mod

(j

+

N

�

Id

)

�

�! �

!

R�

�

DR

an

(N

�

):(1.4)

Remark �rst that we have a natural morphism

g

DR

mod

(j

+

N

�

Id

) �! R�

�

R�

�

DR

an

(N

�

):

In order to see that it factorizes through �

!

R�

�

DR

an

(N

�

), it is enough to prove that

if 
 : S

1

� I ,!

e

P

1

denotes the closed inclusion, the restriction 


�1

g

DR

mod

(j

+

N

�

Id

)

is zero. This statement can be reduced by a simple extension argument to the case

where j

+

N

�

is a single meromorphic connection near 1 2 P

1

and we can assume

that it is of rank one as an O

an

P

1

[�(1)]-module.

7



Once the existence of the morphism is proved, the fact that it is a quasi-

isomorphism can also be reduced to the case of rank one meromorphic connections

near 1. Moreover both results can be proved locally on

e

P

1

.

We shall then assume that j

+

N is the meromorphic connection near1 generated

by t

a

for some a 2 C

�

and near 1 the complex

g

DR

mod

(j

+

N

Id

) is the complex

0 �! A

mod

t

�a

e

�t

@

t

t

a

e

t

���������! A

mod

�! 0:

Locally on

e

P

1

, t

a

and t

�a

de�ne local sections of A

mod

so this complex is locally

isomorphic to

0 �! A

mod

e

�t

@

t

e

t

�����! A

mod

�! 0

and there remains to show that this complex is 0 when restricted to S

1

� I and is

equal to the constant sheaf (in degree 0) on I. These properties are clearly satis�ed

by Ker e

�t

@

t

e

t

: A

mod

!A

mod

so the proof is now reduced to the following

Lemma 1.5. | The map e

�t

@

t

e

t

: A

mod

! A

mod

is onto.

The proof of this lemma can be done exactly as in [14, Appendice 1 p. 211] and

is analogous to lemma 3.8, Chap. IV in loc. cit. 2

2. The case of isolated singularities

Consider now the following general situation: let S be a complex analytic space

of pure dimension ` equipped with a complex analytic Whitney strati�cation S. Let

g : S ! C be a holomorphic function. One says (see [12]) that g has only isolated

singularities on (S;S) if the restriction of g to each stratum S

�

has only isolated

critical points (in the usual sense, since S

�

is smooth). Such points are the critical

points of g with respect to S.

Proposition 2.1. | Let g has isolated singularities on (S;S) and let F be

any perverse complex on S which is constructible with respect to S. Let c 2 C and

let �

g�c

F be the complex of vanishing cycles of F along the �ber g

�1

(c) (see x 0.9).

Then the perverse complex �

g�c

F is supported on the critical points of g on the �ber

g

�1

(c) and the cohomology of this complex is nonzero only in degree �1 at most.

Proof. | Let x 2 S

�

and assume that x is not a critical point of g

jS

�

. Then

locally around x the map g : (S;S) ! C is homeomorphic to the projection of

the product (g

�1

(g(x));S

jg

�1

(g(x))

) � C to C. This proves that any complex F

constructible with respect to S has no vanishing cycles at x. For any such F and

any c 2 C the complex of vanishing cycles �

g�c

F is then supported on the isolated

critical points of g on g

�1

(c). Now, if moreover F is perverse on S, the complex

�

g�c

F shifted by �1 is perverse on g

�1

(c) (see [7] or [21]) and is supported on

isolated points. This implies that the cohomology of �

g�c

F is nonzero in degree �1

only. 2
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Let us now come back to the original situation. Let X be a compacti�cation

of U (of dimension `) on which f extends as a mapping F : X ! P

1

and let

Y = X � F

�1

(1).

Proposition 2.2. | Assume that U is a�ne, Y is smooth, Y �U is a divisor

and that there exists a complex analytic Whitney strati�cation Y of Y such that

1. U

an

is a union of strata and DR

an

(M) is constructible with respect to Y

jU

an

;

2. F has isolated singularities on (Y;Y).

Then DR(M

f

(U)) has nonzero cohomology in degree ` at most.

