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Introduction

(0.1) A Frobenius structure on a manifold1 M consists of the data of two objects on the

tangent bundle TM : on the one hand a symmetric nondegenerate bilinear form g (we will call

g a metric for short) which is flat, and a commutative and associative product ? with unit on

the other hand. These two objects are subject to natural compatibility relations.

As a consequence, there exist two kinds of local coordinate systems on such a manifold: on

the one hand, flat coordinates with respect to the metric and on the other hand coordinates

(xi) (called canonical) in which the products of basic vector fields ∂xi
? ∂xj

are as simple as

possible (e.g. ∂xi
? ∂xj

= δij∂xi
, where δij is the Kronecker symbol).

One of the many interesting features of Frobenius manifolds is that they produce various

transcendantal functions by considering local coordinate changes going from a system of the

first kind to a system of the second kind.

(0.2) Two main families of examples are known:

• In the first one, canonical coordinates are naturally given, the flat structure is hidden

and has to be revealed. The methods developed in this paper apply essentially to this kind

of examples. The manifold is then the parameter space of a universal unfolding or a moduli

space, which hence carries an affine structure. We owe it to K. Saito [30] to have developed

general tools (infinitesimal period mapping and primitive forms) to show the existence of such

a structure in the base space of the miniversal unfolding of a holomorphic function with an

isolated singularity. M. Saito [31, 32] has given complete arguments, using Hodge theory.

• If on the other hand the flat structure is trivialized, the data of the associative and com-

mutative product ? is locally equivalent to the data of a function, called a potential, satisfying

a system of nonlinear differential equations, also called WDVV. This approach comes from B.

Dubrovin [12], who analysed in detail such structures, making the link with the existence of

solutions to WDVV equations. This point of view sheds new light on the examples of the

first kind. It is also particularly well suited to another family of examples, namely quantum

cohomology of some algebraic manifolds, where it is deeply related to enumerative problems

like counting the number of rational curves of certain kind on such manifolds (see [20, 12],

1In these notes, the manifolds are complex analytic and the mappings are holomorphic
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see also [27, 4]). More recently, Yu. Manin [27] brought into evidence the analogy between

the relations on the coefficients of the Taylor expansion of a potential satisfying WDVV and

the combinatorics which describes the cohomology of the moduli spaces M0,n of stable rational

curves with n marked points.

(0.3) Frobenius structures for which the algebras (TxM, ?) are semi-simple (massive structures

following the terminology of [12]) have been characterized by B. Dubrovin in loc. cit. (see also

th. 5.1.2) and correspond to the ones coming from some isomonodromy deformations. They are

determined by their initial data, hence are more easily identified. For instance, the Frobenius

structure on the base space of a miniversal unfolding is semi-simple on the complement of the

discriminant.

(0.4) A convenient way of expressing the compatibility condition between the “metric” con-

nection5 with the product ? consists in constructing on the pull-back bundle π∗TM on P1×M
a meromorphic connection ∇, the poles of which are located along the two sections {0} ×M
and {∞} ×M only, with conditions concerning the type of singularities along these sections;

the compatibility condition is then equivalent to the integrability property of this new connec-

tion. This explains the link with integrable (or isomonodromic) deformations of meromorphic

connections on P1.

(0.5) We propose in this article a method to detect a Frobenius structure on a manifold M .

It decomposes in three steps.

(1) To construct on the product A1 ×M of M with the affine line A1 with coordinate z,

a rank dimM vector bundle F equipped with an integrable meromorphic connection ∇ with

poles along {z = 0} ×M and with a nondegenerate bilinear form2 G, which is ∇-horizontal.

This bundle with connection can for instance be constructed from the Gauss-Manin bundle

associated with a holomorphic function on a manifold. It can also be constructed in some cases

as a solution of an isomonodromy (better, isoformal) problem from initial data (F o,∇o) on A1.

(2) To show that one can extend this bundle and its connection to P1 ×M as a bundle

with a meromorphic connection (F̃ , ∇̃), in such a way that

(a) the connection has logarithmic poles along {z =∞}×M ,

(b) the bundle F̃ is isomorphic to the pull-back of a bundle E on M , namely E = F|{0}×M ;

in other words F̃ is trivial in the fibres of π : P1 ×M →M .

When one restricts the whole situation above at a point of M , the problem of extending

(F o,∇o) to (F̃ o, ∇̃o) is classically called the problem of finding a Birkhoff normal form of the

connection. It is analogous, in the case of (maybe) irregular singularities, to the Riemann-

Hilbert problem (in these notes the link between both problems is made with the help of the

2in fact the form takes values in zmOM [z] for some m ∈ Z, and it is (−1)m hermitian with respect to the
involution which changes z into −z
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Fourier-Laplace transform). The second step then consists in solving the Birkhoff problem in

a family, where the manifold M is considered as a parameter space.

It happens that the solution of the problem for one value of the parameter also gives a

solution for the family, at least in a neighbourhood of this value of the parameter: this is the

content of a theorem of Malgrange [24] (see § 2).

The second step of the method consists thus in solving the Birkhoff problem for some value

of the parameter. In the case of isomonodromic deformations, one is given a bundle with a

connection (F o,∇o) in the Birkhoff normal form, hence there is nothing to do. For Gauss-

Manin systems considered in § 3.3 the solution follows a method due to M. Saito [31], which

makes use of Hodge theory.

If one has obtained such an extension (F̃ , ∇̃), one has an identification between the bundles

F̃|{∞}×M and E = F̃|{0}×M . The former comes naturally equipped with a flat connection 5
and a 5-horizontal endomorphism R∞ (residue of the connection ∇) and the latter with an

endomorphism R0 and a 1-form Φ with values in End(E). One carries on 5 and R∞ to E via

the previous identification, and these various objects satisfy compatibility relations (see § 1.5).

Moreover the form G induces on E a bilinear form g which is 5-horizontal (in the case of

Gauss-Manin systems, this form can be obtained from the Grothendieck residue).

(3) To identify the bundle E with the tangent bundle TM .

One should notice that if one has a Frobenius structure on M , the tangent bundle TM has

a specific holomorphic section, denoted e, which is the identity element of the product ? in each

fibre, and one of the compatibility conditions of g with ? means that this section is covariantly

constant.

If there is an identification E ' TM , there must exist a specific covariantly constant section

ω of E which corresponds to e.

Let then ω be a covariantly constant section of (E,5). It defines an infinitesimal period

mapping

TM
ϕω−−−→ E

ξ 7−−−→ −Φ(ξ)(ω)

for each vector field ξ on M . The section ω is primitive if ϕω is an isomorphism of vector

bundles.

If a primitive section ω of E is given, ϕ−1
ω will carry on TM the objects defined on E: we

show (§ 4.3) that one obtains in this way a Frobenius structure on M .

(0.6) We illustrate this method with two examples:

(1) the universal deformation of a connection on a bundle F o on the affine line A1, having

a Birkhoff normal form in a suitable basis of F o; the connection matrix takes the form(
Bo

0

z
+B∞

)
dz

z
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where Bo
0 and B∞ are two matrices of Md(C);

(2) Gauss-Manin systems for polynomials p : Cn+1 → C all the critical points of which

are isolated and which satisfy a tameness condition at infinity; they are analogues of lo-

cal Gauss-Manin systems associated with singularities, as considered by K. Saito and M.

Saito. Here the Frobenius manifold is a neighbourhood of the origin in the vector space

C[z0, . . . , zn]/(
∂p

∂z0

, . . . ,
∂p

∂zn

), which has finite dimension by assumption.

(0.7) The contents of these notes mainly consists in a “mise au point” and a reformulation

of (well) known results: the presentation of the first part, without §§ 3.3 and 3.4, and the one

of the appendix, is mainly due to B. Malgrange [22, 23, 24] after the work of M. Jimbo, T.

Miwa and K. Ueno [17, 18]; it has also been inspired by the notes of Dubrovin [12] and the

approach given by N. Hitchin [15]; the contents of § 3.3 is a variation, developed in [29], on the

results of M. Saito [31], and § 3.4 a variation on an article of P. Deligne [11]; the notion of a

Saito structure and the definition of the infinitesimal period mapping are a reformulation of

part of the article of K. Saito [30]; last, the notion of a Frobenius manifold has been brought

into evidence by B. Dubrovin in [12], where one will find a complete list of references.

I thank Michèle Audin for numerous discussions on this theme as well as for having given

me the opportunity to clarify some points. I also thank John Harnad for his remarks.

Part I

Families of vector bundles on P1

1. Families of vector bundles on P1 with an integrable meromorphic

connection

We will show how, in certain circumstances, a family of vector bundles on the Riemann

sphere P1(C) equipped with an integrable meromorphic connection, with poles along the zero

and infinity sections, allows us to define a flat connection on the vector bundle of global sections

of this family (which is a vector bundle on the space of parameters). Later, this will be the

first step in the construction of a Frobenius structure on a manifold.

1.1. Families of vector bundles on P1

In the following, a family of vector bundles on P1 parametrized by a complex analytic

manifold X is a holomorphic vector bundle F on P1 × X and π : P1 × X → X denotes the

projection.

Recall that a holomorphic vector bundle on P1 comes from a unique (up to isomorphism)

algebraic vector bundle on P1: in other words, one can define such a vector bundle with a

holomorphic cocycle, which is a holomorphic invertible matrix on a ring, or by an algebraic
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cocycle, which is a rational invertible matrix on C∗. Every meromorphic section of this vector

bundle is then rational.

If F is a holomorphic vector bundle, we will denote F the sheaf of its holomorphic sections:

this is a locally free sheaf of modules of finite rank d on the sheaf O of holomorphic functions.

It will be sometimes convenient to consider the category of meromorphic vector bundles on

an analytic manifold Z with poles along an analytic hypersurface Y : an object in this category is

a locally free sheaf of modules of finite rank d on the sheaf OZ [∗Y ] of meromorphic functions on

Z with poles along Y . A vector bundle on Z allows one to define a meromorphic vector bundle

(one makes the tensor product of the corresponding sheaf of OZ-modules with OZ [∗Y ]) but not

any meromorphic vector bundle is obtained in this way (see [26] for an example). A lattice in a

meromorphic vector bundleM is a coherent OZ-submodule F such thatM = OZ [∗Y ]⊗OZ
F .

Lattices may not exist globally, but locally free lattices exist locally (take a local basis of M
and the sub-OZ-module it generates).

Let A1 be the chart on P1 complementary to∞ and let z be the coordinate on this chart. The

datum of a meromorphic vector bundle of rank d on Z = P1×X with poles along Y =∞×X
is equivalent to the datum of a locally free OX [z]-module of rank d: there is an equivalence of

categories given by the direct image functor π∗ by the projection π : P1 × X → X (see e.g.

[1]). Given a vector bundle F on P1 ×X, it will be convenient to call restriction of F to the

chart A1 ×X the meromorphic vector bundle F [∗(∞×X)]
def
= OP1×X [∗(∞×X)]⊗O

P1×X
F or

its direct image F
def
= π∗F [∗(∞×X)], which is a locally free OX [z]-module.

The vector bundles we are interested in are trivialisables (but not canonically trivialised).

One reason not to fix the trivilisation is that this property does not extend on the whole

parameter space in a family. The rigidity theorem below will be essential (see for instance

[23, § 4]). It will be the source of Painlevé property of some systems of differential equations

considered later.

(1.1.1) Theorem. — Let F be a vector bundle on P1×X. Assume that there exists xo ∈ X
such that F o def

= F|P1×{xo} is trivial. Then there exists a hypersurface Θ of X such that for each

point x ∈ X there exists an open neighbourhood V of x in X and a trivialisation on P1 × V of

the meromorphic vector bundle F [∗π−1Θ]. 2

Notice that one then has on V a trivialisation OV [∗Θ]d
∼−→ π∗F [∗Θ]. Let i0 and i∞ be the

zero and infinity sections of X in P1 ×X. Both morphisms of restriction

i∗0F ←− π∗F −→ i∗∞F

become isomorphisms after tensorising with OX [∗Θ], and in particular after restricting to the

open set X −Θ.

1.2. Integrable meromorphic connections

(1.2.1) Flat (or integrable) connections on a holomorphic vector bundle. Let Z be an analytic

complex manifold, let F be a holomorphic vector bundle on Z and let F be the sheaf of its
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holomorphic local sections. The notation Ω1
Z denotes the sheaf of holomorphic 1-forms on Z.

A flat (one also says integrable) holomorphic connection on F is a C-linear morphism

∇ : F → F ⊗OZ
Ω1

Z

which satisfies Leibniz rule (i.e. is a holomorphic connection) and which has no curvature, i.e.

∇ ◦∇ : F → F ⊗OZ
Ω2

Z is zero.

If one chooses a local basis e of F and if one sets ∇ei =
∑

j Ωjiej, the Ωij are holomorphic

1-forms and the integrability condition is equivalent to dΩ = −Ω∧Ω. If s =
∑

i siei is a section

of F we hence have ∇s = ds+ Ω · s where, if one puts Ω =
∑

k Ωkdxk in local coordinates, we

have Ω · s =
∑

k Ωk · sdxk.

A local section s of F is horizontal if it satisfies ∇s = 0: in a local basis of F and in local

coordinates (x1, . . . , xd) of Z, this means that the vector s(x1, . . . , xd) is a solution of the linear

system

∂s

∂xk

+ Ωk · s = 0 k = 1, . . . , d.

If ∇ is flat, the sheaf Ker∇ of horizontal sections is a locally constant sheaf of C-vector spaces

of dimension d on Z (Cauchy theorem), which generates F as a OZ-module: this means that,

locally, the vector bundle F has a basis of horizontal sections. More precisely, given any xo ∈ Z
and any C-basis εo of the fibre F o of F at xo, there exists on any 1-connected (i.e. connected

and simply connected) open subset of Z containing xo a unique horizontal basis ε of F which

restricts to εo at xo. Another way to state this result is to say that locally constant sheaves of

C-vector spaces of rank d on Z correspond, up to isomorphism, to rank d representations of

the fundamental group π1(Z, x
o) (see e.g. [10]): this is the monodromy representation attached

to (F,∇).

(1.2.2) Flat meromorphic connections. Let now Y be an analytic hypersurface of Z, locally

defined by an equation f = 0 with f holomorphic. In the following we will mainly consider the

case Z = P1×X and Y = {0,∞}×X. Let Ω1
Z [∗Y ] be the sheaf of 1-forms with poles along Y .

A meromorphic connection on F is a C-linear morphism ∇ : F → F⊗OZ
Ω1

Z [∗Y ] which satisfies

Leibniz rule. In this article, the meromorphic connections we consider will always assumed to

be flat on Z − Y . In a local basis e of F as above, the Ωij are meromorphic 1-forms with poles

along Y and the integrability condition is equivalent to dΩ = −Ω ∧ Ω.

Restricted to Z − Y , the vector bundle with connection (F,∇) is a vector bundle with a

flat (holomorphic) connection in the usual sense.

(1.2.3) Restriction, pull-back. If Z ′ is a smooth analytic submanifold of Z such that Y ∩Z ′

is a hypersurface of Z ′, the restriction of (F,∇) to Z ′ is obtained as follows: the vector bundle

is the restriction of F to Z ′ and, in any local basis, the connection matrix is the restriction (in

the sense of differential forms, via the cotangent mapping of the inclusion) of the one of ∇.

More generally, the same construction can be done when one has a holomorphic mapping

h : Z ′ → Z such that h−1(Y ) is everywhere of codimension 1 in Z ′. We then denote h+(F,∇)
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the vector bundle h∗F equipped with the meromorphic connection which matrix in a local basis

is the inverse image by (the cotangent map of) h of the one of ∇.

(1.2.4) Type. Assume that Y is smooth. We then denote Ω1
Z〈Y 〉 the sheaf of differential

meromorphic 1-forms with logarithmic poles along Y . Locally, this is the subsheaf of meromor-

phic 1-forms which are combination of holomorphic 1-forms and of d log f , where f is any local

reduced equation of Y . In local coordinates (z1, . . . , zn) such that Y = {z1 = 0}, a logarithmic

form can be written

a1(z)
dz1

z1

+
n∑

i=2

ai(z)dzi.

In the neighbourhood of a point yo ∈ Y , let us choose a local basis e of F and let Ω be the

matrix of ∇ in this basis. There exists a minimal integer r such that, if f is any local equation

of Y , the matrix of 1-forms f rΩ has entries in Ω1
Z〈Y 〉. Let Ω′ be the matrix of ∇ in some other

local basis e′ = e · P where P is a matrix in GLd(OZ,yo). We then have

Ω′ = P−1ΩP + P−1 · dP.

We see that the order r′ of Ω′ relative to logarithmic poles is equal to the one of Ω. This order

only depends on the connected component of Y that we considered. This is the type of (F,∇)

along this connected component. When the type is zero (i.e. when Ω has at most logarithmic

poles), we say that (F,∇) has logarithmic poles.

Remark. In these notes, we only consider connections with logarithmic poles or with poles of

type 1. Many statements can be extended to connections with poles of type r ≥ 1, and we refer

to [22, 23, 24, 26] for this.

(1.2.5) Connections with logarithmic poles. We now consider the case Z = D × X and

Y = {0} ×X, where D is a disc centered at 0 in C. Assume that (F,∇) has logarithmic poles

along Y (or along some components of Y ). One can define a “restriction” (F|Y ,5) of (F,∇) to

Y (even if the situation is not the same as in § 1.2.3): this is a rank d vector bundle with a flat

connection on Y (there is no pole, since Y is (a connected component of) the set of poles of

(F,∇)). As a vector bundle, this is the restriction of F to Y . Let us be more explicit concerning

the connection matrix in a local basis of F and in local coordinates: if

Ω = Ω1
dz1

z1

+
∑
i≥2

Ωidzi

is the connection matrix, where the Ωi have holomorphic entries, the connection 5 has matrix∑
i≥2

Ωi(0, z2, . . . , zn)dzi

in the corresponding basis of F|Y . One verifies that this is independent of choices and defines

a holomorphic connection on F|Y . This connection is flat since the connection from which it

comes is so.



