VANISHING CYCLES AND HERMITIAN DUALITY

by
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Abstract. We show the compatibility between the moderate or nearby cycle functor for regular
holonomic D-modules, as defined by Beilinson, Kashiwara and Malgrange, and the Hermitian
duality functor, as defined by Kashiwara.

Résumé (Les cycles évanescents et la dualité hermitienne). Nous montrons la compati-
bilité entre le foncteur des cycles proches ou évanescents modérés, tel qu’il est défini par Beilinson,
Kashiwara et Malgrange, et le foncteur de dualité hermitienne, tel qu’il est défini par Kashiwara,
tout ceci dans la catégorie des D-modules holonomes réguliers.

Introduction

The Hermitian dual of a D-module was introduced by M. Kashiwara in [9], who showed that
the Hermitian dual of a regular holonomic D-module is also regular holonomic (hence coherent).
In this paper we show a compatibility result between this functor and the nearby or vanishing
cycle functor relative to a holomorphic function for such modules. The latter may be defined
using the V-filtration (introduced by Beilinson, Kashiwara and Malgrange).

Moreover we make the link with asymptotic expansions of integrals along fibres of the func-
tion. This gives a generalization of previous work of D. Barlet on Hermitian duality for the
local Gauss-Manin system of an analytic function. In particular this gives a simpler approach
to the “tangling phenomenon” described by D. Barlet in [3].

Acknowledgements. This work arose from many discussions with D. Barlet, whom I thank.

1. Hermitian duality

l.a. Notation. Let (X, Ox) be a complex analytic manifold of dimension n, (Xgr, Axg) be the
underlying real analytic manifold and let (X, Ox = Ox) be the complex conjugate manifold.
Denote by Dx (resp. D) the sheaf of holomorphic linear differential operators on X (resp. X).

Denote by~ : f + f the R-isomorphism Ox — Ox and Dx — Dx. It induces a trivial
conjugation functor, sending Dx-modules to Dy-modules; if M is a Dx-module, we denote by
M the R-vector space M equipped with the action of Dy defined as follows: denote by 7 the
local section m of M viewed as a local section of M; then P -m = Pm.
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Let Dby, (also denoted by ®by for short) be the sheaf of distributions on Xg. It acts
on the sheaf C'"*°-forms ¢ with compact support of maximal degree, which is a right Dy and
Dy-module. Then Dby is a left Dy and Dy-module by the formula (PQu)(¢) = u(p - PQ).
The sheaf €x,, = @bﬁ?") of currents of maximal degree is a right Dx and Dx-module obtained
from Dbx by “going from left to right”.

It will be convenient in the following to denote by O 5 (resp. Dy x) the sheaf Ox ®c Ox

(resp. Dx ®c Dx) and to view Dby (resp. @bg?’n)) as a left (resp. right) Dy g-module.
Let Z be a reduced divisor in X and Ox[+Z] the sheaf of meromorphic functions on X with
poles along Z. There is an exact sequence of left Dy ¢-modules

0 — Dby, — Dby — DOFY? — 0
where Dby ; denotes the sheaf of distributions supported on Zg and (see e.g. {10, Chap. VII])
D7 = Ox[xZ] ® Dby = image[Dbx — 7. Dbyx_z]
Ox

denotes the subsheaf of j, Dby 7 (where j : X — 7 < X denotes the open inclusion) of
distributions on X — Z with moderate growth along Z.

1.b. The Hermitian duality functor [9]. Denote by Cx the Hermitian duality functor(®).
Recall that C'x is a contravariant functor from the derived category D~ (Dx) to the category
DT (D) defined as

Cx(M.) = R%Ompx (M., @hx)

It restricts as a functor from the full subcategory D? (Dx) of bounded complexes with regular
holonomic cohomology to D? (D) and is equal to the functor Homp, (+, Dby ) on the category
of regular holonomic Dx-modules (see [9], see also [5, Chap.VII]), defining there an anti-
equivalence of categories between Mody,(Dx) and Mody, (D), and between D! (D) and
D! (Dx), Cs being a quasi-inverse functor. On D! (Dx) we have

H'CxM® = CxH M.
Last, recall (see [9]) that the conjugate of a regular holonomic right Dx-module M is the
right Dx-module defined as

M = Torfy(ﬂ,ﬁbg?’o))
and satisfies DR M = DR M. The conjugate of a left module is then obtained in the usual

way.
For Z as above, we will denote by C%°4Z the functor defined as

CRdZ(M) = Cx(M)[*Z] = Homp, (M, Db3°47).

We will call C'x (M) the Hermitian dual of M.
We may also define the Hermitian dual of a right regular holonomic D-module by using the
sheaf Z)bg?’n) of currents instead of the sheaf Dby of distributions.

Remark 1.1 (Extension to the holonomic case). Kashiwara conjecured (see [9, Rem.3.5]) that
the previous results remain true for holonomic modules. This is proved in [14]| when the
support of M has dimension 1 and in some cases when it has dimension 2. If this conjecture is
true, Theorem 3.8 also applies to holonomic modules. It would then be interesting to extend

(1t is called improperly the “conjugation functor” in [5].
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Theorem 2.1 below to the nonregular holonomic case in order to get a holonomic analogue of
Theorem 4.25.

1.c. Sesquilinear forms on Dy-modules. Let M’, M" be two left Dx-modules. A sesquilin-
ear form will be a Dy %-linear morphism

SMaM' — Dbx.
C
The datum of S is equivalent to the datum of a D-linear morphism
LS : W — %OmDX(MICDbx).

We say that S is nondegenerate if this morphism is an isomorphism.

When M’ = M" = M is regular holonomic, this is equivalent to saying that Lg : M —
Cx M is injective (or surjective), because M and C'x M have the same characteristic variety
(as their de Rham complexes are Verdier dual one to each other). We say that S is +-Hermitian
if Cx(Ls) = £Lg, in other words if S(m, ) = £5(u, m) in Dby.

1.d. Direct and inverse image by a closed immersion of codimension one and Her-
mitian duality. Let Z be a reduced divisor in X and i : Z < X (resp. 7: Z — X) denote
the inclusion. Let j,j* be the localization functor along Z and denote by j;j* its adjoint by
duality, i.e. jij* = Dj,jTD, where D denotes the duality functor on holonomic Dx-modules
given by DM = Homp, (Q%, Ext} (M, Dx)), with n = dim X.