Proof. | Remark �rst that if t is su�ciently general, we have

i

�1

t

Rf

�

DR

an

(M) = Rf

�

i

�1

f

�1

(t)

DR

an

(M)

where i

t

and i

f

�1

(t)

are the inclusions ftg ,! C and f

�1

(t) ,! U

an

. Consequently,

for t general enough, the relative cohomologyH

k

(U

an

; f

�1

(t); DR

an

(M)) is equal to

the relative cohomology H

k

(C; t;Rf

�

DR

an

(M)) and is also equal, by theorem 1.1

to H

k

(DR(M

f

(U))) since U is a�ne.

Consider the perverse complex P

def

=

p

DR

an

(M) = DR

an

(M)[`]. We want to

show that H

k

(U

an

; f

�1

(t);P) = 0 for k 6= 0. Consider the perverse cohomology

sheaves

p

R

m

f

�

P on C. Since f is a�ne we have

p

R

m

f

�

P = 0 for m > 0 (see [10,

Thm 10.3.17]). We shall prove that

p

R

m

f

�

P are local systems for m < 0. Let

� : U ,! Y be the inclusion. Then R�

�

P is perverse on Y and is constructible

with respect to Y. Let c 2 C and consider the vanishing cycle functor �

F�c

on

Y and �

��c

on C, where � denotes the identity function on C. Put

p

� = �[�1].

Then these functors commute with the proper direct image RF

�

and also with the

perverse cohomology ([7]). Hence we have

p

�

��c

p

R

m

f

�

P =

p

�

��c

p

R

m

F

�

(R�

�

P)

=

p

R

m

F

�

(

p

�

F�c

R�

�

P):

By the previous proposition

p

�

F�c

R�

�

P is a perverse sheaf supported on points and

its direct image has perverse cohomology in degree 0 only. Thus

p

R

m

f

�

P has no

vanishing cycle at any c 2 C for m < 0, so is a local system on C, i.e. a constant

sheaf, up to a shift by 1.

Because a constant sheaf has no nonzero relative hypercohomology, we see by an

easy induction that

H

k

(U; f

�1

(t);P) = H

k

(C; ftg;F)

where F is the perverse sheaf

p

R

0

f

�

P. The result follows now from

Lemma 2.3. | Let F be any perverse sheaf on C. Then for t general enough

(i.e. not in the singular set � of F), we have H

k

(C; ftg;F) = 0 for k 6= 0.

9



Proof. | We know that H

k

(C;F) = 0 for k > 0 and k � �2 because C is

a�ne (see e.g. [10, Thm 10.3.8]). Moreover we have H

k

(ftg;F) = 0 for k 6= �1 if

t 62 �. Hence we have H

k

(C; ftg;F) = 0 for k 6= 0;�1.

Assume that � is nonempty (otherwise the result is clear) and let � : C�� ,! C

be the inclusion. Then �

�1

F = L[1] where L is a local system on C � �, and

H

�1

(C; �

!

�

�1

F) = 0, i.e. H

0

(C; �

!

L) = 0, because � is nonempty.

Let us now prove that H

�1

(C; ftg;F) = 0. Let � 2 H

�1

(C;F) be such that

its image in H

�1

(i

�1

t

F) is zero. Let V be a small neighbourhood of c 2 �. We may

assume that t 2 V. Then the map H

�1

(V;F) ! H

�1

(i

�1

t

F) is equal to the map

H

�1

(i

�1

c

F) !

p

 

��c

F , with

p

 =  [�1]. But F being perverse, we have an exact

sequence of vector spaces

0!H

�1

(i

�1

c

F) �!

p

 

��c

F �!

p

�

��c

F �! H

0

(i

�1

c

F)! 0:

We deduce from this that the image of � in H

�1

(V;F) is zero, and applying this to

all c 2 � we obtain that � is in the image ofH

�1

(C; �

!