FROBENIUS MANIFOLDS 9

The logarithmic connection also endows the vector bundle F|Y with an endomorphism:

this is the residue of the connection along Y . With the local choices above, its matrix is

Ω1(0, z2, . . . , zn). The integrability of the logarithmic connection on F implies that this residue

is covariantly constant with respect to the flat connection on F|Y .

Remark. For a vector bundle with a meromorphic connection, the curvature is a current

supported on Y . In the logarithmic case, the current is exactly defined by the residue of the

connection.

(1.2.6) Connections of type 1. When the connection has type 1 along Y , its matrix takes

the form

Ω = z−1
1

Ω1
dz1

z1

+
∑
i≥2

Ωidzi


where Ωi are holomorphic. One cannot define a flat connection on Y by the method above,

since the form
∑

i≥2 Ωi(0, z2, . . . , zn)dzi does not necessarily satisfy the integrability condition.

Nevertheless, the matrix Ω1(0, z2, . . . , zn) defines a section of the projective bundle P(EndF|Y )

on the open set where it does not vanish. In particular, using the characteristic polynomial,

one defines a holomorphic map of Y in the space of polynomials of degree d.

We moreover assume now that a coordinate z on D is fixed. The vector bundle F|Y
is then equipped with a “residue” endomorphism R0 and with a 1-form Φ with values in the

endomorphisms of F|Y : the choice of the coordinate z allows one to lift a section of the vector

bundle P(EndF|Y ) to an endomorphism R0; to obtain Φ, one considers the decomposition ∇ =

∇′+∇′′ of the connection corresponding to the decomposition of 1-forms Ω1
D×X = p∗Ω1

D⊕q∗Ω1
X

and one denotes d = d′ + d′′ the decomposition of the differential; in a local basis of F on an

open set of type D × U , one writes ∇′′ = d′′ + Ω′′ and Ω′′ satisfies the integrability condition

d′′Ω′′ = −Ω′′ ∧ Ω′′; moreover, Ω′′ has a pole of order at most 1 along z = 0; one then sets

Φ = (zΩ′′)|z=0. One verifies that Φ transforms linearly by base change.

The integrability of ∇ implies that the following relations are satisfied by R0 and Φ (these

are analogues of the flatness of the connection 5 and of the horizontality relative to 5 of the

residue endomorphism, in the logarithmic case)

Φ ∧ Φ = 0, Φ(ξ) ◦R0 = R0 ◦ Φ(ξ) for any vector field ξ on X.

In particular (F|Y ,Φ) is a Higgs bundle. These objects depend on the choice of a coordinate on

D up to a multiplicative constant.

(1.2.7) Operations on vector bundles with a meromorphic connection. If (F,∇) and (F ′,∇)

are two vector bundles on Z with a meromorphic connection with poles along Y , with associated

sheaves F and F ′, the vector bundles F ⊕F ′, F ⊗F ′ and Hom(F, F ′) come naturally equipped

with a structure of vector bundles with a meromorphic connection. For instance, if ϕ is a local
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section of HomOZ
(F ,F ′), namely a homomorphism ϕ : F|U → F ′|U where U is an open set of

Z, the section ∇ϕ on U of HomOZ
(F ,F ′)⊗ Ω1

Z [∗Y ], namely the homomorphism ∇ϕ : F|U →
F ′|U ⊗ Ω1

U [∗Y ], is defined by

(∇ϕ)(ε) = ∇ (ϕ(ε))− ϕ⊗ Id(∇ε)

where ϕ⊗ Id is the natural homomorphism F|U ⊗ Ω1
U [∗Y ]→ F ′|U ⊗ Ω1

U [∗Y ].

The following two facts should be noticed:

1. the (local) horizontal sections of HomOZ
(F ,F ′) are the ϕ : F|U → F ′|U which are compat-

ible with the connection, namely the homomorphisms of vector bundles with connection;

2. consequently, the homomorphisms of vector bundles with connection (F|U ,∇)→ (F ′
|U ,∇)

satisfy the property of analytic continuation: if U ⊂ V is an inclusion of connected open

sets of Z which induces an isomorphism of the fundamental groups of U − Y and V − Y ,

and if ϕ : F|U → F ′|U is compatible with the connections, then ϕ can be extended in a

unique way to a homomorphism F|V → F ′|V compatible with the connections.

The vector bundles with a logarithmic connection are stable under these operations, and

it is not difficult to describe the behaviour of the residue. For instance, if (O, d) denotes the

trivial vector bundle of rank 1 equipped with the trivial connection, the dual HomO(F ,O) has

residue − t Res∇.

(1.2.8) Meromorphic vector bundles with connection, regular singularities. Let M be a

rank d meromorphic vector bundle on Z with poles along a hypersurface Y , equipped with a

(meromorphic) connection ∇ : M →M⊗OZ
Ω1

Z = M⊗OZ
Ω1

Z [∗Y ]. The connection induces

on any lattice F ofM (if any) a meromorphic connection.

We say that (M,∇) has regular singularities along Y if for any yo in the smooth part of Y ,

there exists a lattice F ofM in a neighbourhood of yo in Z on which ∇ has at most logarithmic

poles along Y (see [10]).

Let M be a meromorphic vector bundle on P1 × X with poles along ∞ × X and put

F = π∗M: this is a rank d OX [z]-locally free sheaf. We will not distinguish between pairs

(M,∇) where ∇ has poles along (∞×X) ∪ Y with π : Y → X finite, and pairs (F ,∇) where

∇ is rational with respect to the variable z and has poles along Y . We will say that (F ,∇)

has regular singularities included at infinity if the meromorphic vector bundle (M[∗Y ],∇) has

regular singularities along (∞×X) ∪ Y .

1.3. Flat connections produced by integrable families

Let us keep assumptions of theorem 1.1.1; assume moreover that F is equipped with a

meromorphic connection with poles along {0,∞}×X and that the connection has logarithmic

poles along ∞×X.
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(1.3.1) Corollary. — Under these conditions, the meromorphic vector bundle π∗F [∗Θ] is

canonically equipped with a flat meromorphic connection 5 with poles along Θ and with a

5-horizontal endomorphism.

Proof. Theorem 1.1.1 shows that the natural mapping (restriction of sections) π∗F → i∗∞F
induces an isomorphism when restricted to X − Θ, and more precisely after tensorising with

OX [∗Θ]. The flat connection on i∗∞F restriction of ∇ (in the sense of § 1.2.5) induces via this

isomorphism a flat meromorphic connection 5 on π∗F [∗Θ]. In the same way, the residue of ∇
at infinity induces a 5-horizontal endomorphism of this meromorphic vector bundle. 2

(1.3.2) Expression in a horizontal basis. Assume that X is simply connected (otherwise re-

place X with a simply connected open set or with its universal covering). The vector bundle

i∗∞F is equipped with a flat connection, hence is trivialisable: it has a horizontal basis; more

precisely every basis of the fibre at xo of this vector bundle extends in a unique way to a

horizontal basis of the vector bundle.

Let us fix such a basis ε. It thus defines a basis (meromorphic along Θ) of the vector bundle

π∗F [∗Θ], in other words the vectors of the basis extend to global sections of F , at least on the

complement of Θ. Recall that we denote z the coordinate on P1 in the chart A1 centered at 0.

(1.3.3) Lemma. — In such a basis ε and in the chart of P1 centered at 0, the connection

matrix of ∇ can be written

Ω =

(
B0(x)

z
+B∞

)
dz

z
+
C(x)

z
(1.3.4)

where B0(x) (resp. C(x)) is a matrix of functions (resp. 1-forms) holomorphic on X − Θ,

meromorphic along Θ, and B∞ is a constant matrix.

Proof. The matrix Ω in the basis ε has type 1. It can hence be written(
B0(x)

z
+B∞(x, z)

)
dz

z
+ C0(x, z) +

C(x)

z
.

where B∞ and C0 are holomorphic in their arguments. The logarithmic behaviour at infinity

shows that B∞ and C0 are independent of z. The horizontality of the basis ε with respect to

the restriction at infinity of the connection shows that C0 = 0. 2

Remark. The matrix −B∞ is the matrix of the residue at infinity of the connection in the

horizontal basis ε. The integrability condition of ∇ can then be written in this basis
dC = 0

C ∧ C = 0

[B0, Ci] = 0 i = 1, . . . , n

dB0 + C = [B∞, C]

(1.3.5)
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if one puts C =
∑

iCidxi in local coordinates xi on X. These equations are the analogue,

for the Birkhoff problem, of the Schlesinger equations for the Riemann-Hilbert problem (see

[23]). If for instance the matrix B0(x) is regular (i.e. its minimal polynomial is equal to its

characteristic polynomial) for all x, the third line implies that the Ci are in the commutative

algebra of polynomials in B0, which gives the second line.

1.4. Constructions with a metric

We keep the previous situation and we analyse the consequences of the existence of a duality

on the vector bundle F . Let then (F,∇) be a vector bundle on P1×X with a connection having

poles along {0,∞} × X. We denote a the antipodal mapping z 7→ −z on P1 (where z still

denotes the coordinate in the affine chart centered at 0) and (aF, a∇) the vector bundle with

connection a+(F,∇), in the sense of § 1.2.3. Denote F = π∗F [∗(∞×X)]: this is a locally free

OX [z]-module. Then aF is the OX-module F on which C[z] acts as h(z) · e = h(−z)e, and if

A(z, x) is the matrix of ∇∂z
in some OX [z]-basis, the one of a∇∂z

in this basis is −A(−z, x).

We denote (F ∗,∇∗) the dual vector bundle, equipped with its natural connection (cf.

§ 1.2.7) and (F,∇)[m] the vector bundle equipped with the shifted connection ∇ + m
dz

z
, for

m ∈ Z (this is the tensor product, in the sense of § 1.2.7, of (F,∇) with (O
P1×X , d+m

dz

z
)).

Let now m be an integer and

G : (F,∇) −→ (aF ∗, a∇∗)[m]

a morphism of vector bundles with a meromorphic connection. One may see G as a bilinear

form

(F ⊗ aF,∇⊗ Id +a∇⊗ Id) −−−→ (OP1×X , d)[m]

compatible with the connections or as a a-sesquilinear form on (F,∇)⊗ (F,∇) with values in

(O
P1×X , d)[m]. With this form is associated an adjoint form aG∗ : (F,∇) → (aF ∗, a∇∗)[m] by

applying operations on vector bundles with connection. Then G is nondegenerate (i.e. is an

isomorphism) if and only if aG∗ is so. If one has aG∗ = (−1)mG, we say that G is a-hermitian

of weight m. If one has aG∗ = (−1)m+1G, we say that G is a-antihermitian of weight m.

The form G induces OX-bilinear forms π∗G, g0
def
= i∗0G and g∞

def
= i∗∞G on the vector

bundles π∗F , i∗0F and i∗∞F . These correspond each other by the restriction morphisms, hence

are identified on X −Θ and we denote g the form obtained in this way.

Let us be more explicit concerning these notions. By taking direct image by π, the form

G defines

G : F ⊗ F → zmOX [z]
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such that

h(z)G(e, e′) = G(h(z)e, e′) = G(e, h(−z)e′)
LξG(e, e′) = G(∇ξe, e

′) + G(e, a∇ξe
′).

The coefficient of zm in G(e, e′) only depends on the classes of e and e′ in F /zF : it is equal to

g0(e, e
′). If one writes

G(e, e′) = zmg0(e, e
′) + zm+1g

(1)
0 (e, e′) + · · ·

one has aG∗(e, e′) = G(e′, e)a = (−z)mg(e′, e) + (−z)m+1g
(1)
0 (e′, e) + · · · and if G is a-hermitian

of weight m one deduces that g0 is symmetric. An analogous reasoning can be done for g∞
working in the chart centered at infinity.

If e, e′ ∈ F are sections which extend to sections of F on P1 × X, one has G(e, e′) =

zmg0(e, e
′).

(1.4.1) Proposition. — The form g∞ is 5-horizontal. If moreover G is a-hermitian non-

degenerate of weight m, the forms g0 and g∞ are symmetric nondegenerate. In this case, in

any horizontal basis ε for 5 (assuming X simply connected) in which the matrix of ∇ takes

the form (1.3.4), one has on X − Θ, B∗
0 = B0, B

∗
∞ + B∞ = m Id and C∗ = C, if B∗ denotes

the adjoint of B relative to g.

Proof. One may consider G as a horizontal section of the vector bundle HomO(F ⊗ aF ,O[m])

equipped with its natural connection, which has logarithmic poles at infinity. The component

on Ω1
X restricted to z =∞ of the equation ∇G = 0 is the equation 5G(∞, x) = 0.

One also has an isomorphism of locally free OX-modules i∗∞(F ∗) ' (i∗∞F )∗ so that if G is

nondegenerate one deduces that g∞ is so. The case of g0 is identical, and the symmetry has

been seen above.

The matrix of ∇∗ in the basis dual to ε is the opposite of the transpose of the one of ∇.

The one of a∇∗[m] can hence be written(
tB0(x)

z
− tB∞ +m Id

)
dz

z
+

tC(x)

z

which gives the last point. 2

Remark. Let F be the C-vector space of dimension d of multivalued horizontal sections of ∇
on C∗. It is equipped with a monodromy automorphism T . The form G induces a bilinear (resp.

nondegenerate and symmetric) form G on this space, and the monodromy is an automorphism

of this bilinear form.

1.5. Résumé

Let F be a rank d vector bundle on P1 ×X equipped with a flat meromorphic connection

∇, with poles along {0,∞}×X, logarithmic along {∞}×X and of type 1 along {0}×X. We

assume that the restriction F o of F to P1 × {xo} is trivial.
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(1.5.1) The closed set Θ of points x ∈ X where the restriction Fx to P1×{x} is not the trivial

vector bundle is empty or is a hypersurface of X (hence if it is of codimension ≥ 2 in X, it

must be empty).

The two vector bundles E
def
= i∗0F and i∗∞F of rank d on X are identified in a meromorphic

way along Θ, according to the isomorphisms of OX [∗Θ]-modules induced by the restrictions

E = i∗0F [∗Θ]
∼←− π∗F [∗Θ]

∼−→ i∗∞F [∗Θ].

We will denote M this meromorphic vector bundle on X. It contains two lattices which are

locally free, namely E = i∗0F and E∞ def
= i∗∞F , and a intermediate lattice E1, namely the image

of π∗F inM, in other words the quotient of π∗F by its OX-torsion, if any.

(1.5.2) The lattice E∞ is equipped with a flat connection5 and a5-horizontal endomorphism

R∞ (residue of the connection ∇, with matrix −B∞ in a horizontal basis). One deduces a flat

meromorphic connection and a horizontal meromorphic endomorphism onM as well as on the

other lattices.

(1.5.3) The lattice E is equipped with an endomorphism R0 (“residue” of ∇) depending on

the choice of a coordinate on A1 up to a multiplicative constant. It induces a meromorphic

endomorphism onM and on the other lattices.

The lattice E is moreover equipped with a 1-form Φ with values in the endomorphisms of

E , which verifies Φ ∧ Φ = 0, In other words (E ,Φ) is a Higgs bundle.

(1.5.4) The formation of Θ, M, E , E∞, Φ, R0, 5 and R∞ commutes with base change: if

f : X ′ → X is an analytic map and if F ′ denotes the pull-back of F on P1 × X ′ by Id×f ,

equipped with the pulled-back connection ∇′, the previous objects relative to F ′ are obtained

from those relative to F by the inverse image f ∗.

(1.5.5) Relations. In a 5-horizontal basis, the matrix of ∇ takes the form (1.3.4) and the

matrix of R0 is B0, the one of R∞ is −B∞, that of Φ is C. The integrability conditions (1.3.5)

become

52 = 0, 5(R∞) = 0, Φ ∧ Φ = 0, [R0,Φ] = 0

5(Φ) = 0, 5(R0) + Φ = [Φ, R∞].

(1.5.6) Behaviour with respect to a metric. Let moreover a a-hermitian nondegenerate form

G be given on F , compatible with the connection ∇ and which has weight m ∈ Z. One deduces

nondegenerate bilinear symmetric forms g0 and g∞ on E and E∞, which coincide on M. On

X −Θ they satisfy

5(g) = 0, R∗∞ +R∞ = −m Id

Φ∗ = Φ, R∗0 = R0.

The first line (resp. the second one) extends to X using E∞ and g∞ (resp. E and g0).
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(1.5.7) Converse. Give a locally free OX [∗Θ]-module M, equipped with a flat connection

5, with an endomorphism Φ taking values in Ω1
X [∗Θ], with endomorphisms R0 and R∞, all

meromorphic along Θ, and satisfying relations 1.5.5. Then we can equip the vector bundle

π∗M, which is a vector bundle on P1× (X −Θ), meromorphic along Θ, with a flat connection

∇ with logarithmic poles along {∞} ×X and of type 1 along {0} ×X: one puts

∇ = 5+
(
R0

z
−R∞

)
dz

z
+

Φ

z
.

One could also set

∇ = 5−
[(
R0

z
+R∞

)
dz

z
+

Φ

z

]
.

We do not give any precision here on the possibility of an extension along P1 × Θ. If the

relations 1.5.6 are also satisfied, one can lift the bilinear form g to a a-hermitian nondegenerate

form on π∗M.