We also consider the two functors 7,4 and i,i7. Recall that, for a holonomic Dx-module
M., we have the following two dual exact sequences

0 —— K (irit M) M 208 i M HO (i M) —— 0

0 —— H(i it M) —— j1i™ M

H (i, it M) ——0
coloc

Proposition 1.2. There is a natural isomorphism of contravariant functors from Mod;,(Dx) to
MOdh,« (Dy)

C?Odz ~ CX o ]T]+
under which Cx (colocy) corresponds to locey -

Proof. The first part is proved in [14, Proposition 11.3.2.2]. We now want to prove that the
following diagram

C'x(coloc ~
O () M) e my T paz (g
mod Z
locor JCX (coloc )
(M)

commutes. Remark first that it clearly commutes on X — Z. Put N' = Cx(M). The upper
part of the diagram gives a morphism ¢ : N' — N[*Z] which induces the identity on X — Z.
It thus factorizes uniquely through loc : N'— N[*Z] to give a morphism v : N[xZ] — N [xZ]
equal to Id on X — Z. It follows that ¢y = Id (indeed, % is injective because N[*Z] has no
torsion supported on Z, and therefore is onto as A[«Z] is holonomic). O
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Corollary 1.3. The nondegenerate pairing
Jiit M 2 CRedZ(M) — Dby
induces a nondgenerate pairing
H (1,77 Cx(M)) 3 H* (i it M) — Dby
and hence an isomorphism
H @, Cx (M) == OxH (i it M)

for k=0,1. O

Corollary 1.4. Assume that Z is smooth. Then there is a natural isomorphism of functors
(k=0,1)

CyoHF (") ~HF@T) o CO.
Proof. Remark first that there is a natural isomorphism of functors
CXOi+ Zz_'_OCZ.

Indeed, denoting by i the direct image of D, z-modules, recall that one has Dby 7z = i Dbz:
indeed, put Dx, 7 ®c Dx, 7 = Dz, xz. x and consider the natural morphism of right Dy -
modules

QtZ D® (DZ<—X77<—Y) — QtX
Z.Z

such that, for any local section p of €4, the image of p®1 evaluated on any function ¢ € C>*(X)
is equal to (¢|); this morphism is an isomorphism, as can be seen from a local computation;
going from right to left, one gets the assertion.

It follows that

Homp, (i M, Dbx) = RHomp, (14 M, Dbx z)
L L
= Ri. RHom-1p, (Dxc7 ® M, Dy 5.7 & Dbz)
Dy ’ D,
. L L L
— Ri,Dx._ 5 ® RHomi-1p, (DXEZ % M, Dy ® @bz)
D7 Dz Dz
L
= Ri,Dx,_ 7 @ RHomp,(M,Db;) (Kashiwara’s equivalence)
Dz
- z+OZM.
As iy and 7, are exact functors, we obtain from Corollary 1.3 an isomorphism
1.0z o HF (M) ~ 1, H"(7") 0 O,

and thus the result, as 7, is an equivalence. O
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2. Regular holonomic distributions

2.a. Regular holonomic distributions [9], [5, chap. VII|. Let Q be an open set in X. A
distribution u € ©b6(Q) is regular holonomic if the sub-Dg-module D, - u (or equivalently the
sub-Dg-module Dg-u, cf. |9, Proposition 4], |5, Proposition 7.4.2]) of Dbg, is regular holonomic.
The notion is local, i.e. there exists a sheaf RH®bx such that the set of regular holonomic
distributions on € is ['(Q2, RH ®by).

Notice that RH®by is a left Dx and Dy-module. It will be convenient to consider the
subsheaf C¥-RH®bx of Dby whose local sections are finite combinations of regular holonomic
distributions with C'* coefficients.

Analogous results hold for RHDb%°?#. Notice that we have

RHD6R = O« [xZ] ® RHDby = image [RHDby — Dbyx_z].
X
The following is a slight generalization of [1] and [4, Theorem 11].

Theorem 2.1. Let X = Z xC have dimension n+1 and let u be a regular holonomic distribution
on the open set Q@ x D of X. Let ¢ € D™™(Q) be a C* (n,n)-form with compact support. Then
(u, o) € Db(D) is in I'(D,C*RHDbc).

Proof. According to Remark 2.5 and Proposition 2.6 below, it is identical to the one of loc. cit.,
using the existence of a good Bernstein relation (cf. for instance [5, Theorem 8.8.16] and the

references given there) in order to prove the existence of a good operator as in [4, Proposition
8]. O

2.b. Regular holonomic distributions in dimension 1. Assume now that X = C and
7 = {0}. Let t be a coordinate on C. For a € C such that —1 < Rea < 0 and p € Z, put

- os P
Ugp = p!
0 if p<O.

eLL.(C) ifp>0

loc

then it is easy to show that the family w, , satisfies
(2.2) (Ot + @) ugp = (Ot + @)Uy = Ugp-1.

This implies in particular that u,, € RH®Dbc .
Let RHDbE}'® denote the image of RHDbc in DbEy " = Db o[L/t] = Dbco[l/7]. We
then have

RHDbEG® = RHDbc[1/t] = RHDbc,[1/1].
It is known (see |5, chap. VII, §7]) that

(2.3) RHDbERY = > S c{tt™"] C{BHE] - tlay

—1<Rea<0 p

where u denotes the image of the distribution germ « in @bré‘f)odo.

Thus, (2.2) implies that

RHDOEG = Y Y DcoDey - liay

—1<Rea<0 p
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from which we deduce that

RHDbcy = Y, Y Dco Doy tap+ Cloh,d) -0

—1<Rea<0 p

(2.4) = Z Z Dco - Dey gy

—1<Rea<0 p

because the Dirac distribution ¢ can be written as

—2imd = 9,0 loglt].

Remarks 2.5

(1) Let v € RH®bcy and put M = Deou C RHDbey. Denote by u the image of
w in DbEG'’. Then the regular holonomic module Mt '] is naturally embedded in
RH DbES, the image of w in M[¢t™'] is @ via this embedding and M([t™!] = De,o[t']a,
so Deou is identified with the quotient of M by its torsion supported at the origin.

(2) Using Borel’s lemma, one can show that C*RH Z)b‘g:’odo is equal to the subspace of germs
at of C'*° functions on C* having an infinitely termwise differentiable asymptotic expan-

sion at 0, in the sense of [4], the exponents of which belong to a finite union of lattices
in C.