�

�1

F)!H

�1

(C;F), which

is zero by the previous argument. 2

3. The case of generic monodromy

Let Z be a smooth partial compacti�cation of U and let j : U ,! Z be the

open inclusion. A holonomic D

U

-module admits many extensions as a holonomic

D

Z

-module. One is denoted j

+

N , another is j

y

N

def

= D

X

j

+

D

U

N (see x 0.4) where

D

X

(resp. D

U

) is the duality functor for holonomic D

X

or D

U

-modules (see x 0.3).

One has a natural morphism:

j

y

N �! j

+

N :

Proposition 3.1. | Assume that U is a�ne of dimension ` and let M be a

holonomic D

U

-module. Assume that there exists a smooth compacti�cation X of U

satisfying the following properties:

1. f extends to F : X ! P

1

;

2. let Y = X � F

�1

(1) and j : U ,! Y be the inclusion; then the natural

morphism j

y

M! j

+

M is an isomorphism.

Then DR(M

f

(U)) has cohomology in degree ` at most.

Proof. | Let � : U ,! X be the inclusion. It is enough to prove that the mor-

phism �

y

M

f

! �

+

M

f

is an isomorphism, or equivalently that the dual D

X

(�

+

M)

is equal to �

+

(D

U

M

f

) (it is a priori equal to �

y

(D

U

M

f

)). Indeed, if this is the

case, and because U is a�ne, one has

R�(X

an

;

p

DR

an

(�

+

M

f

)) = R�(X;

p

DR(�

+

M

f

)) (by GAGA)

=

p

DR(M

f

(U))

10



so this complex has nonzero cohomology in degree � 0 at most. The same is true

(for the same reasons) for the complex

p

DR(D

U

M

f

(U)) = R�(X;

p

DR(�

+

D

U

M

f

))

= R�(X;

p

DR(D

X

�

+

M

f

)) (by assumption)

= R�(X;

p

DR

an

(D

X

�

+

M

f

)) (by GAGA)

= R�(X;D

p

DR

an

(�

+

M

f

)) by the local duality theorem

= DR�(X;

p

DR

an

(�

+

M

f

)) by Poincar�e-Verdier duality

where D is the Verdier duality for constructible complexes. We conclude that

R�(X;

p

DR

an

(�

+

M

f

)) has nonzero cohomology in degree � 0 at most, and putting

all together, R�(X;DR

an

(�

+

M

f

)) has nonzero cohomology in degree ` at most.

Let us now prove that the dual D

X

�

+

M

f

is equal to �

+

D

U

M

f

. Remark �rst

that for a holonomic D

U

-module, we have D

U

(M

f

) = (D

U

M)

�f

: indeed, choose a

resolution of M by left D

U

-modules isomorphic to D

p

U

; we get a resolution of M

f

by twisting the left structure of each term by e

f

and the resulting modules remain

free; hence Ext

`

D

U

(M

f

;D

U

) = Ext

`

D

U

(M;D

U

)
 e

f

as a right D

U

-module, and going

from right to left by adjunction, we get the result. Let M

0

= j

+

M = j

y

M, which

is a regular holonomic D

Y

-module. We have

M

0

F

= (j

+

M)

F

= j

+

(M

f

)

= (j

y

M)

F

= j

y

(M

f

) (previous remark):

Let �

0

: Y ,! X be the open inclusion. Because of hypothesis (2), it is enough

to prove that D

X

�

0

+

M

0

F

= �

0

+

D

Y

M

0

F

because �

0

+

M

0

F

= �

+

M

f

and D

Y

M

0

F

=

D

Y

j

y

M

f

= j

+

D

U

M

f

. Moreover, we may assume that M

0

is a single holonomic

D

Y

-module since �

0

+

, D

X

and D

Y

preserve duality. From the characteristic property

of �

0

+

(see x 0.4) we have a natural morphism

D

X

�

0

+

M

0

F

�! �

0

+

D

Y

M

0

F

(3.2)

the kernel and cokernel of which are supported on F

�1

(1).

Lemma 3.3. | Every submodule of �

0

+

M

0

F

is of the form �

0

+

N

F

where N is a

D

Y

-submodule of M

0

.