1.6. The Fourier-Laplace transform

It is well known that the Laplace transform, acting on tempered distributions of the variable

t, changes multiplication by t to derivation −∂τ and multiplication by τ to derivation ∂t.

Let C[t]〈∂t〉 denote the Weyl algebra of differential operators with polynomial coefficients:

this is the quotient of the free associative algebra generated by C[t] and C[∂t] by the two-sided

ideal generated by the relation ∂t · t− t · ∂t − 1.

In the same way, the Laplace transform exchanges C[t]〈∂t〉-modules and C[τ ]〈∂τ 〉-modules.

Nevertheless, it does not exchange meromorphic vector bundles on A1 with connection (τ vari-

able) and meromorphic vector bundles on Â1 with connection (t variable): torsion phenomena

might appear (recall that, up to a constant, the Fourier transform of the constant function

1 is the Dirac distribution at the origin). In certain cases, it exchanges vector bundles with

a meromorphic connection on Â1 and vector bundles with a meromorphic connection of the

variable 1/τ . The same is true for families of vector bundles on P1.

Fourier-Laplace and inverse Fourier-Laplace. Start with an algebraic vector bundle F̂ of rank d̂

on Â1 (or equivalently a rank d̂ free C[t]-module F̂ ). Assume it is equipped with a meromorphic

connection with poles on a finite set Σ ⊂ Â1 defined as the zero set of a polynomial Q. In other

words we are given

∇̂ : F̂ → F̂ ⊗
C[t]

C[t, Q−1] · dt

or also, if a basis of F̂ is chosen, a matrix A(t) with entries in the ring C[t, Q−1] of rational

fractions with poles on Σ. Assume moreover:

1. the linear differential system defined by the connection ∇̂ (i.e. the system
du

dt
= A(t)u)

has regular singularities at all points of Σ as well as at infinity (cf. § 1.2.8);
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2. for each element e of F̂ there exists a unique element e′ of F̂ such that ∇̂∂/∂t
e′ = e (that

is, any element of F̂ has a unique primitive).

One may then consider F̂ as a module on the ring of polynomials in z = ∂−1
t . We will denote

it F . We may define the action of the vector field ∂z on F by z2∇∂z

def
= t (i.e. multiplication

by t). One checks that this gives the algebraic vector bundle F on the affine line SpecC[z] a

structure of a meromorphic connection ∇. It is called the Fourier-Laplace transform of (F̂ , ∇̂).

(1.6.1) Proposition (see for instance [25, Chap.V]).

1. The C[z]-module F is free and its rank d can be computed only in terms of local infor-

mations given by the singular points of ∇̂.

2. The vector bundle with meromorphic connection (F ,∇) has a singular point at the origin

only, and it has type 1 or 0, and the connection ∇ has regular singularities at z =∞. 2

Conversely, if one starts with a vector bundle with a meromorphic connection (F ,∇) of

rank d and of type 1 at most, one can define multiplication by t as the action of z2∇∂z and one

obtains a C[t]-module denoted F̂ , equipped with an action of ∂−1
t

def
= z. One can show that it is

also possible to define a meromorphic action of ∂t, but in general it is not clear why F̂ should

have finite type on C[t] and, even if this would be the case, F̂ could have torsion.

The inverse Laplace transform and the Riemann problem. Under some assumptions on (F ,∇),

one can be more precise on this question:

(1.6.2) Proposition. — Assume that F has a basis in which the matrix of ∇ takes the

form
(
B0

z
+B∞

)
dz

z
where B∞+ k Id is invertible for all k ∈ N (in particular (F ,∇) has type

1 at z = 0, the only singularities are z = 0 and z = ∞ and the connection extends with a

logarithmic pole with residue −B∞ on the trivial vector bundle on P1). Then

1. the inverse Laplace transform F̂ is a free C[t]-module of rank d̂ = d, the action of z−1

defines a meromorphic connection on this vector bundle all the singularities of which (even

t =∞) are regular;

2. the poles of the connection are located at eigenvalues of B0 and the connection extends

with a logarithmic pole at t =∞ on the trivial vector bundle on P̂1;

3. the vector bundle with meromorphic connection (F̂ , ∇̂) is logarithmic if and only if B0 is

semi-simple with distinct eigenvalues.

Sketch of proof. Write the given basis ε of F as a column vector. Then for all k ≥ 1 we have

zkε =
k−1∏
`=0

[
(tB∞ + ` Id)−1(t Id−tB0)

]
· ε.

The assumption on B∞ shows therefore that F is generated by ε as a C[t]-module. Denote it

F̂ . The meromorphic vector bundle F [z−1] is a holonomic C[τ ]〈∂τ 〉-module, with τ = z−1 and
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τ∂τ = −z∂z. Its Laplace transform is also holonomic as a C[t]〈∂t〉-module, and when tensored

with C(t), it is a d̂-dimensional C(t)-vector space. The formula of [25, Chap.V, prop. 1.5] shows

that d̂ = d. Hence dimC(t) C(t) ⊗C[t] F̂ = d so F̂ is in fact C[t]-free of rank d. The matrix of

∇̂ in the basis ε is B∞(t Id−B0)
−1. 2

The inverse Laplace transform gives thus a one-to-one correspondence between (trivial)

vector bundles of rank d on the affine line equipped with a connection for which the matrix

can take the form
(
B0

z
+B∞

)
dz

z
with B∞ + k Id invertible for all k ∈ N, and those for which

the matrix can take the form B∞ (t Id−B0)
−1 dt. Remark however that not any trivial vector

bundles with a logarithmic connection on P̂1 is obtained in this way. On the other hand, if

needed, one can shift the connection by m
dz

z
for a suitable m in order that B∞ + k Id becomes

invertible for all k ∈ N.

(1.6.3) Partial Fourier-Laplace transform. The previous results extend to families. Fourier-

Laplace transforms a locally free OX [t]-module F̂ equipped with an integrable meromorphic

connection ∇̂ with poles along a set ∆ ⊂ Â1×X finite over X, with regular singularities even at

infinity and on which the derivation ∇̂∂t
is invertible, into a locally free OX [z]-module equipped

with a meromorphic connection with poles of type 1 along z = 0 and with regular singularity

at z =∞.

One also has the analogue of proposition 1.6.2: if one starts from a family of vector bundles

F̃ on P1×X endowed with∇ satisfying the assumptions of § 1.3 and if F denotes the restriction

to A1 × X (chart z), these results apply to the meromorphic vector bundle F [∗Θ]. One has

to assume that R∞ − k Id is invertible for all k ∈ N. The singular locus of the connection ∇̂,

namely ∆, is defined by the equation det(t Id−R0) = 0.

2. The Riemann-Hilbert-Birkhoff problem

2.1. The Riemann-Hilbert-Birkhoff problem on P1

To know if a trivial vector bundle on a disc centered at 0, equipped with a meromorphic

connection with pole at 0 extends as a trivial vector bundle on P1 equipped with a connection

with only one other pole (at infinity for instance), this one being logarithmic, is known as the

Riemann-Hilbert-Birkhoff problem. It can be translated in terms of holomorphic differential

systems.

Notice first that if one does not ask, in the problem above, that the vector bundle on P1 is

trivial or if one does not ask that the extended connection has a logarithmic pole at infinity,

the problem has an easy solution. The conjunction of these two conditions is what makes the

problem difficult (see the appendix, §A.2 for more precision).

One is then given, on a disc with coordinate z centered at the origin, a meromorphic

connection of type 1 on the trivial vector bundle. In a basis of this vector bundle, the connection
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matrix takes the form A(z)
dz

z
where A(z) is a square matrix of size d such that zA(z) has

holomorphic entries, one of which at least is nonzero at z = 0.

The Riemann-Hilbert problem is equivalent3 in this situation to the problem of finding

a Birkhoff normal form: does there exist a matrix P (z) in GLd(O), where O is the ring of

convergent power series at 0 (i.e. P has holomorphic coefficients and its determinant does not

vanish at 0) such that the matrix B(z) = P−1AP + zP−1P ′ can be written

B(z) = z−1B0 +B∞(2.1.1)

where B∞ and B0 are constant matrices?

Finding a Birkhoff normal form is not always possible, but under certain irreducibility

assumptions it is so [6].

2.2. The Riemann-Hilbert-Birkhoff problem in a family

One is now given a relatively trivial vector bundle on D ×X with a connection with pole

along {0} ×X. One tries to extend this vector bundle as a relatively trivial vector bundle on

P1 × X and the connection as a meromorphic connection with another pole along {∞} × X
only, this one being logarithmic. It happens that, if one restricts X and if the problem has a

solution for a value of the parameter, it has a solution for the family.

Rigidity of local logarithmic connections. The proposition below shows that, locally, the loga-

rithmic connections do not give rise to an interesting integrable deformation theory. It is stated

for a disc centered at the origin, but we will apply it at infinity.

(2.2.1) Proposition ([23]). — Let (F o,∇o) be a (trivial) vector bundle on a disc D equipped

with a connection with a logarithmic pole at the origin. Let X be a 1-connected analytic manifold

and xo ∈ X. There exists then a unique (up to a unique isomorphism) vector bundle F on D×X
with a logarithmic connection along {0} ×X such that (F,∇)|D×{xo} = (F o,∇o).

Remark. This result has to be compared with lemma A.2.1, but the condition on the eigen-

values of the residue is replaced here with the initial condition (F,∇)|D×{xo} = (F o,∇o), which

gives the strong uniqueness property.

Proof. The existence is clear: it is enough to take for (F,∇) the inverse image of (F o,∇o) by

the projection p : D ×X → D.

If one has another such vector bundle (F ′,∇′), one remarks first that there exists a unique

isomorphism

(F,∇)|D∗×X
∼−→ (F ′,∇′)|D∗×X

3see proposition A.2.2 in appendix
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which induces the identity when restricted to xo: indeed, on D∗ × X, the datum of a vector

bundle with a flat connection is equivalent to the datum of the local system of its horizontal

sections, in other words of a representation of π1(D
∗ ×X) = π1(D

∗). As both representations

coincide when restricted to xo, one gets the unique isomorphism. It remains to show that this

isomorphism and its inverse extend to D ×X.

The isomorphism σ above is a horizontal section on D∗×X of the bundle HomO
D∗×X

(F ,F ′)
equipped with its natural meromorphic connection. This connection has at most logarithmic

poles along {0}×X, so the section σ is meromorphic along {0}×X. As it can be extended to

D × {xo}, it can be extended to D ×X as well, and the same argument holds for σ−1. 2

(2.2.2) Remark. If one starts from (F o,∇o, Go) where Go is a a-hermitian nondegenerate

form of weight m ∈ Z, the same arguments show the existence and the uniqueness of an

extension (F,∇, G): the existence is obtained by inverse image; for the uniqueness, one has to

show that the unique isomorphism given by the proposition above is compatible with the forms

G and G′; by continuity it is enough to verify this on D∗ ×X and one uses the fact that the

forms G and G′ on the space of multivalued horizontal sections E and E′ coincide, since they

coincide when restricted to {xo}. 2

Deformation of the Birkhoff problem. We can now use corollary 1.3.1. We assume below that

the parameter space is simply connected in order to use proposition 2.2.1.

(2.2.3) Corollary. — Let X be a 1-connected analytic manifold, xo a point of X, and let

(F,∇) be a rank d vector bundle on D ×X equipped with a flat meromorphic connection with

poles along {0} × X. Assume that there exists an extension (F̃ o,∇o) of (F o,∇o) to P1 such

that F̃ o is a trivial vector bundle and for which ∇o has a logarithmic pole at infinity. Then

1. there exists an extension (F̃ ,∇) of (F,∇) as a vector bundle to P1 ×X for which ∇ has

logarithmic poles along {∞} × X and for which the restriction to P1 × {xo} coincides

with (F̃ o,∇o); such an extension is unique up to a unique isomorphism;

2. there exists a hypersurface Θ in X and a meromorphic trivialisation of F̃ with poles along

Θ (i.e. an isomorphism of OX [∗Θ]d with OX [∗Θ]⊗OX
F̃ = F̃ [∗π−1Θ]) which extends the

given trivialisation of F̃ o;

3. the rank d meromorphic vector bundle π∗F̃ [∗Θ] is equipped with a meromorphic trivial-

isation with poles along Θ, a flat connection 5 with poles along Θ and a 5-horizontal

endomorphism.

Remark. Once the trivialisation (i.e. the basis) of F̃ o fixed, one hence gets a meromorphic

basis of F̃ , thus a basis of F̃|P1×(X−Θ). In this basis, the matrix of ∇ has poles along ({0,∞}×
X) ∪ (P1 ×Θ), the latter being apparent (i.e. only caused by the choice of the basis).

Similarly, the connection 5 is given by a matrix of 1-forms on X with poles along Θ and

the endomorphism is given by a meromorphic matrix with poles along Θ. Moreover, we have

manufactured a meromorphic basis which is 5-horizontal, namely the one which gives the
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trivialisation of π∗F̃ [∗Θ]. Therefore, the monodromy of the connection 5 on X − Θ is the

identity and 5 has regular singularities along Θ.

Proof. The points (2) and (3) are merely a reformulation of statements 1.1.1 and 1.3.1. For

the first point, one extends by analytic continuation (F,∇) to a holomorphic vector bundle on

C × X with flat connection with poles along {0} × X: this can be done since the inclusion

D∗ ×X ↪→ C∗ ×X does not change the fundamental group. On the other hand, according to

proposition 2.2.1, the logarithmic connection at infinity given by F̃ o extends in a unique way to

a neighbourhood of {∞}×X. The two extensions coincide on the intersection of their domain.

2

This result can be interpreted in terms of differential systems. Assume from now on

that (F,∇) has type 1 along {0} ×X. Let xo ∈ X and assume that one can solve the Birkhoff

problem for the restriction (F o,∇o) at xo. Let then εo be a basis of F o in which the connection

matrix ∇o can be written
(
Bo

0

z
+B∞

)
dz

z
. Assume moreover that X is 1-connected and denote

Θ the hypersurface given by corollary 2.2.3.

(2.2.4) Corollary. — Under these conditions, there exists on X − Θ a unique basis ε of

F which coincides with εo at xo and in which the connection matrix ∇ takes the form (1.3.4)

Ω =

(
B0(x)

z
+B∞

)
dz

z
+
C(x)

z

where B∞ is a constant matrix, B0(x) a matrix of holomorphic functions and C(x) a matrix of

holomorphic 1-forms on X −Θ, meromorphic along Θ.

Proof. If such a basis ε exists, it is horizontal for the connection 5, hence is obtained by

parallel transport from εo by the flat connection 5. Conversely, the basis of F̃|{∞}×X obtained

in this way satisfies the desired properties on X −Θ, according lemma 1.3.3. 2

(2.2.5) Remarks.

(1) If one starts from (F,∇, G), whereG is an isomorphism of vector bundles with connection

(F,∇)
∼−→ (aF ∗, a∇∗)[m] on D×X, and if one has a solution of the Birkhoff problem at xo with

moreover an isomorphism G̃o which extends Go, then, due to remark 2.2.2 one has on (F̃ ,∇)

an isomorphism G̃ given by corollary 2.2.3 which extends G.

(2) Assume that (F o,∇o) is irreducible as a germ at z = 0 of vector bundle with connection

of type 1, so that it does not have a sub-vector bundle stable by ∇o (in a neighbourhood of

z = 0). Then a theorem of A. Bolibruch [6], that we will not develop here, shows that one

can solve the Birkhoff problem for (F o,∇o). If, under the assumptions of corollary 2.2.3, there

exists a point xo of X where (F o,∇o) is irreducible, one deduces that the conclusion of corollary

2.2.4 is satisfied.
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3. Examples

The examples proposed here illustrate three different situations where one has a Birkhoff

normal form.

• The first one comes from an existence theorem of a universal deformation, due to B.

Malgrange [22, 24]: from the data Bo
0 and B∞ of two matrices d × d, where Bo

0 is regular, we

construct a manifold X and a family of vector bundles on X ×P1 which deforms in a universal

way the trivial vector bundle with connection matrix
(
Bo

0

z
+B∞

)
dz

z
; when Bo

0 is moreover

semi-simple (i.e. with distinct eigenvalues) one identifies the parameter space to a Zariski open

set of the universal covering of the complement of the diagonals in Cd. The meromorphy along

the hypersurface Θ obtained in cor. 1.3.1 becomes the Painlevé property of certain integrable

systems, analoguous to Schlesinger equations [16, 17, 18]. We follow here [22, 23, 24].

• The second one has a geometric origin. If one starts from a polynomial p : Cn+1 → C

all the critical points of which are isolated and which is tame, the stationary phase method

estimating the asymptotic behaviour when z → 0 of integrals with integrand e−p/z leads us

to analyse the Gauss-Manin system of the polynomial. This is a free C[z]-module of rank µ

(number of independent n-cycles in a hypersurface p = t when t is not a critical value of p),

equipped with a connection, which has a pole of type 1 at z = 0 (this is seen using the fact

that in the asymptotic expansions, the exponential part has the type e−a/z, where a is a critical

value of p, the type being the power of z in the denominator of the exponential). Hodge theory

allows us to show that this connection admits a Birkhoff normal form. A family of polynomials

P (x, •) parametrized by x ∈ X gives rise to a flat connection on a vector bundle of rank µ on

the parameter space.

• Last, the third example (mainly a stylistic composition), obtained from a variation of

polarized Hodge structures, is inspired from an article by Deligne [11]. The Birkhoff problem

becomes in this case the problem of existence of a weight filtration opposite to the Hodge

filtration, but here the matrix B0(x) is identically zero, so that the family is not a deformation

with constant type of a vector bundle with connection.