Mellin transform. We also have a characterization of C*RH Db in terms of Mellin transform
(|4]). Let u € Dbc,y be a germ of distribution, and denote also by u a representative of this
germ in I'(D, ®bc) where D is a small disc centered at the origin. Let x € C°(D) such that
X = 1 near 0 and having a sufficiently small support. Then, for any k', k" € Z, define

THE(s) = (pu, tT [t** dt A dF)

which are holomorphic on Re(s) > 0. These functions depend on y up to the addition of an
entire function. So the classes of 7" ") modulo O(C) only depend on the germ w. Moreover,

these functions can be recovered from the functions J\*” and J\"* for k € N, because, if

for instance k' > k", we clearly have ju(k,’k”)(s) = ju(k,*kn’o)(s + k). Moreover, THEHED only

depends on the image of « in Z)bré‘?odo.

Proposition 2.6 ([4, Theorem 4]). Let u € Dbcy. Then u € C*RH Dby if and only if there
exists a finite set R C C such that for all k € N the functions ju(k’o), ju(o’k), which are holo-
morphic on Re(s) > 0, extend to meromorphic functions on C with poles at most in R + Z,
and satisfy

(3R >0), (VN >0), (V£>0), (V¢ >0),
s+ /2| [k] sup (|70 (s)

for Re(s+k/2+ N) > —1 and |s + k/2| > 0.

ju(o,k)(s)‘) S C’(u, N, f, EI)RRQ(S—HC/Z)

)

Proof. Remark first that u € RHDbc if and only if its image in Db&% * belongs to RHDbE}'".
Moreover, we may fix a representative for u and consider yu to define ju(k’o)(s) or ju(o’k). The
condition in the proposition is easily seen to be independent of these choices. The result is then
a direct consequence of [4, Theorem 4]. O



VANISHING CYCLES AND HERMITIAN DUALITY 7

3. Hermitian duality and moderate nearby/vanishing cycles

We will show in this section the compatibility between these functors. We will first recall
briefly the construction of moderate and vanishing cycles for holonomic D-modules, in order to
be able to give a detailed account of the compatibility.

3.a. Notation. We fix a total ordering on C, denoted by <, which is assumed to satisfy (a),
(b), (c) below:
(a
(b
(c

In the following, we will choose the ordering on C induced by lexicographically ordering the

it induces the usual ordering on R,
foraceR,{z€C|z<a}={z€C|Re(z) <a},
fora e Rand 2,2/ € C, 2 <72 < z+a <7 +a.

triples (Re(a), |[Im(a)|,Im(a)). With such an ordering we have
{aeC|-1<a<0} = {a€C|—-1<Rea<0}.

For a complex number 7, denote by [y] the largest integer less than or equal to v, using the
fixed total ordering on C.

3.b. Review on the Malgrange-Kashiwara filtration. Let Z be a complex analytic man-
ifold of dimension n, put X = Z x C, let t denote the coordinate on C or the projection X — C
and consider the inclusion Z = Z x {0} — X.

For a holonomic Dx-module M, let V,(M) be the Malgrange-Kashiwara filtration on M
relative to Z x {0} (see e.g. [13]): this is a filtration indexed by the union of a (locally on Z)
finite number of lattices 0 +Z C C (0 € § and we may choose the finite set § C C contained
in Re(os) € [0,1]), using the ordering specified above. For any a € C, the graded module
grl’ M M /VoaM is Dz-holonomic (and moreover regular when M is so) and comes
equipped with a nilpotent endomorphism N, induced by the action of —(9;t + «).

We have isomorphisms

(3.1) t: VoM —V, M (a<0)
and
(3.2) Ot gre M ——gri M (a>-1).

The complex it M is quasi-isomorphic to the complex
gry M L> gr’, M

(where the right term has degree 0) and if M = j;j* M it is also isomorphic to the complex
ar¥, M t—8t> gr’, M.

Similarly, the complex i M is quasi-isomorphic to the complex
gr’, M i> gry M

(where the left term has degree 0) and if M = j,jTM it is also isomorphic to the complex
gr‘_fl M t—at> glr‘_/1 M.

In particular, if M = j,j T M, we will identify

(3.3) HO(TM)  with  Ker[td, : gr¥s M — gr¥, M|
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and, if M = j;j* M,
(3.4) HO(iT M) with  Coker[td; : gr¥y M — gr¥, M].

Analogous results hold for holonomic Dy-modules. We still denote by V, the Malgrange-
Kashiwara filtration and by N the nilpotent endomorphism induced by — (95 + «) on grY .

3.c. Review on moderate nearby and vanishing cycles (see e.g. [13, 15]). Let M
be a holonomic Dx-module (specializable would be enough, see e.g. [13]). Let a be such that
—1 < a < 0and put A = exp(2ira). For p € N, put M, , = (Mt )P =@?_ Mt ®eqr.
The Dy/c-structure on M, is the direct sum of the Dy/c-structures on each term Mt ']
and the Dx-structure is given by the relation

toh(m R eqr) =[Ot + A)M| ® eqr, + M €ap 1,

with the convention that e, = 0 for k& < 0. Remark that M[t '] is a direct summand of
M_,, for any p > 0 (we may consider that e, plays the role of the multivalued function

t*+t(logt)* /k!).
We have natural morphisms of Dx-modules:

a
p.p+1
Moy ——— Maopti

p p
E Mok X €a,k ” E Ma,k X €a,k

and

b

p+1.p

Mopi1i —— Moy
p

p+1
E Mak & Ca.k ? E Mo k+1 ® Cak-
k=0 k=0

We will denote by N (without index p) any of the endomorphisms
N =ap1pobpp1: Map — May,

sending m ® e,x t0 M @ eqp 1. The inductive (resp. projective) system H(iTM,,) (resp.
HO(i*j1jt Mayp)) where the maps are induced by a, 1 (resp. byi1,p) is stationary locally on
X, and both systems have a common limit isomorphic to gry M: we may identify gr’, M,

with @& _, gr¥ M ® e, x; the natural mappings

grg M— gr‘_fl Moy
(3.5) mo —— éo[—(att + a)[fmo ® ea
and

gr‘_/l Moy —— grx M

p p
(3.6) k@jﬂ my & eap — k@o[—(att +a)]

induce, for p large enough, an isomorphism from gr’ M to Kertd; ~ H°(i'M,,) and from
Coker t0; ~ HO(iTj;j " M,,p) to gri M.