Proof. | This lemma is a direct consequence of [4, prop. 1]. First, remark

that if N exists, it is unique, because it is equal to the restriction of the submodule

to Y twisted by e

�F

. Thus the assertion is local on X. Let h = 1=F . It is proved

in loc. cit. that for each local section m of �

0

+

M

0

there exists a functional equation

me

1=h

h

s

= Pme

1=h

h

s+1

where P is a local section of D

X

[s] (in this local situation we use analytic di�erential

operators). The submodule that we consider admits a local generator of the form

11



me

1=h

because it is holonomic, i.e. it is equal to the submodule D

X

� me

1=h

of

�

0

+

M

0

F

. Specializing the functional equation to s = �k, k 2 N, one shows that,

for every such k, (1=h)

k

m is contained in this module, hence it is also equal to

(D

X

�m)[1=h]e

1=h

. 2

From this lemma we also deduce that �

0

+

M

0

F

cannot have a nonzero quotient

supported by F

�1

(1) (such a quotient is also of the form �

0

+

N

0

F

where N

0

is some

quotient of M

0

). By taking duals, we see that the kernel of (3.2) is 0. Because we

have D

Y

M

0

F

= (D

Y

M

0

)

�F

, we conclude that (3.2) is onto by the same argument.

2

Remark. | The assumption in 3.1 that X is smooth was made only to simplify

the argument. In fact, if X is a projective compacti�cation of U and i : X ,! P

N

is some embedding, then one can de�ne the functors (i � j)

y

and (i � j)

+

. The

condition that (i � j)

y

M ! (i � j)

+

M is an isomorphism is independent of the

choice of the embedding and, because M is regular, is equivalent to the fact that

j

!

DR

an

(M)! Rj

�

DR

an

(M) is a quasi-isomorphism.

4. Applications to arrangements of hyperplanes

We shall use the notations of [1]: let V be a complex a�ne space of dimension

`, G = fA

1

; : : : ; A

p

g be an arrangement of hyperplane. We make no assumption of

general position. Let N(G) be the union of hyperplanes in G and U = M(G) =

V �N(G). Let f be a polynomial on V . It induces a regular function f on the a�ne

open set U . Let � = f�

1

; : : : ; �

p

g be a set of nonzero complex numbers and let L

�

be the local system on U with monodromy �

i

around A

i

. Then M = O

U




C

L

�

is a regular holonomic D

U

-module and its analytic de Rham complex reduces to

the local system L

�

. The algebraic de Rham complex DR(M

f

(U)) is exactly the

complex denoted (


�

(�G);r

f

) in [1].

The assumption of general position for G is only needed for proving the equality

between this complex and the corresponding logarithmic one. Because the latter

will not be considered here, we shall not make this assumption in what follows.

A conjecture of [1]. | Now, theorem 1.1 is exactly the conjecture in [1], for

all cohomology groups, without any assumption of general position for G or of G-

transversality for f .

The case where f is G-transverse. | We shall now prove as a consequence of

proposition 2.2 an analogue of [1, thm 10.3-(3)]

Proposition 4.1. | Assume that f is G-transverse. Then DR(M

f

(U)) has

cohomology in degree ` at most.
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Proof. | Recall that f is G-transverse means that for each positive dimensional

facet of the arrangment G (including V itself), the restriction of the homogeneous

part of maximal degree f

d

of f =

P

d

k=0

f

k

to the direction of this facet has no

critical point outside the origin. Consider now the subset G � P

`

� C de�ned by

the equation

f

d

(x) + zf

d�1

(x) + � � �+ z

d

f

0

(x)� tz

d

= 0

where (x

1

; : : : ; x

`

; z) are the homogeneous coordinates on P

`

and t is the coordinate

on C, and let F : G ! C be the projection. The composition with the inclusion

V � G (via z 6= 0) gives back f . The following properties are now easy to prove

when f is G-transverse (see for instance [5, x 5]):

1. G is smooth, as well as the closure in G of every facet of the arrangement and

G� U is a hypersurface;

2. the restriction of F to any such closure has only isolated singularities.