3.1. Existence of universal deformations

Let (F o,∇o) be a trivial vector bundle on the disc D equipped with a meromorphic connec-

tion with a pole of type 1 at z = 0. An integrable deformation of (F o,∇o) parametrized by X is

a vector bundle F on D×X equipped with a flat connection ∇ with poles along {0}×X, which

has also type 1, and which induces at xo the vector bundle (F o,∇o). It is complete if any other

deformation with base X ′ comes from the previous one by pull-back by a holomorphic map

(X ′, x′o)→ (X, xo). It is universal if moreover this base change is unique (in a neighbourhood

of xo).
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Assume that (F o,∇o) has a Birkhoff normal form, in other words there exists a basis

in which the matrix of ∇o takes the form
(
Bo

0

z
+B∞

)
dz

z
, where Bo

0 is a nonzero matrix (the

type is exactly 1).

(3.1.1) Theorem ([24, th. 4.1]). — If the matrix Bo
0 is regular (i.e. its minimal polynomial

is equal to its characteristic polynomial), the connection with matrix
(
Bo

0

z
+B∞

)
dz

z
has a germ

of a universal deformation.

Sketch of proof. From corollary 2.2.4 follows that, for any deformation, there exists a basis in

which the connection matrix takes the form (1.3.4). The matrices B0(x), B∞ and C(x) satisfy

relations (1.3.5) due to integrability condition. As we yet remarked after (1.3.5), the regularity

of B0 shows that these reduce to
dC = 0

[B0, Ci] = 0 i = 1, . . . , n

dB0 + C = [B∞, C]

(3.1.2)

if we put C =
∑

iCidxi. If one locally solves the first one by C = dΓ with Γ(xo) = 0, one gets a

differential system on the space of matrices (B0,Γ), which is integrable on the open set where

B0 is regular. The maximal integral manifold going through (Bo
0, 0) is then the solution of the

problem. Notice that the dimension of this leaf is then equal to the size d of the matrices B. 2

The semi-simple case. If one assumes that Bo
0 is regular semi-simple, one can give a more global

solution to the problem of existence of a universal deformation. One is given two matrices

Bo
0 and B∞ in Md(C) with Bo

0 diagonal and regular (i.e. with distinct eigenvalues); denote

Bo
0 = diag(xo

1, . . . , x
o
d).

Let Xd be the complement of the diagonals xi = xj in Cd endowed with coordinates

x1, . . . , xd, with base point xo = (xo
1, . . . , x

o
d). Denote X̃d the universal covering of Xd with base

point x̃o. The vector bundle TX̃d is trivialised and equipped with a basis ∂x1
, . . . , ∂xd

. We will

say that this trivialisation is canonical.

LetRd be the open set of regular matrices and let Sd ⊂ Rd be the subset of matrices which

are regular and semi-simple. Denote Car : Md(C)→ Pd the characteristic polynomial and ∆d

the subset of Pd made with polynomials having multiple roots. Then Sd = Car−1(Pd −∆d).

The set X̃d (with its base point x̃o) is also the universal covering of Pd − ∆d and we

denote $ : X̃d → Pd −∆d the covering map.

Denote (F o,∇o) the trivial vector bundle on A1 equipped with a basis εo in which the

connection matrix ∇o is
(
Bo

0

z
+B∞

)
dz

z
with Bo

0 ∈ Sd. The trivial vector bundle F̃ o with basis
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εo on P1 is then equipped with a connection with a logarithmic pole at infinity, with residue

−B∞, and coincides with the previous one on A1.

(3.1.3) Theorem ([17], [22]). — Under these conditions, there exists on P1 × X̃d a vector

bundle (F̃ ,∇) with connection of type 1 along {0}× X̃d and logarithmic along {∞}× X̃d, which

coincides with (F̃ o,∇o) when restricted to x̃o and for which the characteristic polynomial of the

“residue” (in the sense of § 1.2.6) at the point (0, x̃) is equal to $(x̃) for all x̃ ∈ X̃d. Such a

(F̃ ,∇) is unique up to a unique isomorphism.

Remarks.

1. We will give in the §§B.1 and B.2 two proofs of this theorem.

2. At each point (0, x̃), the “residue” is then the class of a semi-simple matrix with distinct

eigenvalues, corresponding to the image of x̃ in Xd.

3. One can then apply corollary 2.2.4.

(3.1.4) Universal deformation with metric. Assume that B∞ satisfies tB∞ + B∞ = m Id

for some m ∈ Z. In other words the form Go on F̃ o for which Go(εo
i , ε

o
j) = δij defines an

isomorphism (F̃ o,∇o)
∼−→ (aF̃ o∗, a∇o∗)[m]. Then this isomorphism extends in a unique way as

a meromorphic isomorphism along the hypersurface Θ given by corollary 2.2.4:

(F̃ [∗Θ],∇)
∼−→ (aF̃

∗
[∗Θ], a∇∗)[m].

Indeed, if Go extends, the associated form g∞ is horizontal for 5 and hence G(εi, εj) = δij.

Conversely, if one defines G in this way, it suffices to verify that the matrix B0 and the matrices

Ci are symmetric. The skewsymmetry assumption on B∞ shows that the system (3.1.2) is

stable by transposition. Because by assumption the initial condition (Bo
0, C

o = 0) is so, one

gets the desired result. 2

3.2. Some properties of universal isomonodromic deformations

We keep the previous situation and we assume that Bo
0 is regular semi-simple. We can

apply corollary 2.2.3 to the vector bundle (F̃ ,∇) obtained from theorem 3.1.3. We hence get a

hypersurface Θ of X̃d and a flat connection 5 on π∗F̃ , with poles along Θ.

(3.2.1) The basis ε. From corollary 2.2.4 there exists a unique basis ε, meromorphic along

Θ, of E
def
= F

|{0}×X̃d
which coincides with εo at x̃o and such that the connection matrix ∇ in

this basis lifted to F takes the form

Ω =

(
B0(x̃)

z
+B∞

)
dz

z
+

d∑
i=1

Ci(x̃)

z
dxi

where B0 and the Ci are holomorphic on X̃d −Θ and meromorphic along Θ. The integrability

condition of ∇ is equivalent (because B0 is regular) to conditions (3.1.2). Moreover, B0(x̃) is

conjugate to diag(x1, . . . , xd) for any x̃.
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(3.2.2) The basis e. According to theorem B.1.3, the restriction E of the vector bundle F to

{0}×X̃d decomposes as a direct sum of line bundles. The “residue” R0 of ∇, being equal to the

one of the associated formal connection ∇̂ (see §B.1), is compatible with this decomposition.

From remark B.1.2, each of these line bundles is flat, and since X̃d is 1-connected, the data of a

basis vector gives a trivialisation of this line bundle. Because by assumption Bo
0 is diagonal in

the basis εo, this basis is adapted to the decomposition when restricted to x̃0. One thus gets a

trivialisation of E and more precisely a unique basis e which coincides with εo at x̃o and which

is compatible with the decomposition.

Remark. When one has a nondegenerate a-hermitian form as in § 3.1.4, we will see later that

the basis e is orthogonal for the metric g0 induced on E. If necessary, one may replace the

basis e with a basis e′ proportional to e and orthonormal for g0. Such a basis is denoted (ei)

in [15].

(3.2.3) Comparison of the bases ε and e. Theorem B.1.3 implies that there exists a formal

base change in z with meromorphic coefficients on X̃d − Θ which transforms the matrix Ω of

∇ in the basis ε to a matrix Ω̂′ of the following form

Ω̂′ = −d
(
U(x̃)

z

)
+ ∆∞

dz

z

where U(x̃) = diag(x1, . . . , xd) and ∆∞ is a constant diagonal matrix (which gives the “formal

monodromy”): ∆∞ is in fact the diagonal part of the matrix B∞.

Let P (x̃, z) =
∑∞

k=0 Pk(x̃)z
k be the matrix of this base change. One then has

Ω = P Ω̂′P−1 − dPP−1

and hence dP = P Ω̂′ − Ω′. One deduces, considering the coefficient of zk with k = −2,−1, 0,

that the one must have

P0U = B0P0

P1U −B0P1 = B∞P0 − P0∆∞

CiP0 = −P0Ei

∂P0

∂xi

= −CiP1 − P1Ei

where Ei = ∂U/∂xi is the diagonal matrix where the only nonzero entry is equal to 1 and has

index (i, i). Thus we have U =
∑

i xiEi.

Once this formal base change is known, the basis e introduced above is obtained by

only considering the zeroth order part of the base change, namely the matrix P0: indeed, one

restricts to z = 0 the formal vector bundle associated with F to find the basis e. Consequently,

the matrix Ω′ of ∇ in the basis e is given by

Ω′ = P−1
0 ΩP0 + P−1

0 dP0
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with the normalisation P0(x̃
o) = Id since eo and εo coincide. Using the previous relations and

setting Z(x̃) = −P0(x̃)
−1P1(x̃) one gets

Ω′ = −d
(
U

z

)
+ (∆∞ + [U,Z])

dz

z
− [dU, Z].

Last, the matrix of 5 in the basis e is the restriction to z =∞ of the part independent of dz

in Ω′, namely here −[dU, Z] which may also be written
∑d

i=1Ai(x̃)dxi with Ai = −[Ei, Z].

Put V (x̃) = [U,Z]. One has V o def
= V (x̃o) = B∞ −∆∞. Then the integrability condition on

∇ expressed in the basis e shows that V satisfies the differential system

dV = [[dU, Z], V + ∆∞].(3.2.4)

Remark. One has
∑

iAi = −[
∑

iEi, Z] = −[Id, Z] = 0. Consequently, the matrix of 5Σi∂xi
in

the basis e is zero. On the other hand, the matrix of Φ in the basis e is given by

Φ(∂xi
) = −Ei.(3.2.5)

The case where B∞ is skewsymmetric. The previous results can be expressed in a simpler way

if one assumes that B∞ is skewsymmetric or more generally if B∞ − (m/2) Id is so for some

m ∈ Z (in this case ∆∞ = (m/2) Id). One then has

(3.2.6) Proposition. — If B∞−(m/2) Id is skewsymmetric, the matrix B0 and the matrices

Ci are symmetric.

Proof. Il suffices to use the fact that the system (3.1.2) is invariant by transposition (see also

§ 3.1.4). 2

This property can also be read in the basis e:

(3.2.7) Proposition. — The matrix B∞ − (m/2) Id is skewsymmetric if and only if V =

[U,Z] is so. If this property is satisfied, the matrix P0 sending the basis ε to the basis e is such

that P0
tP0 is diagonal.

Proof. By construction one has V o = B∞ − (m/2) Id, hence one direction is clear. If B∞ −
(m/2) Id is skewsymmetric one deduces that the matrix Zo = adU−1B∞ is symmetric. Con-

sidering the integrable system satisfied by Z as a consequence of (3.2.4), on concludes that Z

is symmetric and hence V is skewsymmetric.

For the second point, consider the restriction to P1 × (X̃d − Θ) of the nondegenerate a-

hermitian form G on (F̃ ,∇) manufactured in § 3.1.4. The isomorphism

(F,∇)
∼−→ (aF ∗, a∇∗)[m](3.2.8)

that one deduces from it induces an isomorphism of formal completions along (X̃d −Θ)× {0}.
As the rank 1 factors in the formal decomposition are pairwise inequivalent, this isomorphism
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is compatible with the formal decomposition. Restricting the isomorphism (3.2.8) to {0} ×
(X̃d −Θ), one gets then a nondegenerate bilinear form g0 for which the basis e is orthogonal.

On the other hand, the form G induces a bilinear form on π∗F̃|X̃d−Θ
(by taking global

sections). In the basis ε it coincides with g∞ and in the basis e with g0. One deduces that

P0
tP0 is equal to the diagonal matrix with diagonal entries g0(ei, ei). 2

We now assume skewsymmetry of B∞−(m/2) Id. In particular the matrix Z is symmetric

and we may also assume that its diagonal part is zero. The proof of the following lemma, valid

when restricted to X̃d −Θ, is left to the reader.

(3.2.9) Lemma. — Let v =
∑

i vi(x̃)ei be a section of E.

1. The section v is horizontal for 5 if and only if the vi satisfy the equations (i, j = 1, . . . , d)

∂vi(x̃)

∂xj

= −vj(x̃)Zij(x̃) si i 6= j

∂vi(x̃)

∂xi

=
∑
k 6=i

vk(x̃)Zik(x̃).

2. If such is the case, the form
∑

i v
2
i (x̃)dxi is closed.

3. Let Ev =
∑

i xivi(x̃)ei. If moreover v is an eigenvector of V with eigenvalue α ∈ C, one

has

5Ev =
d∑

j=1

(α+ 1)ejvjdxj +
∑
i,j

Vijejvidxi

and for any i the function v2
i is homogeneous of degree 2α (i.e.

∑
j xj∂xj

v2
i = 2αv2

i ). 2

(3.2.10) A Hamiltonian system. We continue to assume that B∞ −m/2 Id is skewsymmet-

ric. In the basis ε, the matrix of the endomorphism R0 remains conjugate to diag(x1, . . . , xd)

and the one of R∞ remains constant. In the basis e however, the matrix of R0 is equal to

diag(x1, . . . , xd), but the one of R∞+m/2 Id, namely −V , varies in the space of skewsymmetric

matrices following the differential system (3.2.4).

In [16] is brought into evidence the Hamiltonian structure of the system satisfied by V

(see also [14], [12, prop. 3.7], [15, th. 4.1]). This system can be interpreted as a Hamiltonian

system on the space Xd × OV o , where OV o is the adjoint orbit of the skewsymmetric matrix

V o = B∞ − (m/2) Id endowed with its usual symplectic structure. On puts, for (x, V ) ∈
(Xd −Θ)× so(d,C)

Hi(x, V ) = −
∑
j 6=i

V 2
ij

xi − xj

and one denotes Xi(x, V ) (i = 1, . . . , d) the Hamiltonian vector field tangent to OV o corre-

sponding to Hi. The equation (3.2.4) takes the form (cf. [15, th. 4.1])

∂V

∂xi

= Xi(x, V ). 2
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3.3. The Gauss-Manin system of a family of polynomials

The construction of the Gauss-Manin system that we present here has first been done

by E. Brieskorn [8] for germs of holomorphic functions with an isolated critical point, the

microlocal aspect of the construction has been emphazised by F. Pham [28]. In order to

avoid the introduction of microdifferential operators we will present a global version of this

construction, which applies to polynomials p : U = Cn+1 → C which have isolated critical

points and which satisfy a condition “at infinity”. The coordinates on U are denoted u0, . . . , un

and the coordinate on the target is denoted t.

More generally, we consider a family of polynomials P : U ×X → C which coefficients are

parametrized by x ∈ X.

It could be interesting to take for U any affine quasi-projective manifold: for n = 0, U is

then a affine curve; for n ≥ 1, U could be the complement of an arrangement of hyperplanes

in Cn+1.

(3.3.1) The relative de Rham complex twisted by e−P/z. Let P (u0, . . . , un;x) be a family of

polynomials in u0, . . . , un depending on parameters x ∈ X. The system of differential equations

in the variable z which will be defined will be the one satisfied by integrals of the type
∫
γ e

−P/zω,

if γ is a family of n + 1-cycles of Cn+1 parametrized by X and ω a relative n + 1-differential

form g(u0, . . . , un, x)du0 ∧ · · · ∧ dun where g is polynomial in the ui.

Consider the relative algebraic de Rham complex twisted by e−P/z: the degree k term is

the sheaf of relative forms (i.e. in du only) of degree k, which coefficients are polynomials in

the variables ui and in the new variable z, twisted by e−P/z; a section of degree k can hence be

written

ω · e−P/z =

∑
i≥0

ωiz
i

 · e−P/z

where ωi =
∑
g

(i)
j1,...,jk

(u0, . . . , un, x)duj0
∧ · · · ∧ dujk

is a local (with respect to X) section of

OX ⊗C Ωk(U).

The differential dP of the complex is obtained from the relative differential du (i.e. with

respect to the ui only): on sets dP = zdu, hence

dP (ω · e−P/z) =

[zdu − duP∧]

∑
i≥0

ωiz
i

 · e−P/z.

On the other hand each term OX ⊗C Ωk(U)[z] of the complex is a OX [z]-module, and this

module is equipped with a meromorphic connection ∇ with poles of type 1 along {z = 0}×X:

put

∇∂x`
(ω · e−P/z) =

[
∂ω

∂xi

− 1

z

∂P

∂xi

ω

]
· e−P/z(3.3.2)

∇∂z
(ω · e−P/z) =

[
∂ω

∂z
+

1

z2
Pω

]
· e−P/z(3.3.3)
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and extend this definition to all vector fields by OX [z]-linearity. This connection commutes

with the differential dP of the complex, defining thus a connection of the same type on the

cohomology of the complex. If the cohomology modules are locally free OX [z]-modules, these

are thus endowed with an integrable meromorphic connection of type 1 along {0} ×X.

We will consider below situations where such is the case.

(3.3.4) The Gauss-Manin system of a family of one variable polynomials. Let us begin with

the simplest case, namely the case n = 0. Put u0 = u, so P (u, x) = ud+1 +
∑d

i=0 ai(x)u
i is an

unfolding of the singularity Ad. The function P defines a map

C×X P̃−−−→ C×X
(u, x) 7−−−→ (P (u, x), x)

which is proper with finite fibres. Any function h(u, x) ∈ OX [u] admits then a trace relative to

P̃ , which is a section of OX [t]: put

tr(h)(t, x) =
∑

(u,x) 7→(t,x)

h(u, x)

where the roots are taken with multiplicity. In the same way, any relative differential 1-form

k(u, x)du has a trace. The following properties will be enough to compute them, if d denotes

the differential relative to u only:

tr(dh) = d(trh)

tr(h · dP ) = tr(h) · dt.