We denote this limit by v,b;f‘fd./\/l and call it the moderate nearby cycle module associated
with M, with eigenvalue A\. We also denote by N the endomorphism induced by the previous
N. Tt corresponds naturally to — (9t +a) via both isomorphisms with gr) M. Notice also that
the inductive system of H' (resp. the projective system of H~') has limit 0.
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The construction of the moderate vanishing cycle module ¢}"?(M) is achieved by considering

the inductive sytem of complexes M — M_; , (where the right term has degree 0 and the map
is the composition of loc : M — M[t™!] with ag, : M[t™'] — M_;,) instead of the single
module M, ,. The only possible non vanishing limit is also obtained for H%T. It can also be
achieved by considering the projective system of complexes jij*M_1, — M (where the left
term has degree 0 and the map is the composition of j;jb, o and coloc : jijt* M — M) and the
projective limit of H%*. Let us give some precise description. The complex if (M — M_;,)
is the single complex associated to the double complex

JiiTM —— it M, gV M —— gtV (M)
colocl Jcoloc ~ atl ltat
M———M_y, gry M —5 gr’ (M_yp)

which is isomorphic to the complex
gV M — grg Mgt (M _1,) — gr¥ (M _1,)

where the middle term has degree 0. The kernel of the second morphism can be identified with
gr¥y M @ gry’ M via

p
mgo @D ng —— ny D (mg ® 6_170) D kE_Bl(—tat)k_l(—tatmg + tno) (%9 €_1,k

and the H° of this complex is identified to gry M via
gry M M g’y M @ gry M.
The action of 0 @ N on gry M & gr¥,(M ;) induces, via these isomorphisms, the action of
—04t on gry’ M.
Similarly, the complex ¢* (35" M_;, — M) is isomorphic to the single complex associated
with

0,
gtV (M_1,) — gry M

tatl lt

gryl (M_1p) — gryl M

where the middle term has degree 0. Tts H° is naturally isomorphic to grj M and the action
of N on M _;, induces that of —d;t on gry M.
The morphisms can and Var are defined as
can = —0
gy M ey M
Var =t

and can be obtained, via the previous isomorphisms, as coming from the morphisms of com-
plexes

0—— M—Lp jTjJrM_l,p —0

(can) l JId or Nl J

M—M_4, JiitT M1y — M
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M —_— Mfl,p jTj-l_Mfl,p — M
(Var) l lN or Idl J
0—— M_yq, J1iTMoapy ——0

3.d. Compatibility with Hermitian duality. We now assume that M is regular holonomic.
For any a such that —1 < a < 0, consider the function u_,_2, = It (log |t[*)* /k! analogous
to that of §2.b as a function on X. It has moderate growth along Z as well as all its derivatives.
Hence, for any moderate distribution u along Z, the product u_, »,u is well-defined as a
moderate distribution along 7.

Lemma 3.7. The pairing
OX(M)a,nga,p — Dpped?

p p
(Z Mo,k & éa,k) & (Z May & ea,f) L — Z Mok (ma,é)ufa,kJrffp
k=0 =0

k.0
is nondegenerate and induces an isomorphism compatible with N and C%°4Z(N)
Moy + Cx(M)ay — CX* (M)
such that all diagrams
Cx (M) gy ——— C20Z (M, )
o | |2 0p110)
Cx (M) api1 — CRZ (Mg i)
and
Cx (M)ay —— CRZ (M)
bp+1,pT TCE(HOdZ(ap,p-I-I)
Cx (M)aprt —— O (Mo pi1)

commute.

Proof. First, it is easy to see that the morphism 7, , induced by the pairing induces commutative
diagrams as in the lemma. The compatibility of 1,, with N and C2°?Z(N) is thus clear. The
nondegeneracy of the pairing is then proved by induction on p, the case p = 0 being easy. [

Theorem 3.8. There exist natural isomorphisms of functors from Mody, (Dx) to Mody, (D)
oy 1PN o Cx — Czogyd, (A€ C') and %y ¢4 oCx — Czogi?

which satisfy the following properties, putting cx = cﬁ)\ or c?m:

— Cx :OZOCYOOX,'
—cxoN =Cz(N)ocy;
- cfm ocan = Cz(Var) o C?C,l and c?l o Var = Cz(can) o C?{,r

Proof. According to the previous lemma and to Corollary 1.3, the inductive system

(H%TCX (M)ap %Oﬂap,pﬂ)
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is isomorphic, via H%'n,,, to Cz of the projective system (H°(i*j;ij* Map), bpi1,). The first
part of the theorem then follows from the construction of v,bm‘)d recalled in §3.c. The proof for
mod and the other properties also follow from the same arguments. O
3.e. Nearby/vanishing cycles for a sesquilinear form. Let M’ M" be two regular holo-
nomic Dx-modules and let S : M’ ®@c M" — Dby be a sesquilinear pairing.
We will define, for —1 < a < 0, sesquilinear forms

S grl M % gry M" — Dby,

and similarly (for a = 0) ¢1.S, which sat1sfy W

(
AS(Ne, o)
15(Ne, )

)

)

ith obvious notation)
S (s, Ne)

',N'

$15(
(3.9) (Var- . ¢ S(s,cans)
15(s, Vare 1S(

canse,s).

Denote for a while by Lg the Dg-linear morphism M” — Cx M’ induced by S. Consider
YaLs : gry M" — gr¥ Cx M' (and ¢, Ls defined similarly). Its composition with c%/\ (or c_‘fm)
is the linear morphism associated with a sesquilinear form S or ¢;.S. The properties (3.9)
follow then from the properties of cx given by Theorem 3.8.

Remark 3.10. Denote by M, gr¥ (M) the monodromy filtration associated to the nilpotent
endomorphism N, i.e. the increasing filtration such that NM; C Mj_» and for all £ > 0,

et ot M Y
is an isomorphism. Let P gr)’ gr¥ M denote the primitive part
Ker [N“' 2 grpf grl M — gr™, , grh M] .
The pairing 1,5, being compatible with N, induces for any ¢ a pairing
grif gr¥ M’ % gr™ grV M %—€> Db,

and is nondegenerate iff 1, ;S is nondegenerate for any ¢. This is so iff the pairing induced on

the primitive parts ,
E— So(ld®N
(3.11) Pgry grt M'® Pgr)’ grl M” YaeSol )> Dby
C

is nondegenerate, according to the Lefschetz decomposition. Similar results hold for ¢;S.
For ¢ > 0 we will set
Pihr oS py oS o (Id@NY) and Py S Y $1,5 o (Id@NY)
We deduce from Theorem 3.8:

Corollary 3.12. The sesquilinear form S is nondegenerate in a neighbourhood of Z if and only
if all sesquilinear forms Py S (A € C*, £ >0) and P¢y,S (¢ > 0) are nondegenerate.