The strati�cation naturally associated with this arrangement in G is a Whitney

strati�cation, since the closure of every facet is a smooth submanifod of G. We can

apply proposition 2.2 to conclude. 2

The case of generic monodromy. | Let A

1

the hyperplane at in�nity in P

`

and put �

1

= 1=�

1

� � ��

p

. Let I = f1; : : : ; p;1g. It is known that if the following

condition (H) on � is satis�ed, then DR(M(U)) or equivalently R�(U

an

;L

�

) has

cohomology in degree ` only (see [11] for instance):

8 J � I such that

\

i2J

A

i

6= ? one has

Y

i2J

�

i

6= 1:(H)

Moreover there exists a � satisfying (H) if and only if the arangement does not come

from an arangement in dimension less than `. We shall now prove an analogous result

for M

f

. We introduce the following stronger condition on �:

8

>

>

>

>

>

<

>

>

>

>

>

:

8 J � f1; : : : ; pg such that

\

i2J

A

i

6= ? one has

Q

i2J

�

i

6= 1

8 J � I containing 1 such that

\

i2J

A

i

6= ?; 8 � 2 Z

J

one has

Q

i2J

�

�

i

i

6= 1

(H

0

)

As above, there exists such a � if and only if the arrangement does not come from a

lower dimensional arrangement. In practice it will be enough to satisfy the second

part of (H

0

) for a �nite set of �.

Proposition 4.2. | Assume that � satis�es (H

0

) and let f be any polynomial

on V . Then DR(M

f

(U)) has cohomology in degree ` at most.
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Proof. | Let

e

P

`

! P

`

be the proper modi�cation obtained by blowing up

successively the facets of increasing dimension. The inverse image of [

i2I

A

i

is

then a divisor with normal crossings

f

D (see [11]). Let � : X !

e

P

`

be a proper

modi�cation on which f extends as F : X ! P

1

and for which the inverse image

of [

i2I

A

i

and F

�1

(1) form a divisor with normal crossings. We can assume that �

is an isomorphism over the open set

e

V of

e

P

`

which lies over V . We can view U as

an open subset of X. In order to apply proposition 3.1 to this situation, we need to

compute the monodromy of L

�

around the components of Y �U (using the notation

of proposition 3.1). Indeed, because Y � U is a divisor with normal crossings, the

morphism j

!

L

�

! Rj

�

L

�

is an isomorphism if and only if the monodromy of L

�

around each component of Y �U is not equal to 1. Using xx 0.6 and 0.7 we conclude

that j

y

M! j

+

M is an isomorphism under this condition, so the hypothesis (2) of

3.1 is satis�ed for M.

If the component intersects the inverse image of V , the computation is the same

as the one in [11] and the �rst part of (H

0

) implies that the monodromy is not equal

to 1.

If the component lies over A

1

, the monodromy around it can be computed along

a curve transverse to it. One can then compute it along the image of this curve in

e

P

`

and this is a local problem around a point on the divisor

f

D. The second part of

(H

0

) implies that the monodromy cannot be 1. 2

5. A local comparison theorem

In this section, X denotes a complex analytic manifold and F : X ! C is an

analytic function. We are interested in the beahviour near the divisor F

�1

(0), so

to compare with the statements in section 1, one has to replace F with 1=F . Let

X

�

= X � F

�1

(0). Now O

X

and D

X

will denote the sheaves of analytic functions

and analytic di�erential operators on X and DR will denote the analytic de Rham

functor. For a holonomic D

X

-module M we shall denote M[F

�1

] the localized

module along F

�1

(0) andM

F

=M[F

�1

]
 e

1=F

. These are known to be holonomic

when M is so. We denote � :

e

C ! C the oriented real blowing-up of C at the

origin (polar coordinates) and

f

X the �ber product X �

C

e

C. We de�ne I and

f

X

I

as

in the proof of theorem 1.1 (e

�1=t

should be decreasing in the directions belonging

to I). We consider also the inclusions � : X

�

! X, � : X

�

,!

f

X

I

, � :

f

X

I

,!

f

X and

the projection � :

f

X ! X.