In the following we will only consider the subsheaf Õ of sections of OX [u] having trace zero, and

analogously the one of relative differential 1-forms in OX [u] · du which are traceless, denoted

Ω̃1.

Example. When there is no parameter, hence P (u) = ud+1, the traceless 1-forms are the

g(u)du where g is a polynomial for which the coefficient of uk(d+1)−1 is zero for any k ∈ Z.

Exercise. Verify that the relative differential du : Õ → Ω̃1 is 1 − 1 (this is the reason why

we restrict to traceless objects) and that multiplication by dP is injective on Õ. The quotient

Ω̃1/Õ · dP is a locally free OX-module of rank d.

We consider as above the twisted de Rham complex, restricted however to the traceless

part.

The Gauss-Manin vector bundle F (also called in this situation the Brieskorn lattice) is the

quotient Ω̃1[z]e−P/z/dP

(
Õ[z]e−P/z

)
. This is an OX [z]-module equipped with a meromorphic

connection ∇ with poles of type 1 along {z = 0} ×X.
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Exercise.

1. The natural map Ω̃1 → F is bijective (use the bijectivity of d proved in the previous

exercise). As Ω̃1 is a locally free OX [t]-module of rank d (by the map P̃ ), this endows F

with such a structure. We will rather denote it F̂ when we consider it with this structure.

2. The multiplication by z is injective on F .

3. The quotient F /zF is the (locally free of rank d) OX-module Ω̃1/Õ · dP .

Example (continued). For ` 6= k(d+ 1)− 1, the relation

dP

(
u`+1

`+ 1
e−P/z

)
=

(
zu` − u`+1

`+ 1
P ′
)
e−P/zdu

the following relation holds in F :

z · u`e−P/zdu =
d+ 1

`+ 1
u`+d+1e−P/zdu.

Thus the forms u`du (` = 0, . . . , d − 1) are a basis of the C[z]-module Ω1
U of traceless forms.

The meromorphic connection is given by the formula

z2∇∂z
u`e−P/zdu = P · u`e−P/zdu = u`+d+1e−P/zdu.

In general, one can show that the OX [z]-module F is locally free of rank d.

Example (continued). In the basis u`du (` = 0, . . . , d − 1), the connection ∇∂z
takes the

Birkhoff normal form: we indeed have

∇∂z
u`e−P/zdu =

1

z
· `+ 1

d+ 1
· u`e−P/zdu

hence here Bo
0 = 0 and B∞ is the diagonal matrix with entries

`+ 1

d+ 1
, with ` = 0, . . . , d − 1.

Remark here that all the diagonal terms are > 0 and that they are symmetric with respect to
n+ 1

2
=

1

2
(recall that n = 0).

One deduces from this example and from corollary 2.2.3 that the vector bundle with

connection (F ,∇) can take the Birkhoff normal form in a neighbourhood of any point xo in

which the coefficients ai vanish.

(3.3.5) The case of tame polynomials of many variables. The previous results remain true

in a much more general situation. Consider first the situation “without parameter”. Let

p : U = Cn+1 → C be a polynomial of n + 1 ≥ 2 variables all the critical points of which are

isolated (hence in a finite number). Tameness will mean that ‖gradp‖ is bounded from below

outside of a compact set by a positive number: this is a way to express the absence of critical

point at infinity. From now on, we will assume that this condition is satisfied. In the set of

polynomials of degree d, those which do not satisfy this condition form a constructible algebraic

set of codimension ≥ 1 (see [9]).
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For a tame polynomial, one can show the following results (see [29]).

• The de Rham complex of algebraic differential forms on U , twisted by e−p/z, has possibly

nonzero cohomology in degrees 1 and n+ 1 at most.

• The Brieskorn lattice F o is by definition the cohomology module in degree n + 1 of this

complex. It is a free C[z]-module, which is identified with Ωn+1(U)/dp∧dΩn−1(U) and its rank

is equal to µ
def
= dimC F o/zF o with

F o/zF o = Ωn+1(U)/dp ∧ Ωn(U) ' C[u0, . . . , un]/

(
∂p

∂u0

, . . . ,
∂p

∂un

)
.

• The Brieskorn lattice is equipped with a meromorphic connection with a pole of type 1

at z = 0, defined by formula (3.3.3).

(3.3.6) Theorem. — The Riemann-Hilbert-Birkhoff problem for (F o,∇o) has a solution. 2

The proof, when p is a germ of holomorphic function with isolated critical point, has first

been given by M. Saito in [31]. The adaptation to the polynomial case is done in [29]. One

should notice that the result one obtains is much more precise because it also gives information

on the residue at infinity of the connection ∇̃o over the extension F̃ o of F o as a trivial vector

bundle: this residue R∞ is semi-simple and, if one applies exp 2iπ to it, one finds the semi-

simple part of the monodromy on the n-cycles of a hypersurface p = t when t varies on a circle

of big radius (resp. small radius in case p is a germ). All the eigenvalues of the matrix B∞ are

> 0 and are distributed (taking into account their multiplicity) in a symmetric way relative to

(n+ 1)/2.

It is not possible here to sketch the proof of this result, for which the main tool is Hodge

theory.

(3.3.7) Extension to families. We will need to consider the universal family unfolding a tame

polynomial p with isolated critical points: one chooses polynomials ϕi (i = 0, . . . , µ − 1) the

classes of which form a C-basis in the Jacobian quotient C[u0, . . . , un]/(∂p); one chooses ϕ0 = 1.

One considers the family

P (u0, . . . , un;x0, . . . , xµ−1) = p(u0, . . . , un) +
µ−1∑
i=0

xiϕi(u0, . . . , un).

In contrast with the example p(u0) = ud+1
0 , the perturbative terms may have degree bigger than

deg p, which often causes the existence, for the perturbed polynomial px(u0, . . . , un), of critical

points which disappear at infinity when x→ 0.

Example. One takes p(u0, u1) = u5
0 + u5

1. A basis of the Jacobian quotient is given by the

monomials ua
0u

b
1 with 0 ≤ a, b ≤ 3. For any x3,3 6= 0 sufficiently small, the polynomial u5

0 +u5
1 +

x3,3u
3
0u

3
1 has critical points which disappear at infinity when x3,3 → 0.
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For this reason, the Gauss-Manin vector bundle for a family of polynomials P coming

from a tame polynomial p with isolated critical points needs in general an analytic definition:

it is not possible to define it only in terms of the twisted de Rham complex of algebraic forms,

it is necessary to consider forms with holomorphic coefficients in an big open ball in Cn+1. If

the parameter remains small, the possible critical points of the perturbed polynomial which

come from infinity remain outside of the ball.

In this way one defines a Gauss-Manin vector bundle F which is a locally free OX [z]-module

of rank µ, if X is a sufficiently small neighbourhood of 0 in Cµ, equipped with a connection

∇ defined by the formulae (3.3.2) and (3.3.3). The restriction of (F ,∇) to x = 0 is the

Gauss-Manin vector bundle (F o,∇o) of p and the restriction F /zF to z = 0 is a locally free

OX-module of rank µ.

Corollary 2.2.3 and theorem 3.3.6 give thus a solution to the Birkhoff problem for such a

family.

(3.3.8) The residue. For a polynomial p as above, one has a symmetric nondegenerate

bilinear form Res : F o/zF o × F o/zF o → C: if ωi = gi(u0, . . . , un)du0 ∧ · · · ∧ dun (i = 1, 2) are

two algebraic forms of degree n+ 1, put

Res(ω1, ω2) =
1

(2iπ)n+1

∫
Γ

g1g2 · du0 ∧ · · · ∧ dun

p′u0
· · · p′un

where Γ ' (S1)n+1 is the distinguished boundary of a polydisc containing all the critical points

of p. One verifies that this defines a bilinear form on the quotient Ωn+1(U)/dp ∧Ωn(U), which

is symmetric and nondegenerate (it is equal to the sum of local residues at each critical point).

One should also remark that it does not depend on coordinates u0, . . . , un (but the linear form

residue depends on coordinates).

One can show that this bilinear form can be lifted to a nondegenerate a-hermitian form

Go of weight n + 1 on F o: in the local case of a germ of function with isolated critical point,

the coefficients of Go on the zk are the “higher residue pairings” of K. Saito (cf. [30]).

The residue Res can be defined in the same way in a situation with parameters (all the

critical points of polynomials Px being contained in the same polydisc, for x sufficiently small).

It can be also lifted in G on F .

Last, the theorem above also gives an extension G̃o of Go to a nondegenerate a-hermitian

form of weight n+1 on the extension (F̃ o, ∇̃o). One thus deduces the existence of an extension

G̃ of G, which is nondegenerate a-hermitian of weight n+ 1, according to remark 2.2.2. 2

3.4. Variations of (mixed) Hodge structures

Let H be a vector bundle on a manifold X and H be the OX-module of its local holomorphic

sections. Assume one is given on H
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• a flat connection 5 : H → H⊗OX
Ω1

X ;

• a decreasing filtration F p (p ∈ Z) by sub-vector bundles such that F p = 0 for p � 0,

F p = H for p� 0 and (Griffiths’ transversality condition) 5Fp ⊂ Fp−1 ⊗ Ω1
X ;

• an increasing filtration (W`,5) (` ∈ Z) by sub-vector bundles invariant by the connection,

with W` = H for `� 0 and W` = 0 for `� 0.

One can associate with these data a family F̃ of vector bundles on P1 ×X.

(3.4.1) Chart centered at {0}×X. In the chart A1×X with coordinate z on the first factor

put

F = ⊕
p∈Z
Fpz−p ⊂ C[z, z−1]⊗C H.

Then F is a locally free OX [z]-module, equipped with a connection ∇ defined by

∇ξ(⊕
p
hpz

−p) = ⊕
p
5ξ(hp)z

−p

if ξ is a vector field on X, and

∇∂z
(⊕

p
hpz

−p) = −⊕
p
phpz

−p−1.

Extend then ∇ to all vector fields by OX [z]-linearity. Griffiths’ transversality condition shows

that ∇ is meromorphic with poles of type 1 along z = 0. On the other hand it is easy to see

that ∇ is integrable.

The restriction F /zF is naturally identified with the graded space ⊕p(F
p/F p+1). The

restriction of F to the open set z 6= 0, namely C[z, z−1]⊗C[z]F , is identified with C[z, z−1]⊗CH.

With notation of § 1.2.6 one has R0 = 0 (because ∇∂z
has a simple pole) and Φ is the 1-form

with value in the endomorphisms of degree −1 of the graded space ⊕p(F
p/F p+1) induced by

the connection 5: in degree p,

Φ : Fp/Fp+1 −→ Fp−1/Fp ⊗ Ω1
X

is induced by

5 : Fp −→ Fp−1 ⊗ Ω1
X .

Remark. When H is the Gauss-Manin vector bundle of a holomorphic family of smooth pro-

jective (or Kähler) manifolds Vx parametrized by x ∈ X, i.e. Hx = H•(Vx,C), the Hodge

filtration satisfies the properties above (see [13, 19]). The form Φ can then be interpreted as

the cup-product with the Kodaira-Spencer class of the family.
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(3.4.2) Chart centered at {∞}×X. Denote z′ the coordinate centered at infinity on P1 and

put

W = ⊕
`∈Z
W`z

′` ⊂ C[z′, z′
−1

]⊗H = C[z−1, z]⊗H.

In the same way one shows that W is a locally free OX [z′]-module, equipped with a connection

∇ with logarithmic poles along {z′ = 0} ×X.

The restriction W /z′W at z′ = 0 is identified with the graded space ⊕`(W`/W`−1) and the

restriction to the open set z′ 6= 0 is identified with C[z−1, z]⊗H.

Keeping notation of § 1.2.5, the residue 5 of the connection ∇ along {∞}×X is the graded

connection with respect to W of the connection 5 on H. The residue R∞ is multiplication by

` on the graded part of degree `.

Remark. In the situation of the previous remark, one can take as filtration W the (splitted)

filtration by the degree of the cohomology.

(3.4.3) Glueing. The vector bundles associated with F in the chart centered at 0 and with

W in the chart centered at ∞ coincide on the intersection of these charts with the inverse

image of the vector bundle H by the projection C∗ ×X → X. Therefore they glue each other

in a vector bundle F̃ on P1×X, which is equipped with an integrable meromorphic connection

∇ with poles of type 1 along {0} ×X and with logarithmic poles along {∞} ×X.

(3.4.4) Lemma. — The vector bundle F̃ on P1 ×X is the inverse image of a vector bundle

on X if and only if the filtration F p and W` of the vector bundle H are opposite, namely if the

term of bidegree (p, `) of the associated bigradation is zero for p 6= `, in other words

F p ∩W`

F p+1 ∩W` + F p ∩W`−1

= 0 if p 6= `.

Proof. The two filtrations are opposite if and only if there exists a gradation H = ⊕kHk such

that F p = ⊕k≥pHk and W` = ⊕k≤`Hk for all p, `. If such is the case, the vector bundle F̃ is

isomorphic to ⊕kπ
∗Hk. The converse is proved in the same way. 2

(3.4.5) Example. If the filtration F p of H is the Hodge filtration of a variation of mixed

Hodge structures, the weight filtration of which is W , we say that the variation is of Hodge-

Tate type if the indices of W are even and each graded bundle grW
2` H is a variation of Hodge

structures of type (`, `). This means that if one puts W ′
` = W2`, the filtrations F p and W ′

`

are opposite. Such a variation gives thus rise to a solution of the Birkhoff problem for the

OX [z]-module (F ,∇).

Such a situation may happen when X is a product (D∗)k × Dd−k, where D is a disc in

C centered at 0: one is given a variation of polarised Hodge structure parametrized by X.

According to a theorem by Schmid [33], there exists a limit mixed Hodge structure on the space
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of multivalued 5-horizontal sections of H; if one assumes that the limit structure has Hodge-

Tate type, the weight filtration, that the limit structure allows one to define, induces a filtration

W of H, which remains opposite to F at least if one restricts X (this is a consequence of the

rigidity theorem 1.1.1), as Deligne remarked [11].

(3.4.6) Example. Let V o be a compact Kähler manifold of complex dimension 3 with trivial

canonical bundle: V is said to be Calabi-Yau. Put Ho = H3(V o,C), which is an even dimen-

sional vector space, equipped with an alternating unimodular form (Poincaré duality) and with

a decreasing filtration (the Hodge filtration): one has F 0Ho = Ho and F 3Ho has dimension 1,

generated by a holomorphic 3-form ωo. The positivity of the polarisation allows one to con-

struct a symplectic basis (α0, α1, . . . , αN , β1, . . . , βN , β0) of H3(V o,Z) such that α0 is purely of

type (0, 3) in H3(X,C) and such that the filtration W defined by

W0H
3(V o,Z) = Z · α0

W1H
3(V o,Z) = Z · α0 + Z · α1 + · · ·+ Z · αN

W2H
3(V o,Z) = Z · α0 + Z · α1 + · · ·+ Z · αN + Z · β1 + · · ·+ Z · βN

W3H
3(V o,Z) = H3(V o,Z)

induces on H3(V o,C) a filtration opposite to F •H3(V o,C) (see for instance [34, lemme 3.1]).

In a family of Calabi-Yau manifolds parametrized by a space X, the family H of H3(Vx,C)

is a vector bundle, equipped with a flat connection5, namely the Gauss-Manin connection, and

with a filtration F •H by the Hodge bundles. A 5-horizontal symplectic basis coinciding with

the basis above at xo can be constructed if one assumes that X is 1-connected. The rigidity

theorem 1.1.1 gives the existence of a hypersurface Θ of X outside of which the filtration

WH3(Vx,C) that one deduces remains opposite to the Hodge filtration.

Part II

Frobenius manifolds

4. Saito structures and Frobenius manifolds

We give two equivalent presentations of the notion of a Frobenius manifold:

The first one brings into evidence a Saito structure on the tangent bundle, namely an

integrable meromorphic connection on the inverse image of the tangent bundle TM on P1×M ,

satisfying the properties considered in § 1.5, equipped with a nondegenerate a-hermitian form;

the specificity of the tangent bundle is marked by the fact that one imposes two symmetry

conditions, one on the flat connection 5, which must be torsionless, and the other one on Φ,

which must be symmetric.

The second one is the definition given by Dubrovin, which emphazises the existence of a

product on ΘM and the geometric and metric properties of the Frobenius manifold, as well as

the existence of a potential satisfying the WDVV equations.
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4.1. Saito structures

Let M be a complex analytic manifold, let TM denote its tangent bundle, ΘM the sheaf of

holomorphic vector fields and Ω1
M the sheaf of holomorphic 1-forms.

(4.1.1) Definition (without metric). A Saito structure on M (without metric) consists of

1. a torsionless flat connection 5 on the tangent bundle TM ,

2. a 1-form Φ with values in End(TM), namely a section of the sheaf End(ΘM) ⊗OM
Ω1

M ,

which is symmetric when considered as a bilinear map ΘM ⊗OM
ΘM → ΘM ;

3. two global sections (vector fields) e and E of ΘM .

These data are subject to the following conditions:

1. the meromorphic connection ∇ on the vector bundle π∗TM on A1 ×M defined by

∇ = π∗5+
π∗Φ

z
−
(

Φ(E)

z
+5E

)
dz

z

is integrable (in other words, relations 1.5.5 are satisfied by 5, Φ, R0
def
= −Φ(E) and

R′∞
def
= 5E);

2. the vector field e (identity vector field) is 5-horizontal, i.e. 5(e) = 0, and satisfies

Φ(e) = − Id.