Proof. According to Remark 3.10, it is enough to show that S is nondegenerate iff all ¢, S and
¢1S are so. Now, Lg is an isomorphism in a neighbourhood of Z if and only if all ¢y Ls and
¢1Lg are isomorphisms: this follows from the fact that a regular holonomic module M is equal
to zero near Z if and only if all its moderate nearby or vanishing cycles vanish on Z. The result
is then a consequence of the definition of ¢S and ¢S and of Theorem 3.8. U
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4. Hermitian duality and asymptotic expansions

We will give in this section a more explicit description of the compatibility morphisms given
in Theorem 3.8, using asymptotic expansions (in the sense of Remark 2.5(2)). The main goal
will be to give a more precise version of Theorem 2.1, taking into account the order with respect
to the Malgrange-Kashiwara filtration.

We begin with some easy results in dimension 1.

4.a. Dimension 1

Regular holonomic distributions and Malgrange-Kashiwara filtration. If u is the germ at 0 € C
of a regular holonomic distribution defined on some open disc D centered at the origin, we
denote by o/(u) the order of u with respect to the Malgrange-Kashiwara filtration of the regular
holonomic module Dpu C Dbp and by '(u) its V,-order in Dyu. Notice that, according to the
strictness property of any morphism between holonomic modules with respect to the Malgrange-
Kashiwara filtration, if v € Dp - u, then o/(v) is equal to the V-order of v when viewed as an
element of Dp - u.
We obtain in this way increasing filtrations

" (RHDbcy) = {u€ RHDbcy | o'(u) <a'}
(RHDbcy) = {u€ RHDbcy | o' (u) <o}
(where < is the fixed total ordering on C) and thus a doubly indexed filtration
Varar(RHDbcy) = V., (RHDbco) NV, (RHDbcy).

Oé”

We then put

gt o RHDboy = Vi o (RHDbe )/ (Vew o + Vir can) (RH Db o).

For A € C*, choose a € C with —1 < a < 0 such that A\ = exp(2ima); put as in §2.b,

- log [t[°)?
Uop = |t| 2(a+1) (0g| | ) and

p!
RHDbco(A) =Y DcoDey - tayp
p>0
We then have
RH @bcp == ©® RH QBC,O(/\)-
\ECH

Proposition4.1. The filtration V, ,(RH®bcy) satisfies the following properties.
(1) tVarar C Vg 1,an, 1€8p. tVs o C Vi o1, with equality if o/ < 0, resp. o' < 0.
(2) atva’,a” - Va’+1,a”7 resp. afva’,a” C Va’,a”+1-
(3) Let u € RHDbgcy. Then u € Vi o iff there exist k', k" € N with
(att + Oél)k,’u, e V<a’,a” and (aﬁ + Oz”)k”lt € Va’7<a”'
(4) We have
Vaar(RHDbco) = > > > Vi(Deo) - Vir(Dey) - tay

—1<a<0 K k"€Z p>0

a+k'<a'
a+kl’§a”
and grLf,,a,,(RH QBC,O) =0 if o — o € 7

(5) For any a € C, (0t — 0t) Voo C Vena + Va<a-
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Proof. The assertion (2) and the first part of (1) follow immediately from the properties of the
Malgrange-Kashiwara filtration on holonomic modules.

Let us prove the second part of (1). Let u € V14 (RH®Dbcp) with o < 0. According
to (3.1), there exists then v € RHDbg with o/(v) < o such that u = tv. Let b(9st) be the
minimal polynomial satisfying b(0gt)u = tP(t,0f)u with P € VD5, Then w ' b(ayD) —
tP(t, 0t)]v is supported at the origin and satisfies o/ (w) < o/ (v) < o’ < 0. Therefore, by (3.1),
we have w = 0 and v satisfies o' (v) < o (u).

For (3), remark that there exist 3',3" such that u € Vg 3 (RHDbgp). We may assume
that #' > o and " > o”. There exists polynomials B'(—s) (resp. B"(—s)) with roots in
o/, 3] (resp. in |a”, 3"]), such that B'(dt) B"(0gt)u belongs to Vi 4. Applying Bézout and the
condition in (3) we conclude that u belongs to Vi 4.

Let us now prove (4) and (5). We will first need the following lemma.

Lemma 4.2

(a) We have gryy, 5o RHDbco(A) =0 if 8/ ¢ a+Z or f" ¢ a+ Z.
(b) For all k', k" € Z we have

Virsaar+a(RHDbco(N) = Vir(Dep)Vir (Dag) - thay-
p>0

(c) For =1 < a < 0, the classes of ua, (p > 0) form a basis of the C-vector space
grg,a RH®bc .
(d) The classes of 0:0su_1, (p > 1) form a basis of ngO RH®bc .

Proof. According to (2.2), the distribution u,, (—1 < a < 0 and p € N) satisfies
(4.3) (Ot + )" Mgy = (O + @) Muay, = 0.

It is then in V4.
It follows that, for any P € Dz, the correspondence 1 — fuam induces a surjective D¢ -
linear morphism

DC,O/DC,O(Ott + Oz)p+1 — DC,O . ﬁua,p.
This implies that, for any k € Z, we have
(4.4) Vita (Dco - Puap) = Vi(Dco) - Puay

because a similar property is easily seen to be true for Dg /D o(dst + )Pt and any morphism
of holonomic D-modules is strict with respect to the Malgrange-Kashiwara filtration.
By the same argument we also get that, for —1 < a < 0,

Virsasrta (DeoDegtiap) = Vir(Dep)Vir(Dgp)tay.

As RHDbc,o()) = lim ,Dc oDg gUa,p. the statements (a) and (b) are clear.
Part (b) shows that the elements given in part (c) or (d) generate the corresponding bigraded
object. If we have, for —1 < a < 0, a linear relation between the classes of u,, (p > 0) in

gry, , RHDbc o then, by applying a suitable power of d;t + « and using relation (2.2), we would
have a relation

|t|72(a+1) € tz Oc00g - tayp +EZ Oc00g * Uaps

p p
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which is clearly impossible by considering the valuation at 0. Similarly, a linear relation between
the classes 0:0;u_1, (p > 1) would imply that 0 € (V_1 0+ Vo _1) RHDbc . Notice now that

t: V_Lo(RH @hc,g) — V_Q,O(RH :Dbc,g)

is bijective: part (b) shows that it is onto; it is injective because t : V', — V', is so, as follows
from (3.1).

So, if 0 = u"1Y) + 40V we have tul"1) € Voo N V. 1 =V 5 4, hence a0 € V|
and similarly w1 ¢ V_1-1,80 0 € V_; 1, which is impossible because ¢ acting on V_; _; is
injective. O

The statement (4) of the proposition follows from (b) in the lemma.