Theorem 5.1. | Let M be a regular holonomic D

X

-module. Then one has

a quasi-isomorphism DR(M

F

)

�

�! R�

�

�

!

R�

�

DR(M

jX

�

).

We shall deduce from this

Corollary 5.2. | The cone of the natural morphism

DR(M

F

) �! R�

�

DR(M

jX

�

) = DR(M[F

�!

])

and the complex of nearby cycles  

F

DR(M[F

�1

]) have the same characteristic func-

tion.
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Proof of theorem 5.1. | We may �rst assume that F : X ! C is isomorphic

to a projection Y �C! C: in order to do this we replace X with X �C,

f

X with

X �

e

C and M by the direct image of it by the graph embedding X ,! X �C. For

any x 2 Y there exists �(x) > 0 such that, for � < �(x), the direct image F

x;�+

M

F

has coherent cohomologies and its germ at 0 does not depend on �, where F

x;�

is

the restriction of F to B(x; �)�D

�(�)

and B(x; �) is the open ball in Y centered at

x and of radius �, D

�(�)

is the open disk of radius �(�) � �. This is a consequence

of the coherence of the local Gauss-Manin system for M ([23, thm 9.4.1]).

We shall now consider the following diagram

f

X = Y �

e

C

�

���! Y �C= X

e

F

?

?

?

?

y

?

?

?

?

y

F

e

C

$

���! C

Let A

mod

e

X

=

e

F

�1

A

mod




(

e

F�$)

�1

O

C

�

�1

O

X

. Because A

mod

is (faithfully) 
at over

$

�1

O

C

, one has

R�

�

A

mod

e

X

= R�

�

0

@

e

F

�1

A

mod




(

e

F�$)

�1

O

C

�

�1

O

X

1

A

= R�

�

0

@

e

F

�1

A

mod

L




(

e

F�$)

�1

O

C

�

�1

O

X

1

A

(
atness)

=

�

R�

�

e

F

�1

A

mod

�

L




F

�1

O

C

O

X

(projection formula)

=

�

F

�1

R$

�

A

mod

�

L




F

�1

O

C

O

X

(see [10, prop 2.6.7])

= O

X

[�(Y � f0g)]:

De�ne

g

DR

mod

(M

F

) = A

mod

e

X




�

�1

O

X

�

�1

DRM

F

. Then by the same argument

one has DR(M

F

) = R�

�

g

DR

mod

(M

F

). We want to show �rst that there exists a

morphism

g

DR

mod

(M

F

) �! �

!

R�

�

DR(M

jX

�

):

It is enough to show that 


�1

g

DR

mod

(M

F

) = 0, where 
 :

f

X �

f

X

I

,!

f

X is the

inclusion. This is a local problem on

f

X, so one can prove it as in section 1, using

the coherence of the local Gauss-Manin system. One has to verify that

g

DR

mod

(F

x;�+

M

F

) = R

e

F

x;��

g

DR

mod

(M

F

)

which follows from the fact that the same is true for DR. In the same way one

proves that this morphism is an isomorphism. 2
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Proof of the corollary. | As above we �rst reduce to the case where F is the

projection of a product Y � C. Denote @

f

X the restriction of

f

X over S

1

= @

e

C.

Let

e

| : X

�

,!

f

X and 
 :

f

X �

f

X

I

,!

f

X be the natural inclusions. The cone in the

corollary is quasi-isomorphic to R�

�

of the cone of

�

!

R�

�

F ���! R�

�

R�

�

F

which is quasi-isomorphic to R


�




�1

e

F , denoting

e

F = R

e

|

�

F and F = DR(M

jX

�

).

The computation is a local problem, so one can prove it by taking local direct

images by F

x;�

, which is the restriction of F to B(x; �)�D

�(�)

. One is then reduced

to prove the result in dimension one, and by an easy induction to the case where F

is a local system, where the result is easy. 2
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