Consequences

4.1.2. One defines an OM -bilinear product ? : ΘM ⊗ΘM → ΘM by the formula

ξ ? η = −Φ(ξ)(η).

The symmetry of Φ means that this product is commutative. Moreover, e is the identity.

The property Φ ∧ Φ = 0 is then equivalent to the fact that the product is associative: in

local coordinates (x1, . . . , xd), if one puts Φ(∂xi
) = Φi, the property means that the Φi are

endomorphisms of TM which pairwise commute; using commutativity one gets,

∂xi
? (∂xj

? ∂xk
) = Φi ◦ Φk(∂xj

)

(∂xi
? ∂xj

) ? ∂xk
= Φk ◦ Φi(∂xj

).

4.1.3. The vector field E may be replaced with E + λe for all λ ∈ C. The endomorphism R0

is the endomorphism of multiplication by E. It is replaced with R0 + λ Id.
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4.1.4. The endomorphism R′∞ = 5E is 5-horizontal. Moreover, the identity vector field e

satisfies 5eE = e, which is equivalent, as 5 is torsionless, to the fact that LE(e) = −e, if LE

denotes the Lie derivative relative to E: indeed, the relation 5(R0) = [Φ,5E]− Φ, applied to

the pair of vectors (e, e) gives on the one hand

5e(R0)(e)
def
= 5e(R0(e))−R0(5ee) = 5e(E ? e) = 5e(E)

and on the other hand

[Φ(e),5E](e)− Φ(e)(e) = [− Id,5E](e) + e ? e = e ? e = e.

4.1.5. As 5 is torsionless, there exists in a neighbourhood of any point of M flat coordinates

t1, . . . , td, i.e. 5(∂ti
) = 0 for all i. One may even assume that ∂t1

= e. If 5(E) is semi-simple

(it suffices to check this at one point of M), one may also assume that the ∂ti
are eigenvectors

of 5(E).

4.1.6. The relation 5(Φ) = 0 in EndOM
(ΘM)⊗OM

Ω2
M is equivalent to the following relation,

for all triples (ξ, η, θ) of vector fields, where Lξ denotes the Lie derivative along ξ:

5ξ(η ? θ)−5η(ξ ? θ) + ξ ?5ηθ − η ?5ξθ = Lξη ? θ

which means (as5 is torsionless) that for any system of flat coordinates t1, . . . , td the expression

5∂ti
(∂tj

? ∂tk
)

is symmetric in i, j, k.

The relation 5(R0) = [Φ,5E]− Φ applied to a pair of vector fields (ξ, η) means

−5ξ?ηE +5ξ(E ? η) + ξ ?5ηE− E ?5ξη = ξ ? η.

Modulo the relation 5(Φ) = 0, this one is equivalent to the relation

LE(ξ ? η)− LEξ ? η − ξ ? LEη = ξ ? η.

4.1.7. The structure of sheaf of commutative and associative rings with identity, given by the

product ? on the sheaf ΘM of vector fields on M (with coefficients in OM) allows one to define

a surjective morphism of OM -algebras

SymOM
ΘM −→ ΘM

and, as SymOM
ΘM is nothing other than the algebra OM [TM ] of functions on T ∗M which

are polynomial in the fibres of T ∗M → M , one identifies Specan ΘM with a closed analytic

subspace L of T ∗M . As ΘM is a locally free of finite type OM -module, the morphism L→ M

is finite and surjective, one has dimL = dimM and L is Cohen-Macaulay in T ∗M . Moreover,

the Euler vector field E defines a global section of ΘM , hence a function on L.
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4.1.8. If for any x ∈ M the endomorphism R0,x is regular, the mapping L → M × C, the

first component of which is the projection and the second one is the Euler vector field E, is a

closed immersion and its image has equation det(t Id−R0) = 0: indeed, one has to see that the

morphism OM×C → ΘM that it induces is surjective; the endomorphism of multiplication by E

is equal to R0; it is then regular; for any section ξ of ΘM the multiplication by ξ commutes with

the one by E, hence can be expressed as a polynomial in R0 with coefficients in OM ; therefore,

ξ = ξ ? e is a polynomial in E; last, the kernel of OM×C → ΘM is generated by the minimal

polynomial of R0, which is its characteristic polynomial.

4.1.9. If the endomorphism R0 is, generically on M , regular semi-simple, the manifold L is

reduced and Lagrangian in T ∗M : as L is Cohen-Macaulay, the fact that it is reduced is shown

on an open dense set, on which one can assume that R0 is regular semi-simple, and follows then

from the previous remark; the fact that L is then Lagrangian is shown in [3].

4.1.10. Assume M is simply connected and R0 is regular semi-simple at all points. In this

situation the algebra structure on TxM is semi-simple for all x ∈ M . The eigenvalues of R0

define d functions x1, . . . , xd on M and the manifold L is nothing other than the disjoint union

of the graphs of the dxi: indeed, as in § 3.2.2, one constructs a basis e of ΘM using theorem

B.1.3, and in this basis the matrix of R0 is diagonal at all points of M ; the matrix of Φ is then

equal to −dR0, hence the assertion.

One deduces an isomorphism of M to an open set of the manifold X̃d of § 3.1. In these

coordinates, called canonical coordinates, the product ? is given by ∂xi
? ∂xj

= δijδxi
and one

has E =
∑

i xi∂xi
and e =

∑
i ∂xi

.

Conversely, any isomorphism of M to an open set of X̃d for which ?, e and E are as above

is obtained by the canonical coordinates, hence is unique up to a permutation of coordinates.

(4.1.11) Logarithmic vector fields along the discriminant. If the endomorphism R0 of multi-

plication by E is generically on M an isomorphism, the discriminant ∆ of the Saito manifold

M is the divisor of detR0. By definition, the subsheaf ΘM〈log ∆〉 of logarithmic vector fields

along ∆ is made of vector fields ξ for which the function ξ ·δ vanishes on ∆, where δ is a reduced

equation of ∆.

If moreover R0 is regular semi-simple on a dense open set of M which contains a dense open

set of ∆, this sheaf ΘM〈log ∆〉 is locally free on OM (of rank dimM), in other words the divisor

∆ is free (in the sense of K. Saito).

Indeed, it is enough to verify that this sheaf is the image sheaf of R0, because by assumption

the latter is locally free. The closed set of points of ∆ where R0 is not regular semi-simple is

of codimension ≥ 1 in ∆, hence ≥ 2 in M and it is enough to verify the equality of both

subsheaves in a neighbourhood of any point of the complement of this set. There exists then in

a neighbourhood of such a point canonical coordinates x1, . . . , xd, and ∆ is defined as the disjoint

union of the hypersurfaces xi = 0. In the canonical basis the matrix of R0 is diag(x1, . . . , xd)

and in a neighbourhood of x1 = 0 for instance, one has x2, . . . , xd 6= 0, hence the image of R0
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is generated by the vector fields x1∂x1
, ∂x2

, . . . , ∂xd
, i.e. the logarithmic vector fields. 2

(4.1.12) Definition (with metric). Here, a metric means a symmetric nondegenerate OM -

bilinear form. One imposes then, in addition to 5, ?, e,E satisfying 4.1.1, the existence of a

metric g on TM satisfying the following properties:

1. 5(g) = 0 (hence 5 is the Levi-Civita connection of g);

2. Φ∗ = Φ, i.e. for any local section ξ of ΘM , Φ(ξ)∗ = Φ(ξ), where ∗ denotes the adjoint for

g; in other words, one has g(ξ1 ? ξ2, ξ3) = g(ξ1, ξ2 ? ξ3) for all vector fields ξ1, ξ2, ξ3;

3. there exists a rational number q ∈ Q and an integer m ∈ Z such that, if one puts

R∞ = 5(E)− q Id, one has R∗∞ +R∞ = −m Id.

Consequences

4.1.13. If one takes on π∗TM the connection ∇ = 5 +
Φ

z
+
(
R0

z
−R∞

)
dz

z
, the conditions

above are equivalent to the datum of a form G, a-hermitian nondegenerate on π∗TM , which

is compatible with the connection ∇ and of weight m (cf. § 1.5.6). On the other hand one has

R∞(e) = (1− q)e.

4.1.14. As R0 = −Φ(E), one has R∗0 = R0. On the other hand, the skewsymmetry condition

on R∞ is equivalent to 5E + (5E)∗ = (2q −m) Id and also to

g(5ξE, η) + g(ξ,5ηE) = (2q −m)g(ξ, η) ∀ ξ, η

or also, as 5(g) = 0 and 5 is torsionless, to

LE(g)(ξ, η)
def
= LEg(ξ, η)− g(LEξ, η)− g(ξ,LEη) = (2q −m)g(ξ, η) ∀ ξ, η.

4.1.15. Let e∗ be the 1-form on M defined by e∗(η) = g(e, η) for any vector field η. It follows

from (4.1.12-2) that one has g(ξ, η) = e∗(ξ ? η) for any ξ, η. Moreover the form e∗ is closed:

indeed

∂xi
e∗(∂xj

) = ∂xi
g(e, ∂xj

)

= g(e,5∂xi
∂xj

) (because 5(g) = 0 and 5e = 0)

= g(e,5∂xj
∂xi

) (because 5 has no torsion)

= ∂xj
e∗(∂xi

).

Thus the 1-form e∗ defines a foliation of codimension 1.

4.1.16. There exists on any simply connected open set of M (or better, on the universal

covering of M) flat coordinates t1, . . . , td, hence an affine structure. One may even assume that

∂t1
= e (but if q 6= m/2, one has g(e, e) = 0).
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4.1.17. Let c(ξ1, ξ2, ξ3) = g(ξ1 ? ξ2, ξ3), viewed as a section of the vector bundle (Ω1
M)⊗3 and

5c defined as a section of the vector bundle (Ω1
M)⊗4. Then 5c is symmetric in its 4 arguments.

Indeed, consider flat coordinates such that ∂t1
, . . . , ∂td

are g-orthonormal. The matrix of Φ can

be written
∑

iCidti where Ci is the matrix C
(j,k)
i . Then

Φ symmetric ⇐⇒ C
(j,k)
i = C

(i,k)
j ∀ i, j, k

5Φ = 0 ⇐⇒ ∂Ci

∂t`
=
∂C`

∂ti
∀ i, `

Φ∗ = Φ ⇐⇒ C
(j,k)
i = C

(k,j)
i ∀ i, j, k.

Last we have

(
5∂t`

c
)

(∂ti
, ∂tj

, ∂tk
) =

∂C
(j,k)
i

∂t`

which is thus symmetric.

4.2. Frobenius manifolds

We recall here the definition of a Frobenius structure on a complex analytic manifold M ,

as given by B. Dubrovin [12].

(4.2.1) Definition. One is given on TM a symmetric nondegenerate bilinear form g, an

associative and commutative product ? with identity e and a vector field E, subject to the

following conditions:

1. the metric g is flat, and if5 is the associated torsionless flat connection, one has5(e) = 0;

2. the 4-tensor 5c (see 4.1.17) is symmetric in its arguments;

3. the Euler vector field E is such that

(a) the endomorphism 5E of ΘM is a 5-horizontal section of EndOM
(ΘM);

(b) there exists D ∈ Q with LEg(ξ, η)− g(LEξ, η)− g(ξ,LEη) = Dg(ξ, η) for all vector

fields ξ, η;

(c) one has LE(ξ ? η)− LEξ ? η − ξ ? LEη = ξ ? η for all vector fields ξ, η.

Remarks.

(1) One deduces from the last condition, taking ξ = η = e, that the identity e is an

eigenvector of 5E with eigenvalue 1, or equivalently LEe = −e.

(2) Dubrovin also adds a semi-simplicity condition on 5E. This condition is not essential

for the sequel.
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(3) This approach allows one to bring into evidence, via property (4.2.1-2), the local existence

of a function F (t1, . . . , td) which verifies the WDVV equations in flat coordinates (see loc. cit.):

one chooses F so that for all i, j, k one has

∂3F

∂ti∂tj∂tk
= g(∂ti ? ∂tj , ∂tk).

(4.2.2) Proposition. — There is an equivalence between Saito structures with metric and

Frobenius structures on a manifold M .

Proof. The fact that a Saito structure with metric gives rise to a Frobenius structure follows

from the remarks after definitions 4.1.1 and 4.1.12.

Conversely, let us give a Frobenius structure and put Φ(ξ)(η) = −ξ ? η. The commutativity

and the associativity of ? give the symmetry of Φ and Φ ∧ Φ = 0. The entries C
(j,k)
i of Φ in a

orthonormal horizontal basis are such that
∂C

(j,k)
i

∂t`
is a symmetric expression in i, j, k, `. This

implies that 5(Φ) = 0, and hence property 3.c of E is equivalent the relation 5(R0) + Φ =

[Φ,5E], as indicated in § 4.1.6. 2

4.3. Infinitesimal period mapping

We will describe here a method for constructing a Frobenius manifold from a family of

vector bundles on P1, equipped with a flat meromorphic connection. To obtain the metric of

the Frobenius manifold, it will be necessary to assume that this family has a nondegenerate

a-hermitian form. For the construction to be defined, it is necessary that the family of vector

bundles admits a primitive section. The Frobenius structure is then obtained through the

infinitesimal period mapping given by this primitive section. We will closely follow the approach

of K. Saito [30].

(4.3.1) Infinitesimal period mapping associated with a section. Let us give a vector bundle

E of rank d = dimM on a manifold M . One deduces a vector bundle F = π∗E on A1 ×M .

One assumes that it is equipped with a flat meromorphic connection ∇ with poles of type 1

along {0} ×M and with regular singularity at infinity. Last, one assumes that the connection

has logarithmic poles at infinity when one considers it on F̃ = π̃∗E, which is a vector bundle on

P1 ×X. It is equivalent to give on E the objects 5, Φ, R∞, R0 subject to relations of § 1.5.5.

Let ω be a 5-horizontal section of E . With this section is associated an infinitesimal

period mapping

ϕω : TM −→ E

which is the morphism of vector bundle on M defined by

ϕω(ξ) = −Φ(ξ)(ω)

for any vector field ξ on M .
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(4.3.2) Definition. — A 5-horizontal section ω of E is

• homogeneous if it is an eigenvector of R∞,

• primitive if ϕω is an isomorphism of vector bundles.

Flat connection and product on the tangent bundle TM . If ω is a primitive section, one can

carry with ϕ−1
ω on TM the structures which exist on E. They will be denoted with an exponent

ω on the left to remind the dependence with respect to the primitive section. One then has a

flat connection ω5 on TM defined by

ω5(ξ) = ϕ−1
ω 5(ϕω(ξ)).

The form Φ also defines a product4 ? on the sections of TM by

ϕω(ξ ? η)
def
= −Φ(ξ)(ϕω(η)).

(4.3.3) Proposition.

1. The flat connection ω5 on TM has no torsion, or equivalently, the section ϕω of Ω1
M ⊗E

satisfies 5ϕω = 0 in Ω2
M ⊗ E.

2. The product ? is associative and commutative, and admits e
def
= ϕ−1

ω (ω) as an identity,

which is a horizontal section for the flat connection ω5.

Proof.

1. Fix locally a 5-horizontal basis ε of E and local coordinates x1, . . . , xd of M . In

such a basis the section ω has constant coefficients. One also has, keeping notation (1.3.4),

ϕω(∂xi
) = −Ci(x) · ω. Then

5∂xi
ϕω(∂xj

) = −∂xi
(Cj(x)) · ω

as ω is 5-horizontal. Moreover, ∂xi
(Cj(x)) = ∂xj

(Ci(x)) according to the relation dC = 0 (cf.

(1.3.5)). Therefore one has ω5∂xi
∂xj

= ω5∂xj
∂xi

. One deduces the absence of torsion of ω5.

Last, one has by definition, when one considers ϕω as a section of Ω1
M ⊗ E ,

5ϕω(ξ, η) = 5ξ(ϕω(η))−5η(ϕω(ξ))− ϕω([ξ, η])

and the horizontality of ϕω is equivalent to the absence of torsion of ω5. 2

2. The product is given by

ϕω(∂xi
? ∂xj

) = −Φ(∂xi
)(ϕω(∂xj

))

= −Ci · ϕω(∂xj
)

= Ci · Cj · ω
4here also, one should put an exponent ω; in the examples of § 5 we shall see however that this product does

not depend on the chosen primitive section
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and the first assertion comes from the relation [C,C] = 0.

On the other hand one has

ϕω(ξ ? e) = −Φ(ξ)(ϕω(e))

= −Φ(ξ)(ω) = ϕω(ξ)

which gives the second point. 2

Remark. If E is equipped with a nondegenerate bilinear form g such that relations (1.5.6)

are satisfied, this form is carried by ϕω to a bilinear form on TM , denoted ωg. Then ωg is ω5-

horizontal, as g is5-horizontal, and because ω5 is torsionless, this is the Levi-Civita connection

of the bilinear form.

Euler vector field. The endomorphism R∞ of E defines a section ωS∞ of E ⊗ Ω1
M by

ωS∞(ξ) = R∞(ϕω(ξ)).

(4.3.4) Lemma. — One has 5ωS∞ = 0 in E ⊗ Ω2
M .

Proof. One has, as R∞ is 5-horizontal and using the absence of torsion of ω5,

5ωS∞(ξ, η) = 5ξ(
ωS∞(η))−5η(

ωS∞(ξ))− ωS∞([ξ, η])

= 5ξ(R∞(ϕω(η)))−5η(R∞(ϕω(ξ)))− ωS∞([ξ, η])

= R∞ [5ξϕω(η)−5ηϕω(ξ)]− ωS∞([ξ, η])

= R∞ [ϕω([ξ, η])− ωS∞([ξ, η])] = 0. 2

(4.3.5) Proposition.