(2.2) clearly implies that, for all k,¢ € N, we have (9;t — Ost)u = 0 if u = t’“fkafaﬁua,p, for
—1 < a < 0. Then (5) follows immediately. O
The Malgrange-Kashiwara filtration for CRH ®bc . In order to apply similar considerations

to asymptotic expansion, we will introduce the Malgrange-Kashiwara filtration on C*RH Dbc .
Put

Varar (CCRHDbcg) €% - Vo o (RHDbp).
We clearly have
(4.5) Voo (CCRHDbc ) = Voo (RHDbc o) + (Vewrar + Vi car ) (CCRH Db ),
hence a surjective morphism gry, ,» RH®bc o — grly ,» C*RHDbc .
Proposition 4.6. The results of Proposition 4.1 apply as well to 'V, ,(C*RH®bc ) and moreover
grt o RH®bc o = grly ,» C"RHDbc .

Remark 4.7. 1t follows from Propositions 4.1(5) and 4.6 that the nilpotent endomorphisms
induced by 0t + a or 5t + o on ng C*RH Db coincide, for =1 < a < 0.

Proof. (1), (2), (3) and (5) in 4.1 immediately extend to C*RH®bc . Moreover, (4) clearly
gives

(48)  Vuwa(CRHDbco) = > Y. Y C*-Vi(Deco) - Vir(Dgyp) - tap
—1<a<0 k' k""€Z p>0
a+k’§a’
a+k”§a”

An argument similar to that of (¢) and (d) in Lemma 4.2 for C*RH Db gives the last assertion
of Proposition 4.6. 0

Localization and Mellin transform. We may give similar definitions and similar arguments for
the germ RH C‘Dbm"do We say that a germ u € RH Z)bm"do has order less than o/ if it belongs
to Vau (Deott), etc. We get in particular

LRHDBEGY) = > Y 706 00g,[17] - ttay,
—1<a<0 p

LERADEEYY) = Y N Ocolt T Y0g, -ty
—1<a<0 p

Va’ O/I(R,H @hmOdO) déf (R,H @hmOdO) au(RH @hmOdO)

(4.9) = Z Z ¢l el (9070 -t ool 0670 *Uap

—1<a<0 p
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Put

Vo o (CCRHDBELY) < €=V, v (RH DB

(4.10) = 3 Nl ey g,

—1<a<0 p

From [4, Theorem 4| we obtain:

Proposition4.11. Let v € C*RH®bcy and denote by u its image in C*RH @bm‘)do. Let
o, € C. Then uw € Vy o if and only if for any k', k" € Z the poles of the memmorphic
function jszl’k”)(s) are < min(a/ — k', " — k). O

Remark that it is enough to verify the previous criterion for £ = 0 and &' € Z for instance.
Put V,(C*RH @bmdo) = Ugn Vi g» and define V), similarly.

Corollary 4.12. For any o', a" € C with o/ — " € Z, we have
Var,ar (CCRHDBES ) = Vi, (CRHDBES) N V1 (C*RHDBES). 0

It also follows from Lemma 4.2(b) and Formula (4.9) above that
(4.13) Vo o (RHDBES) = image [V o (RHDbc ) — DOEG ] .

and thus a similar result for CRH CDmedO.

Corollary 4.14. For any o', " € C we have
Vi o (CCRHDbcy) = V., (C*RHDbc) NV (C*RHDbcy).

Proof. Let u € V,(C*RHDbc ) N V., (C*RH®bcp). Then u € Vo (C*RH @medO) hence,
by (4.13), there exists v € Vo (C*RH Db ) such that v — v is supported at 0, i.e. belongs
to

Vé’(c[atv &t] ' 5) N Volz,”(c[atv &t] ' 5)
which is easily seen equal to Vi o (C[0, 0] - 9). O

Remark 4.15. For u € C*RHDbc, we have o'(u) < o'(u) with equality if o/(u) < 0, and a
similar result for o”.

The morphisms L. According to (c) and (d) in Lemma 4.2, we may give the following defini-
tion:
Definition 4.16. For —1 < o < 0, the linear morphism

Le : gry, . CCRHDbcy — C

is obtained by taking the coefficient of the class of ? if =1 < a < 0 and the coefficient of the
oy

1
class of § = ———d,0; log|t[” if a = 0.
2w

It will be convenient to denote also by L, the map composed with the previous L, and the
projection V, o — gry . so that Ly (u) = 0 if o/(u) < o or o (u) < o

Proposition 4.17. Let v € grYLO C*RH®bcy and w € gr}{:,l CoRH®bcy. We then have
Lo(=0w) = L_y(tv) and Lo(—0mw) = L_y(tw).
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/U/*]-ap

Proof. Any such v can be written as 0f <Zp>1 Uy
Z i

to:log |t|* = 1, and

). Then we have L_;(tv) = vy since

s0 Lo(—0ww) = vy. O
Proposition 4.18. For —1 < a <0 and u € V, o(C*RHDbc ), we have

Lo(u) = xResy—q JO0  with « # 0.
Proof. This follows from the computation in the proof of Theorem 4 in [4]. O

Remark 4.19. For u € V;, C*RH Db o, we may also compute Lg(u) as the residue of the Mellin
transform of the localized Fourier transform of the germ u:

Lo(u) = xRes,_; Jn") with * # 0.

4.b. The morphism gr! Cx M — Cy grl M defined using asymptotic expansions
Keep notation of §3.b. Let M be a regular holonomic Dx-module. In order to define

morphisms gr! Cx M — Czgrt M, we will show below:

Assertion. For any open set Q2 C Z, any disc D C C centered at 0 and for —1 < « < 0, the
mapping

(420)  T(@x D,Va(M)@T (@ x D,Va(CxM)) — T (2,Dby)

(m, 1) — [ = La({u(m), ¢))]
is well defined (that it takes values in Dbz can be seen as in |2, lemme 1|) and induces 0 on
V(M) ®c Voo (Cx M) and Voo (M) @c Vo (Cx M).

Therefore, (4.20) well defines a D, z-linear map

(4.21) I (Q,gry M) %)F (2, gry (CxM)) M

Db().

Moreover, denoting by N the action of d;t + « on the left as well as the action of &t + a on
the right, we have, according to Propositions 4.1(5) and 4.6,

(Nm,p)o = (m,Np)q.
Therefore, (s, ), defines, for —1 < o < 0, a D5-linear morphism
cx.a(M) gl CxM — Cyerl M
changing N into Cz(N), i.e. the following diagram commutes:

cx.a(M
gr’ Cx M M Czerl M

(4.22) Nl lCZ( N)
v cx,a(M) %
gr, CxM — CZ gr, M

More precisely, cx, is a functorial morphism between the functors gr’ C'x and Czgr?. We
may also consider cx ,, defined in a similar way. We then have

(423) CXa — CZOCy,aOOX.
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According to Proposition 4.17, the following diagram and its Hermitian dual analogue com-

mute:
_1(M
o’ Ox M xaM), Cyr e’y M
(4:24) _ail ch(t)
CX,U(M)

grg CxM ————— Czgrg M

Theorem 4.25. Let M be a regular holonomic Dx-module. Then the morphism cx o (—1 <
a < 0) coincides with c?/\ (A = exp(2imar)) and cx coincides with c?m.