1. There exists a unique vector field ωE, called the Euler vector field of the primitive section

ω, such that the endomorphism ξ 7→ ξ ? ωE is the endomorphism ωR0 of TM .

2. If ω is homogeneous of degree q (i.e. R∞(ω) = qω), one has

ω5ωE = ωR∞ + (1− q) Id

and in particular ω5e
ωE = e.

Proof.

1. If the vector field ωE exists, it must satisfy, as e is the identity of ?,

ωE = e ? ωE = ωR0(e) = ϕ−1
ω (R0(ω))

Put then Eω = R0(ω) and ωE = ϕ−1
ω (Eω). By assumption, using a horizontal basis ε, one has

ϕω(∂xi
? ωE) = −Φ(∂xi

)(Eω)

= −Ci ·R0(ω)

= −R0 · Ci(ω) from (1.3.5)

= R0(ϕω(∂xi
)). 2
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2. One computes in a 5-horizontal basis ε:

5∂xi
(Eω) = ∂xi

(B0(ω))

=
(
∂xi

(B0)
)

(ω)

= ([B∞, Ci]− Ci) (ω)

= (1− q)ϕω(∂xi
)−B∞(ϕω(∂xi

)). 2

The equality given by (2) can also be written 5Eω = (1 − q)ϕω + ωS∞. The previous

lemma shows that, independently of the homogeneity of ω, one has 5 ((1− q)ϕω + ωS∞) = 0

in Ω2
M ⊗ E .

We can summarize the results above:

(4.3.6) Theorem.

1. Let M be a manifold equipped with a vector bundle E and with data 5, Φ, R0, R∞ and g

satisfying relations 1.5.5 and 1.5.6. If E admits a primitive section ω, homogeneous of degree q,

the infinitesimal period mapping ϕω endows M with a structure of a Frobenius manifold having

the vector field e = ϕ−1
ω (ω) as identity.

2. Conversely, any Frobenius manifold is obtained in this way, taking as a primitive section

the identity vector field. 2

4.4. Adjunction of a variable

(4.4.1) Adjunction of a variable in the infinitesimal period mapping. Let us now give a vector

bundle E on a manifold X, with rkE = dimX+1, and assume that E is endowed with 5, R∞,

Φ, R0, g satisfying relations 1.5.5 and 1.5.6. One tries to endow the manifold M = A1 × X,

where A1 is the affine line with coordinate t, with a structure of a Frobenius manifold by

identifying E and TM|{0}×X = TX ⊕C∂t.

We will say that a horizontal section ω of E is primitive if the infinitesimal period mapping

ψω : TM|{0}×X −→ E

defined by ψω(ξ) = ϕω(ξ) if ξ is a section of TX and ψω(∂t) = ω, induces an isomorphism

of vector bundles. We will denote in the same way the lifted morphism ψω : TM → p∗E, if

p′ : M → X is the projection: in other words one extends ψω by OX [t]-linearity.

Consider on E ′ def
= p∗E the data 5′, R′∞, Φ′, R′0 and g′ defined by

5′ = p∗5, R′∞ = p∗R∞, g′ = p∗g, Φ′ = p∗Φ− Id dt, R′0 = p∗R0 + t Id

One can see that ω is primitive in the above sense if and only if ω′
def
= 1 ⊗ ω is a primitive

section of E ′ in the sense of § 4.3.1 and then ψω = ϕω′ .

The Frobenius structure defined on M = A1 ×X by a primitive homogeneous section ω of

E, by the method of § 4.3, admits as identity e the vector field ∂t.
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(4.4.2) Justification of the terminology. We will explain why the morphism ψω is called an

infinitesimal period mapping.

We will assume in the sequel that the endomorphism R∞ verifies the fact that R∞− k Id is

invertible for all k ∈ N. Denote F = OX [z]⊗OX
E . Then F is equipped with a connection

∇ = p∗5−
[
Φ

z
+
(
R0

z
+R∞

)
dz

z

]
.

Consider the OX [t]-module F̂ (Fourier transform): due to the assumption on R∞, it is a locally

free OX [t]-module, equipped with a connection ∇̂ with regular singularities (see § 1.6.3).

If ξ is a vector field on X and ω a section of F = F̂ , one has ∇̂ξω = ∇ξω. Consider also

the section zω of F̂ . One then has, for such a ξ,

∇̂ξ(zω) = z∇ξ(ω) = −Φ(ξ)(ω).

On the other hand, one has ∇̂∂t
(zω)

def
= z−1zω = ω.

Thus, the infinitesimal period mapping ψω′ is nothing other than ∇̂(zω) : ΘM → F̂ . The

geometry of the Frobenius manifold can be read on the one of the regular differential equation

Fourier transform of the connection ∇.

(4.4.3) Adjunction of a variable for a Frobenius manifold. Let A1 be the affine line with

variable t and M be a Frobenius manifold. We will endow M ′ def
= A1×M with a structure of a

Frobenius manifold. We will put OM ′ = OM [t]. Let p : M ′ →M be the projection.

• The connection 5′ is p∗5 (it is still flat and torsionless, and 5′(∂t) = 0).

• The product ?′ is defined by the fact it is OM ′-bilinear, ξ ?′ η = ξ ? η if ξ and η are

two vector fields on M , and one asks that ∂t is the identity vector field for ?′. One then has

Φ′ = p∗Φ− Id ·dt.
• One takes E′ = t∂t + E. One then has R′0 = −Φ′(E′) = p∗R0 + t Id, 5′(E′) = p∗5(E) and

R′∞ = p∗R∞.

• If g is the metric of M , one takes g′ = p∗g + g(e, e)dt2.

The vector bundle p∗TM on M ′ is equipped with an integrable meromorphic connection

∇̂ with poles along ∆′ = {det(t Id−R0) = 0} and which has regular singularities along ∆′ and

{t = ∞} ×M . On M ′ −∆′ the vector bundle p∗TM is then flat and defines a representation

of π1(M
′ −∆′) in the tangent space of M at a point.

5. Examples of Frobenius manifolds

5.1. Frobenius manifold associated with an isomonodromic deformation

Keep notation of § 3.2 and assume that B∞ − (m/2) Id is skewsymmetric.

Let ωo be an eigenvector of B∞ with eigenvalue α ∈ C. Then ωo extends in a unique way

as a section ω of E
|X̃d−Θ

horizontal for 5. Assume that the coefficients ωi of ω in the basis e do
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not identically vanish. Let Θωo be the union of the divisor Θ and of the zero divisors of the ωi.

We will associate with the data (Bo
0, B∞, ω

o) a structure of a Frobenius manifold on X̃d−Θωo .

Denote u = (u1, . . . , ud) the basis of E
|X̃d−Θ

ωo
defined by

ui = ωi(x̃)ei (i = 1, . . . , d).

It allows us to define an isomorphism

ϕω : T (X̃d −Θωo)
∼−−−→ E|X̃d−Θ

ωo

∂xi
7−−−→ ui = Ei(ω) = −Φ(∂xi

)(ω)

which satisfies

ϕω(e) = ω and ϕω(E) = Eω

if we put e =
∑

i ∂xi
and E =

∑
i xi∂xi

.

We may thus apply the results of § 4.3 to deduce a Frobenius structure on X̃d −Θωo .

Moreover, the product ? of vector fields is given

ϕω(∂xi
? ∂xj

) = −Φ(∂xi
)(ϕω(∂xj

)),

and extended by O-linearity to all vector fields; one can see that

ϕω(∂xi
? ∂xj

) = Ei(uj) = ϕω(δij∂xi
)

hence ∂xi
? ∂xj

= δij∂xi
.

(5.1.1) Consequence. — The product ?, the identity e and the Euler vector field E do not

depend on the 5-horizontal section ω chosen (satisfying the above assumptions). 2

One deduces from § 4.1.10 and from the results above

(5.1.2) Theorem (Dubrovin [12]). — There is a one-to-one correspondence between simply

connected massive Frobenius manifolds (i.e. R0 is semi-simple at any point) and the quadruplets

(Bo
0, B∞, ω

o, U), where Bo
0 is a regular semi-simple matrix, B∞ satisfies B∗

∞ +B∞ = m Id with

m ∈ Z, ωo is an eigenvector of B∞ with no zero entry in the basis of eigenvectors of Bo
0, and

U is a simply connected open set of X̃d −Θωo. 2

(5.1.3) Problem. — If one only assumes Bo
0 regular but not semi-simple, is it possible to

describe conditions on B∞ in order to get the existence of a homogeneous primitive section and

hence a Frobenius structure on the germ of universal deformation of (F o,∇o) given by theorem

3.1.1?

5.2. Frobenius manifold associated with a polynomial

We will first give the description of the product structure and of the Euler vector field on the

parameter space M of a universal unfolding of a tame polynomial p : Cn+1 → C with isolated

critical points. We will next show the existence of a primitive form (in a generic situation at

least). We keep notation of § 3.3.
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(5.2.1) The multiplicative structure on ΘM . Let then P (u0, . . . , un, x) be a family of poly-

nomials parametrized by an open set X of Cd, and assume that p(u) = P (u, 0) (where

u = (u0, . . . , un)) has isolated critical points and is tame. Let C be the part of the critical

locus of P̃ : Cn+1 ×X → C ×X which remains bounded in a neighbourhood of x = 0. This

part is well defined if X is sufficiently small. In fact, we will fix a ball B in Cn+1 containing all

the critical points of p and we will assume that C is the part of the critical locus of P̃ contained

in B ×X. Thus, the critical locus C is defined by the ideal

(
∂P

∂u0

, . . . ,
∂P

∂un

)
in OB×X . On the

other hand, the map q : C → X is proper and finite. One can show that the sheaf q∗OC is

locally free of rank µ on X.

We will say that X is the parameter space of a universal unfolding if d = dimX = µ

and if, in local coordinates, the classes of
∂P

∂x0

, . . . ,
∂P

∂xµ−1

form an OX-basis of q∗OC (all this is

local in a neighbourhood of x = 0). If such is the case, we will denote M the parameter space.

The simplest model of a universal unfolding is obtained by choosing representatives 1,

ρ1(u),. . . , ρµ−1(u) of a basis of the vector space C[u]/(∂p) and putting P (u, x) = p(u) + x0 +∑µ−1
i=1 ρi(u)xi.

Therefore, the Kodaira-Spencer map ϕ : ΘM → q∗OC , such that ϕ(ξ) = class of ξ(P ), is an

isomorphism of OM -modules.

As q∗OC is a sheaf of commutative associative algebras with identity, one gets via ϕ a

similar structure on ΘM . In coordinates, one then has by definition

∂xi
? ∂xj

= ϕ−1

([
∂P

∂xi

· ∂P
∂xj

])

where [h] denotes the class of h modulo
∂P

∂u0

, . . . ,
∂P

∂un

.

In the simplest model above, the identity ϕ−1([1]) is the vector ∂x0
.

Last, one should notice that the direction of the coordinate x0 is polynomial, namely that

along this direction the unfolding P is trivial: it corresponds to a translation p 7→ p + x0.

So one can also write M = C × X, with dimX = µ − 1 and X is a sufficiently small open

neighbourhood of 0.

(5.2.2) The Euler vector field. One has on the other hand a specific element of q∗OC other

than 1, namely the class of P . The Euler vector field E on M is the one for which ϕ(E) = [P ].

If p is quasi-homogeneous and if one suitably chooses the ρi, the Euler vector field is easily

computed in term of the weights of quasi-homogeneity (exercise). In general one is led to a

computation in commutative algebra to express [p] in the basis [ρi].

The endomorphism R0 of multiplication by E corresponds, via ϕ, to the endomorphism of

multiplication by [P ] on q∗OC .
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In the remaining of this paragraph we will give a proof of theorem 5.2.3 below. At the

moment it is only proved for a class of polynomials (which is a dense open set in the space of

polynomials of given degree), namely the polynomials which are convenient and nondegenerate

for their Newton polyhedron at infinity, in the sense of Kouchnirenko [21], but it could probably

be true for all tame polynomials with isolated critical points. On the other hand, the analogue

for the germs of holomorphic functions with isolated singularity is true without any restriction:

the homogeneity (see § 5.2.7) has been proved by A.N. Varchenko in some particuliar cases and

by M. Saito [32, Remark 3.11] in general. I do not know how to extend his reasoning to the

case of tame polynomials.

(5.2.3) Theorem. — There exists on M a natural Frobenius structure for which the product,

the identity and the Euler vector field are the ones described above.

(5.2.4) The infinitesimal period mapping. Let w̃ be a relative n+ 1-form on B ×M and [w̃]

be its class in the Gauss-Manin vector bundle F . The formulae (3.3.2) and (3.3.3) indicate how

to compute ∇[w̃], if ∇ is the connection on the Gauss-Manin vector bundle: in particular one

has

z∇∂xi
[w̃] =

[
z
∂w̃

∂xi

− ∂P

∂xi

w̃

]
.

On the other hand, we have indicated (theorem 3.3.6) that one can solve the Birkhoff problem

for (F ,∇); so we get 5,Φ, R0, R∞, g on the vector bundle E with associated sheaf E = F /zF

and an isomorphism F ' E [z] def
= OX [z] ⊗OX

E . We should emphazise the fact that this

isomorphism is not explicit and that it can be difficult to compute. One then has

∇ = 5+
(
R0

z
−R∞

)
dz

z
+

Φ

z
.

(5.2.5) Proposition. — Let w be a primitive section of E. Then the product ?, the identity

e and the Euler vector field wE defined on M by the infinitesimal period mapping ϕw are the

ones defined by the Kodaira-Spencer map ϕ.

Proof. Let w be a section of E, 1⊗w be the section of F it defines according to the isomorphism

above, and w̃ be a representative of this class in Ωn+1
B×M/M . If w is 5-flat one can write, if ξ is

a vector field on M ,

Φ(ξ)(w) = {z∇ξ(1⊗ w)}|z=0

= {[zLξ(w̃)− Lξ(P ) · w̃]}|z=0

= [−Lξ(P ) · w̃] .

Thus the product ? and the identity defined by ϕw when w is primitive are also the ones defined

by ϕ. In an analogous way, formula (3.3.3) shows that R0 is the multiplication by [P ]. 2

(5.2.6) Proposition. — Let ωo be the class of du0∧· · ·∧dun in Eo = Ωn+1(U)/dp∧Ωn(U)

and let ω be the unique 5-horizontal section of E which restricts to ωo at x = 0. Then ω is a

primtive section of E.
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Proof. Keeping notation of the previous proposition, one has to see that ω and the [∂xi
(P ) · ω̃]

form an OM -basis of E . According to Nakayama, it is enough to verify this at x = 0. It is then

equivalent to verify that 1,
∂P

∂x1

(u, 0), . . . ,
∂P

∂xµ−1

(u, 0) form a basis of C[u0, . . . , un]/(∂p): this

is precisely the universality condition for the unfolding. 2

(5.2.7) Homogeneity. The Frobenius structure that one tries to put on M is the one deduced

from the infinitesimal period mapping associated to ω. From the proposition above and theorem

4.3.6, it remains to prove the homogeneity property of the primitive form ω. As R∞ and ω are

5-horizontal, it is enough to verify this after restriction to x = 0. We did not give any precision

concerning the resolution of the Birkhoff problem, so we refer to [29, § 12] for the arguments

giving the homogeneity of [du] (when p is convenient and nondegenerate in the sense of [21], one

shows that [du] is an eigenvector with a minimal eigenvalue of R∞; this eigenvalue is smallest

spectral number of the polynomial p and the spectrum is computed using the Newton filtration

on Eo).

In case M is the parameter space of a miniversal unfolding of a germ of holomorphic function

with an isolated singularity, the homogeneity property has been previously proved by M. Saito,

and this justified a conjecture of K. Saito concerning the existence of a Saito structure on such

an M . 2

(5.2.8) The metric g on M . We can now give an “explicit” formula for the metric g. It is

not really explicit because it involves the primitive form ω (in fact a representative ω̃): one has

g(∂xi
, ∂xj

) =
1

(2iπ)n+1

∫
Γ

P ′
xi
P ′

xj

P ′
u0
· · ·P ′

un

· ω̃

where Γ is as in § 3.3.8.

Appendix

A. The Riemann-Hilbert problem and its variants

A.1. The Riemann-Hilbert problem

Let Σ be a nonempty finite set of points on the Riemann sphere P1(C). To a (conjugacy

class of) representation of dimension d of the fundamental group π1(P
1 − Σ, ?) corresponds a

holomorphic vector bundle with a flat connection on U
def
= P1 − Σ (up to isomorphism). One

knows on the other hand that such a vector bundle is isomorphic to the trivial vector bundle

(if one forgets the connection).

The Riemann-Hilbert problem is the following: does there exist on the trivial rank d vector

bundle on P1 a connection with (at most) logarithmic poles along Σ which extends the given

one on U?

Assume that the point at infinity of P1 is in Σ and denote Σf the set of points of Σ which

are at finite distance. The problem is then equivalent to the following: is it possible to find for
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each σ ∈ Σf a matrix Aσ of size d with entries in C so that the connection with logarithmic

poles defined on the trivial vector bundle on P1 − {∞} (z coordinate) by the matrix

∑
σ∈Σf

Aσ
dz

z − σ

(which extends as a connection on the trivial vector bundle on P1 with at most a logarithmic

pole at infinity with residue −∑σ∈Σf
Aσ) induces the given (conjugacy class of) monodromy

representation on U?

The initial problem solved by Riemann (under certain conditions) corresponds to the case

Σ = {0, 1,∞} and a rank 2 representation.

It is now well-known that this problem cannot always be solved if d ≥ 3, but that if for

instance the given representation is irreducible, it has a solution (see [2] for this kind of results,

as well as for references).

The problem also has a variant with constraint: assume that the given representation

takes values in an algebraic subgroup of GLd(C); can one find a solution so that the residue of

the connection at any point of Σ takes values in the Lie algebra of this group?

A.2. Variants, Birkhoff normal form

Instead of starting from a vector bundle with a flat connection on U , one can start from

a vector bundle with a meromorphic connection on U with poles along some set Σ′ ⊂ U (not

necessarily logarithmic ones, but having some type r ≥ 1 depending on the point of Σ′). The

vector bundle is trivial on U and one asks if it is possible to endow the trivial rank d vector

bundle on P1 with a meromorphic connection which is equal to the given connection over U

and which has at most logarithmic poles at points of Σ.

If one does not insist on the triviality of the vector bundle, one uses the lemma below

to glue vector bundles and to construct a vector bundle on P1 (maybe non trivial) with a

logarithmic connection.

Let T be an automorphism of Cd (defining a rank d local system on a punctured disc D∗)

and choose a section σ of the natural projection C → C/Z (in such a way that two complex

numbers in Imσ do not differ by a nonzero integer).

(A.2.1) Lemma. — Under these conditions there exists a unique (up to isomorphism) vector

bundle with a meromorphic connection on D with a logarithmic pole at 0 (i.e. of type 0) for

which

1. the local system it defines on D∗ is the one associated with T ,

2. the residue at 0 of the connection has eigenvalues in Imσ.
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Proof. One can write in a unique way (Jordan decomposition of T ) Cd = ⊕λEλ where Eλ is the

direct sum of spaces of the form C[T, T−1]/(T−λ)k and one has a corresponding decomposition

of the local system on D∗ attached to T . The desired vector bundle will be decomposed in the

same way and to each term C[T, T−1]/(T − λ)k one associates the connection ∇ on the trivial

rank k vector bundle with matrix (α Id +N)
dz

z
, where α is the unique logarithm of λ in Imσ,

N is the Jordan block of size k and z is a coordinate on D.

If one has two such vector bundles F and F ′, the vector bundle with a meromorphic con-

nection HomOD
(F ,F ′) also has a logarithmic pole at 0 and the eigenvalues of the residue of its

connection is obtained as the differences of the eigenvalues of Res∇′ and of Res∇. Therefore,

the only integral difference is 0, by assumption.

As the vector bundles have the same monodromy on D∗, one has a horizontal invertible

section of HomOD
(F ,F ′) on D∗. This section has moderate growth, hence is meromorphic at

0, since the origin is a regular singularity for HomOD
(F ,F ′). As the unique integral eigenvalue

of the residue is ≥ 0, this section is holomorphic at 0. Its inverse satisfies the same property,

hence the existence of an isomorphism between the two vector bundles with a meromorphic

connection. 2

Keep now the triviality assumption, but forget the pole order. The construction above

gives an extension of the vector bundle as a vector bundle with a meromorphic connection on

P1 minus only one point of Σ, and this vector bundle must be trivial. Assume that this point

is at infinity. The problem consists in finding a basis of this vector bundle extended to C in

which the connection matrix is also meromorphic at infinity, i.e. has rational coefficients.

In order to do this, extend the vector bundle as a vector bundle (maybe non trivial) on

P1 with a logarithmic connection at infinity, using the procedure above. By a variant of

Chow’s theorem, the vector bundle and its connection are algebraic. Choose then a basis of

the underlying algebraic vector bundle restricted to the affine space A1
C. In this basis, the

connection matrix is rational. 2

To verify that the local and global variant of the Birkhoff problem (§ 2.1) are equivalent,

one uses

(A.2.2) Proposition. — Let (F,∇) be a holomorphic vector bundle on C with a meromor-

phic connection with a pole of type 1 at 0. The following properties are equivalent:

1. there exists a basis of F in which the matrix of z−1∇ takes the form (2.1.1);

2. there exists an open neighbourhood D of 0 and a basis of F|D in which the matrix of z−1∇
takes the form (2.1.1);

3. there exists a meromorphic connection on the trivial rank d vector bundle on P1 which

has a logarithmic pole at infinity and which extends the one on F|D.

If moreover (F,∇) is algebraic (i.e. is defined by a free C[z]-module of rank d and the

matrix of ∇ is rational) and the singularity of ∇ is regular at infinity, these properties are also

equivalent to the following:
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4. there exists a basis of F as a free C[z]-module in which the matrix of ∇ has at most a

simple pole at infinity;

5. there exists a basis of F as a C[z]-module in which the matrix of z−1∇ takes the form

(2.1.1).

Proof. Notice first that F and F|D are trivial. Moreover (1) =⇒ (2) is clear. For (2) =⇒ (1),

one uses analytic continuation 1.2.7-2. For (2) =⇒ (3), one defines the connection on the

trivial vector bundle by formula (2.1.1) in the affine chart centered at 0. One verifies that this

connection extends as a connection on the trivial vector bundle on P1 with a simple pole at

infinity with residue −B∞. By assumption, the restriction to D of the vector bundle with a

meromorphic connection defined in this way is isomorphic to F|D. (3) =⇒ (2) is easy.

If (F,∇) is algebraic, it is clear that (4) ⇐⇒ (5) and that (4) =⇒ (3). To show that

(3) =⇒ (4), one uses the fact that HomO(F ,Od) has a regular singularity at infinity (as the

same is true for F ). Therefore, any isomorphism given by (3) is meromorphic at infinity, as

well as its inverse. 2

B. Proofs of theorem 3.1.3

We follow here [23].

B.1. First proof (with Stokes structures)

Structure of the formal completion. Let Ô be the formal completion of the sheaf OD×X along

{0}×X, where D is a disc centered at 0: this is a sheaf on {0}×X which germ at a point (0, xo)

is made of formal power series
∑∞

i=0 ai(x)z
i where the ai are holomorphic functions defined on

the same neighbourhood of xo.

Let F be a holomorphic vector bundle on D×X and F be the associated sheaf. Denote F̂ =

Ô⊗OF the formal completion of F along {0}×X (not to be confused with the Fourier-Laplace

transform); this is then a sheaf on {0} × X. We will say that F̂ is the formal vector bundle

along {0} ×X associated with F . The notion of a formal vector bundle with a meromorphic

connection is meaningful, and if F is equipped with a connection with poles along {0} × X,

then F̂ is so.

In general, going from (F,∇) to (F̂ , ∇̂) looses a lot of information, if the singularities of

(F,∇) along {0} × X are not regular. Nevertheless, one should remark that this does not

happen for rank 1 vector bundles F :

(B.1.1) Proposition.

1. If (F,∇) of rank 1 has type 1 along {0}×X, then in any local basis and in local coordinates,

the connection form can be written

−d
(
λ(x)

z

)
+ µ

dz

z

with µ ∈ C and λ holomorphic on X.
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2. Two such vector bundles associated with (λ, µ) and (λ′, µ′) in the same coordinate system

are locally isomorphic if and only if λ = λ′ and µ = µ′.

3. The formalisation is an equivalence of categories between the (F,∇) of rank 1 and of type

1 and the (F̂ , ∇̂) of rank 1 and of type 1. 2

(B.1.2) Remark. The local automorphisms of the vector bundle with connection associated

with (λ, µ) are locally constant. From this one can show that the restriction of a rank 1

vector bundle (F,∇) to {0} × X is equipped with a natural flat connection so that, locally,

the restriction of the vector bundle associated with (λ, µ) is the trivial vector bundle endowed

with the trivial connection d. Notice that the “residue” λ is not horizontal with respect to this

connection. In particular, if X is 1-connected, the datum of a nonzero vector of F o defines a

horizontal trivialisation of F|{0}×X .

In rank ≥ 2, the structure of formal vector bundles with connection of type 1 is very

simple:

(B.1.3) Theorem. — Assume that the manifold X is 1-connected. If (F,∇) is any holo-

morphic vector bundle on D × X with a connection of type 1 with poles along {0} × X and

which residue (in the sense of § 1.2.6) is regular semi-simple, then the corresponding formal

vector bundle with connection decomposes in a unique way as a direct sum of rank 1 vector

bundles

(F̂ , ∇̂) =
d
⊕

j=1
(F̂j, ∇̂)

which are not pairwise locally isomorphic.

Remark. According to the previous proposition, each (F̂j, ∇̂) comes from a unique (Fj,∇)

defined on D×X. We then have an elementary model (F ′,∇′) = ⊕d
j=1(F̂j, ∇̂) on D×X defined

over OD×X and an isomorphism ϕ̂ : (F̂ , ∇̂)
∼−→ (F̂ ′, ∇̂′). The automorphisms of the formal

model (F̂ ′, ∇̂′) are locally (hence globally as X is 1-connected) given by a constant diagonal

matrix, so ϕ̂ is unique up to such an automorphism.

Proof. As X is 1-connected, the eigenvalues of the “residue” define d functions λ1, . . . , λd on

X which values at each point are pairwise distinct. The previous proposition shows that the

statement of the theorem is local on X. One is thus reduced to a classical statement of Turrittin

concerning the decomposition with respect to the eigenvalues of the most polar part (see also

for instance [5, § 6.2 lemme 1]).

Let Ω = z−1

[
A(z, x)

dz

z
+
∑

i

Ci(z, x)dxi

]
be the matrix of ∇ in a basis of F defined on

D × U , where U ⊂ X is some open set with coordinates x1, . . . , xn. Put

A(z, x) =
∞∑

p=0

Ap(x)z
p.
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We may assume that A0(x) = diag(λ1(x), . . . , λd(x)). The sheaf Md(OX) of matrices of size d

with holomorphic entries has a decomposition

Md(OX) = Ker adA0 ⊕ Im adA0

where each factor is a locally free sheaf of OX-modules; moreover, adA0 : Im adA0 → Im adA0

induces an isomorphism: indeed, Ker adA0 is made of diagonal matrices and Im adA0 of ma-

trices having only zeros on the diagonal.

For m ∈ N, let Pm = (Id +zmTm(x)) where Tm(x) is a matrix of size d with holomorphic

entries for x ∈ U . Consider the effect of the base change with matrix Pm on the matrix A. One

has

A′ = P−1
m APm + P−1

m · z2∂z(Pm).

One verifies easily that the coefficients A′p differ from Ap only for p ≥ m and that one has

A′m = Am + [A0, Tm].

Assume that for all p < m one found Tp such that, after the base change with matrix

P<m =
∏

0<p<m Pp, the coefficients A′p of the matrix A′, for p < m, commute with A′0 = A0.

One then chooses Tm so that the matrix A′′m
def
= A′m + [A0, Tm] does so: just kill the component

of A′m on Im adA0.

In conclusion, after the formal base change with matrix
∏

m>0 Pm, one gets on U a decom-

position of F as a direct sum of free Ô-modules stable by z2∂z, where the matrix of ∂z takes

the desired form.

It remains to be shown that this decomposition is stable by ∇∂xi
for i = 1, . . . , n. To prove

this, one uses the integrability condition. We still denote Ω = z−1

[
A(z, x)

dz

z
+
∑

i

Ci(z, x)dxi

]
the matrix of ∇ in the basis above and put Ci =

∑
m≥−1Ci,m(x)zm, where now A and the Ci

are only formal power series in z. One has to prove that Ci,m is diagonal. We shall show this by

induction on m. Remark that this property is satisfied by Ci,m if it is so by [A0, Ci,m] according

to what has been seen above. The integrability relation

[A,Ci] = z

[
∂xi
A+ Ci − z

∂Ci

∂z

]

implies that [A0, Ci,m] can be expressed in terms of the Ci,p and of the ∂xi
Ap (p < m), hence

the result. 2

End of the proof (sketch). We have to reconstruct (F,∇) on D × X from (F̂ , ∇̂) obtained

previously. It will then be possible to apply the rigidity theorem of logarithmic connections

2.2.1 to construct (F̃ , ∇̃) on P1×X by a glueing procedure. Strong uniqueness will be obtained

as in proposition 2.2.1.
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We need to understand how to classify all possible (F,∇) having (F ′,∇′) as a formal model.

A theorem of Malgrange and Sibuya claims that such (F,∇) are classified by sections on X

of the Stokes sheaf, which is a sheaf of sets on X, associated with (F ′,∇′) (see [23, II, § 2]).

The theorem will then follow from the fact that the Stokes sheaf is a locally constant sheaf on

X: a section of this sheaf is uniquely determined by its value at xo, and we know such a value

because (F o,∇o) is given.

The Stokes sheaf. Let us indicate here what the Stokes sheaf is and why it is locally constant.

Assume that the disc D has radius r and let π : X̃ = [0, r[ × S1 × X → D × X be the map

induced by taking polar coordinates with respect to z, namely (ρ, eiθ, x) 7→ (z = ρeiθ, x). Let

C∞
X̃

be the sheaf of C∞ functions on the manifold with boundary X̃. Then z∂z and z∂z act on

it (but not ∂z and ∂z), so we can consider the sheaf A
X̃

of germs of functions on X̃ satisfying

the modified Cauchy-Riemann equations, namely z∂zf = ∂x1
f = · · · = ∂xn

f = 0. This sheaf

coincides with OD∗×X on D∗×X. We also denote A<X

X̃
the subsheaf of A

X̃
of functions which

Taylor expansion along π−1({0}×X) vanishes identically. One can define the action of ∂z in a

natural way on these sheaves.

Consequently, F̃ ′ def
= A

X̃
⊗π−1OD×X

F ′ comes equipped with a connection in a natural way,

extending the one of F ′. Consider the sheaf of automorphisms of (F̃ ′, ∇̃′) such that the matrix

in some (hence any) local basis of F ′ has the form Id +P̃ where P̃ has entries in A<X

X̃
, in other

words the Taylor expansion of this matrix along π−1({0} ×X) is equal to Id. We will denote

this sheaf Aut<X(F̃ ′, ∇̃′). This is a sheaf of (nonabelian) groups on X̃ that we consider only

on π−1({0} ×X) = S1 ×X.

The Stokes sheaf is then the sheaf on X = {0} × X associated with the presheaf U 7→
H1(S1 × U,Aut<X(F̃ ′, ∇̃′)). This is a sheaf of pointed sets, equipped with a section called

identity: this section will correspond to the connection (F ′,∇′) via the Malgrange-Sibuya

classification.

Fix a basis ei of each component Fi of F ′. Each ei behaves like the function zµie−λi(x)/z.

Consider a covering of S1 by open intervals Iα without triple intersections, and a neighbourhood

U of x such that on each (Iα ∩ Iβ)×U with Iα 6= Iβ, the differences Re(λi− λj) do not vanish.

Near a point x ∈ X, a local section on U of the Stokes sheaf can be represented by a

collection (for α and β varying) of sections over (Iα ∩ Iβ)× U of Aut<X(F̃ ′, ∇̃′).
Let us fix an open set (Iα∩ Iβ)×U . Any a section of Aut<X(F̃ ′, ∇̃′) on this open set can be

written Id +P̃ , where P̃ is any matrix with entries in A<X

X̃
commuting with ∇̃′. So P̃ij takes the

form cijz
µj−µie(λi−λj)/z, with cij ∈ C and cij 6= 0 only if e(λi−λj)/z ∈ A<X

X̃
, i.e. if Re(λi−λj) < 0

on (Iα ∩ Iβ)× U . From this description it is clear that the Stokes sheaf is locally constant. 2

B.2. Second proof (by Fourier transform)

This second proof gives a little bit less than the statement 3.1.3, it gives nevertheless the

conclusion of corollary 2.2.4 in this situation.

Assume that B∞ + k Id is invertible for all k ∈ N. Consider the Fourier-Laplace trans-
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form (F̂ o, ∇̂o) on the line Â1 with coordinate t, where ∇̂o has matrix B∞(t Id−Bo
0)
−1dt (cf.

prop. 1.6.2). As Bo
0 has distinct eigenvalues, this exhibits a solution of the Riemann-Hilbert

problem for (F̂ o, ∇̂o).

On the other hand, consider on P̂1× X̃d the hypersurfaces t =∞ and t = xi (i = 1, . . . , d).

Extend the local system associated with (F̂ o, ∇̂o) to the complement of these hypersurfaces (see

[23, I, lem. 2.2]). Apply the rigidity 2.2.1 of local logarithmic connections around each of these

hypersurfaces and deduce the existence of (F̂ , ∇̂) on P̂1 × X̃d (see [23, I, th. 2.1]). By rigidity

1.1.1 find Θ so that the analogue of corollary 2.2.4 is satisfied for (F̂ , ∇̂) on P̂1 × (X̃d − Θ).

Restrict then to Â1 × (X̃d −Θ) and apply the inverse Laplace transform to get corollary 2.2.4.

2
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matique et Physique, Progress in Math. vol. 37, Birkhaüser, Boston, 1983.
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and the fifth Painlevé transcendent, Physica 1D (1980), 80–158.

[17] M. Jimbo, T. Miwa, K. Ueno, Monodromy preserving deformations of linear ordinary

differential equations with rational coefficients I, Physica 2D (1981), 306–352.

[18] M. Jimbo, T. Miwa, Monodromy preserving deformations of linear ordinary differential

equations with rational coefficients II, III, Physica 2D (1981), 407–448 and 4D (1981)

26–46.

[19] N. Katz, T. Oda, On the differentiation of de Rham cohomology classes with respect to

a parameter, J. Math. Kyoto Univ. 1 (1968), 199–213.

[20] M. Kontsevich, Enumeration of rational curves via torus action, in The moduli space

of curves, R. Dijkgraaf, C. Faber & G. van der Geer eds, Progress in Math., Birkhäuser
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