Before proving Theorem 4.25, we will justify the construction of the morphisms cx (M) by
proving the assertion.

Lemma 4.26. Let M be a reqular holonomic Dx-module. Then, for any o/,a" € C, k € Z
and any sections m € T'(Q2 x D,VyM), u € T(Q x D,VanCx M) and any o € D™ (), the
meromorphic functions L7155,”0)(3) have poles < min(a/ — k, ).

Proof. Denote by K the support of ¢ and by p > 0 the order of the distribution u(m) on
K x D. For q € Z, the functions (,s) — |t|* "t and (t,s) — [t/ 77 are C? on {Re(s) >
—q} x C and depend holomorphically on s. Consequently, if x € C>°(D), the function s
(u,, x(t) [t|** t?*9dt A dt) is holomorphic for Re(s) > —q.

Let b,, be the Bernstein polynomial for m on K X D: there exists P € T'(K x D,VyDxxc)
such that by, (0st)m = tP(z,t, 0y, Ot)m. By assumption, the roots of b,,(—s) are < o'. Denote
by b, the Bernstein polynomial for y; the roots of b,(—s) are < o'. Fix k € Z, choose 7 > 0
so large that p — r < o' and consider the polynomial

B'(0it) = f[ b (it + 7).

j=—k—r
We have B'(9;t)t*u(m) € t**"(VyDayxp) - p1(m). Hence
B'(—s)ju(f’o)(s) = J*0(5)  mod O(C)

Uy
for some ¢ € C¥(Q2). But jé§+r’0)(3) is holomorphic for Re(s) > p — k — r, hence for Re(s) >
o' — k. As the zeros of B'(—s) are < o/ —k, we conclude that the poles of jzf]:’o)(s) are < o/ — k.

A similar argument for b, shows that the poles are < o”. O

Proof of the assertion. If o' and o are < 0, the desired assertion follows from Proposition 4.11
and Remark 4.15.

In general, one uses Proposition 4.1(3) together with Proposition 4.6 to show the assertion
for any pair (o/, a"). O
4.c. Proof of Theorem 4.25
First step. Assume that M is supported on Z. One then has

iTM=VM=Ker[t: M — M]
TrCXM = VoCxM = Ker [E :OxM — OxM]
On the other hand one has
Ker[t: Dby 7 — Dby 7] = Ker [t : Dby,z — Dby 7]
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and one may identify this sheaf with ©bz by defining, for any p € Kert and ¢ € C'"(Z) (with
n =dimZ), (i, ¢) = p(pdt Adt), where 1) is any C2° (n,n) form on X such that ¢z = . The
pairing Cx M ®c M — Dby z induces a pairing

%OxM%)%M — Kert ~ @bz

This is the pairing constructed in Corollary 1.3. It coincides with the pairing defined with the
help of Ly in (4.16).

The theorem being true for modules supported on Z, it folllows that it is enough to prove it
for modules satisfying M = j 5" M = M[t"!]. Moreover, as (c%l,c?m) and (cx,_1,cx) are
both compatible with can and Var, it is enough to prove the theorem for —1 < a < 0.

Second step. Assume now that M = j, 57 M = M[t"1]. We will show that the nondegenerate
pairing
%O(zﬁ-C?OdZM) %%0(Z+]T]+M) — @[.JZ
given by Corollary 1.3 coincides with that defined with the help of cx . Notice that Cx M =
7:77Cx M, so that
H (1,77 O M) = Ker [loc: Cx M — CRVM]
H'(iyitjijTM) = Coker [coloc : jijT M — M]
[dentify
HOE ORI M) with  VoH (1,77 O M) € VoCx M
and
HO(iTjig M) with VoM (init 55t M) (a quotient of Vo M).

Let 1 be alocal section of VoCx M and m a local section of VoM. Then, if p is in H?(z+ C2°1Z M),
the distribution p(m) is supported on Z and is in Kert. We may thus apply the first step to
get the result.

Third step: proof for —1 < a < 0. We may assume that M = j,j* M. We will show that cx
can be computed using M, ,, as we did for c?/\. The second step will then give cx o = C?/\'
We have isomorphisms
gry Cx (M) ﬁ Ker 05 (C gr¥y Cx(M)ay)

—— = Kerid; (C gr¥, %% (M,,)) —— Ker1d; (C gr¥, Cx(May))
Lemma 3.7

—— = Oz(Cokertd;) (C Cz(gr¥y May)) ——— Cz(grl M).
cx—1(Mayp) (3.6)

We will identify the composed isomorphism
(4.27) grl Ox (M) — Cyz(grl M)

with cx o(M).
Let p be a local section of V,Cx M and put

p

fiop = Y [~ (0 + )1 ® Eae € Cx(M)a.

k=0
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According to Lemma 3.7, we may view [i,, as a local section of C'2°4%(M, ) by putting, for
Ig:U mf ® eavé E MavP’

p p
</7a7pa Z me & 6a,£> = Z [—(aﬁ + a)]kﬂ(me) *U_q—2 k+l—p-
=0

k(=0
To understand the image of (the class of) fi,, by the morphism cx _1(M,,), we fix a local
form ¢ of maximal degree and with compact support on Z and consider, under the condition

. i u_
that all m, are in V, M, the coefficient of L0
iT

(4.28) Z( (07t + o))" (M), @) - a2 p0—p-

k,0=0

in

The only terms contributing to it are those for which k + ¢ = p. Put
Ue j .
<M(mz) 90> Z (i - with v, ;

The coefficient of u_1, in (4.28) is D r_o(—1) vp_p 1.
On the other hand we have

P p
14 U, j—0
Lo((n(S- @+ )0} ) = LS S )
=0 =0 >0
p
= > (=D v
(=0
Consequently, (4.27) coincides with c¢x ,(M). This ends the proof of Theorem 4.25. O

4.d. Relation with some results of D. Barlet. We will show that Theorems 3.8 and
4.25 give generalization to regular holonomic modules of some results of D. Barlet concerning
effective contribution of monodromy to poles of [ |f|2s for a holomorphic function f : 7 — C on
a smooth manifold Z (cf. |2]). Remark that the assumption on monodromy made by D. Barlet
concerns monodromy on the cohomology of the Milnor fibre of f; here however, the assumption
concerns monodromy on the complex of nearby or vanishing cycles and may give better results
(see e.g. [11]).

Let ;C; and ¢;C, denote the complexes of nearby and vanishing cycles (see |7]) and,
for A € C*, denote by 17 ,Cy and (for A = 1) ¢;1C the complexes corresponding to the
eigenvalue A (and 1) of the monodromy (see the construction in [6] or [15]). These complexes
are perverse up to a shift and are equipped with a nilpotent endomorphism (the nilpotent part
of monodromy). Let M, denote the monodromy filtration in the perverse category (see e.g. |8,
§1.6] or [15, §1.3.9]) .

Corollary 4.29. Let 2° € f~1(0) and assume that z° belongs to the support of gry’ ;,Cyz
for some A\ = exp(2ira) € C* (=1 < a < 0) and £ € N. Then for any sufficiently small
neighbourhood V' of x° there exists ¢ € D™ (V) (n = dim Z) such that the function

Iw:s»—>/|f|28g0
z

has a pole of order at least € at some a—k with k € N. Similarly, if x° belongs to Supp gry’ ¢;:Cz,
then for each V there exists ¢ such that the pole order is at least £+ 1 at some negative integer.
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Remarks

1) If 4y is the maximal integer ¢ such that z° belongs to Supp gr} 1;,C, (or belongs to
¢ Y,
Supp gr)’ ¥1Cz U Supp gry’ ¢;1Cz if A = 1), then the pole of any function I,(s) at
points a — k, for ¢ supported in a small neighbourhood of z°, has order < /.
(2) If I, has a pole of order £ at some o — p for some ¢, then for any p’ > p there exists 1
such that I, has a pole of order ¢ at o — p': put ¢ = |f|2(p’7p) ©.

Proof of Corollary 4.29. Denote by iy : Z — X = Z x C the graph inclusion. Put M =17, 0.
As C;04 = Oz (Dolbeault lemma) we have Cx M = M. We then get a sesquilinear pairing

S M®cM— Dby .

Let us consider first the case of nearby cycles (=1 < a < 0). By assumption, and using
Riemann-Hilbert correspondence for nearby cycles, there is a local section m of M such that
m € V,(M), the class of m in grl M belongs to M,grl M and its class in gr) gr’ M is
nonzero at z°.

As the pairing (3.11) is nondegenerate, there exists p in V,M such that S([m], N[]) # 0
in Db,. This means that there exists ¢ € D™ (Z) such that, if we put

m= mdid(t—f), w=) wdo(t—f).
i>0 Jjz0

where m;, pt; are holomorphic in a neighbourhood of z°, the germ
> 9;0](04 + a)f U miu_ﬂb]
— f=t
lh]

in C*RH Db has a nonzero coefficient on u, o. Hence, there exist 4, j such that a;‘ag ff:t i
has a nonzero coefficient on wu, . The result follows from the computation of Mellin transform
(|4, Theorem 4]).

The assertion for ¢ follows from

(4.30) g1 (BiM)e 0 = g1 (i M) #0,

for which we briefly recall the proof. As Oy is a simple Dz-module, M is a simple Dx-module,
according to Kashiwara’s equivalence theorem. In particular it has neither submodule nor
quotient module supported by Z. This implies (see [15, Lemme 5.1.4] forgetting the filtration
F) that can : ¢y — ¢ is onto and Var : ¢; — 1)y is injective. From [15, Lemme 5.1.12| we
deduce that for any ¢ we have

can (Mp)1) C My_1¢1, Var (Mypr) C M1
and that the induced morphisms
can : gréw P — gr%1 ¢1, Var: gré‘/f P — gr%1 i

are respectively onto and injective. O

Remark 4.31. In [3], D. Barlet introduces the topological notion of “tangling of strata” and
shows how this tangling can be detected by inspection of the order of poles of the functions 7,,(s).
This notion has the following interpretation. Assume as in loc. cit. that for some eigenvalue
A # 1 the support of ¢;,Cz is a curve ¥ near z° and assume furthermore for simplicity that
the germ (X, °) is irreducible (one may easily extend what follows to the reducible case). The
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complex 17,Cz is perverse up to a shift by dimZ — 1. Let z be a local coordinate on the
normalization of 3. Consider the corresponding diagram of vector spaces:

C
@uwz,uwf,)\CZ @u(ﬁz,uwf,)\CZ-

v
The left hand term corresponds to the generic fibre of the local system ;) on ¥ — {z°} and
N’ = v oc is the nilpotent part of the monodromy relative to z of this local system. Moreover,
Coker ¢ (resp. Ker v, resp. Kerc) is isomorphic to the generalized eigenspace with eigenvalue A
of the cohomology of the Milnor fibre F,o of f at z° in maximal degree dim Z — 1 (resp. the
cohomology with compact support, resp. the cohomology in degree dim Z — 2). As usual, ¢
and v are compatible with the direct sum decomposition indexed by p and their py-components
are isomorphisms if 4 # 1. Moreover, ¢ and v commute with the nilpotent part N of the
monodromy of f.

The tangling phenomenon (for the eigenvalue \) appears when the nilpotency indices of N
on the cohomology sheaves of 1¢,Cz are strictly smaller than the nilpotency index of N on
the complex 1;,Cz. The latter can be read from the pole order of functions I,(s) (Corollary
4.29).

This also means that the nilpotency indices of N on the spaces 1, 19,\Cz and Coker c =
HImZ=1(F,), are strictly smaller than the nilpotency index of N on the space ¢, 19;,Cz.

This would not happen if ¢ were strict relatively to the monodromy filtration M(N). In such
a case, still denoting by M (N) the monodromy filtration on Coker ¢, we would have

gr,” Coker ¢ = Coker gr}’ ¢

and gr)! ¢, 11;,Cz would vanish as soon as gr)’ ¢, 19;,Cz and gr}! H¥™Z=1(F,.), do so.

More generally, as Imc¢ and Kerwv are stable by N, the tangling phenomenon would not
happen if ¢, 1907 ,Cz could be decomposed as Im ¢ @ Ker v, which is equivalent to the property
that the canonical morphism HI™Z Y(F.), — HY™Z71(F,)\ (i.e. Kerv — Cokerc) is an
isomorphism (or injective, or onto, as dim Ker v = dim Coker ¢ by duality and self-conjugation
of 1;Cz). When such an isomorphism occurs, there is no “topological tangling” in the sense of
Barlet [3].
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