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LECTURE 1

BASIC CONSTRUCTIONS

In this first lecture, we introduce the sheaf of differential operators and its (left or
right) modules. Our main concern is to develop the relationship between two a priori
different notions:

(1) the classical notion of an OX -module with a flat connection,
(2) the notion of a left DX -module.

Both notions are easily seen to be equivalent. However, the extension of the equiva-
lence to complexes (or to the derived category) is less clear. Later on, we will introduce
the notion of differential complex to express this equivalence. The main result in this
direction will be Theorem 3.3.7.

The relationship between left and right DX -modules, although simple, is also some-
what subtle, and we insist on the basic isomorphisms.

We also develop the same theory with filtration, by explaining a recipe (Rees con-
struction) to treat the filtered analogue along the same lines. The notion of strictness
plays a major role here.

The results in this lecture are mainly algebraic, and do not involve any ana-
lytic property. They could be translated easily to the algebraic situation. One can
find many of these notions in the classical books [Kas95, Bjö79, Bor87, Meb89,
MS93a, MS93b, Bjö93, Cou95, Kas03]. Some of them are also directly inspired
from the work of M. Saito [Sai88, Sai89b, Sai89a] about Hodge D-modules.

In this lecture, we denote by X a complex manifold of dimension dimX = n.

1.1. The sheaf of holomorphic differential operators

We will denote by ΘX the sheaf of holomorphic vector fields on X. This is the
OX -locally free sheaf generated in local coordinates by ∂x1 , . . . , ∂xn . It is a sheaf of
OX -Lie algebras which is locally free as an OX -module, and vector fields act (on the
left) on functions by derivation, in a way compatible with the Lie algebra structure:
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given a local vector field ξ acting on functions as a derivation g 7→ ξ(g), and a local
holomorphic function f , fξ is the vector field acting as f · ξ(g), and given two vector
fields ξ, η, their bracket as derivations [ξ, η](g) := ξ(η(g))−η(ξ(g)) is still a derivation,
hence defines a vector field.

Dually, we denote by Ω1
X the sheaf of holomorphic 1-forms on X. We will set

Ωk
X = ∧kΩ1

X . We denote by d : Ωk
X → Ωk+1

X the differential.

Exercise 1.1.1. Let E be a locally free OX -module of rank d and let E ∨ be its dual.
Show that, given any local basis e = (e1, . . . , ed) of E with dual basis e∨, the section∑d

i=1 ei⊗e∨
i of E⊗OX

E ∨ does not depend on the choice of the local basis e and extends
as a global section of E ⊗OX

E ∨. Show that it defines, up to a constant, an OX -linear
section OX → E ⊗OX

E ∨ of the natural duality pairing E ⊗OX
E ∨ → OX . Conclude

that we have a natural global section of Ω1
X ⊗OX

ΘX given, in local coordinates, by∑
i dxi ⊗ ∂xi

.

Let ωX denote the sheaf Ωdim X
X of forms of maximal degree. Then there is a natural

right action (in a compatible way with the Lie algebra structure) of ΘX on ωX : the
action is given by ω · ξ = −Lξω, where Lξ denotes the Lie derivative, equal to the
composition of the interior product ιξ by ξ with the differential d, as it acts on forms
of maximal degree. The action is on the right since applying the vector field fξ (as
defined above) to ω consists in multiplying first ω by f , and then applying ξ. The
choice of the sign above makes this definition compatible with bracket.

Exercise 1.1.2 (The sheaf Hom ). Let X be a topological space and let F and G

be two sheaves of A -modules on X, A being a sheaf of rings on X. We de-
note by HomA (F ,G ) the Γ(X,A )-module of morphisms of sheaves of A -modules
from F to G . An element ϕ of HomA (F ,G ) is a collection of morphisms ϕ(U) ∈
HomA (U)(F (U),G (U)), on open subsets U of X, compatible with the restrictions.

Show that the presheaf Hom A (F ,G ) defined by

Γ(U,Hom A (F ,G )) = HomA|U
(F|U ,G|U )

is a sheaf (notice that U 7→ HomA (U)(F (U),G (U)) is not a presheaf, because there
are no canonical morphisms of restriction).

Definition 1.1.3 (The sheaf of holomorphic differential operators)
For any open set U of X, the ring DX(U) of holomorphic differential operators

on U is the subring of HomC(OU ,OU ) generated by
• multiplication by holomorphic functions on U ,
• derivation by holomorphic vector fields on U .

The sheaf DX is defined by Γ(U,DX) = DX(U) for any open set U of X.

By construction, the sheaf DX acts on the left on OX , i.e., OX is a left DX -module.
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Definition 1.1.4 (The filtration of DX by the order). The increasing family of subsheaves
FkDX ⊂ DX is defined inductively:

• FkDX = 0 if k ⩽ −1,
• F0DX = OX (via the canonical injection OX ↪→Hom C(OX ,OX)),
• the local sections P of Fk+1DX are characterized by the fact that [P,φ] is a

local section of FkDX for any holomorphic function φ.

Exercise 1.1.5. Show that a differential operator P of order ⩽ 1 satisfying P (1) = 0
is a derivation of OX , i.e., a section of ΘX .

Exercise 1.1.6 (Local computations). Let U be an open set of Cn with coordinates
x1, . . . , xn. Denote by ∂x1 , . . . , ∂xn the corresponding vector fields.

(1) Show that the following relations are satisfied in D(U):

[∂xi
, φ] = ∂φ

∂xi
, ∀φ ∈ O(U), ∀ i ∈ {1, . . . , n},

[∂xi , ∂xj ] = 0 ∀ i, j ∈ {1, . . . , n},

∂α
x · φ =

∑
0⩽β⩽α

α!
(α− β)!β!∂

α−β
x (φ)∂β

x ,

φ · ∂α
x =

∑
0⩽β⩽α

α!
(α− β)!β! (−1)|α−β|∂β

x∂
α−β
x (φ),

with standard notation concerning multi-indices α, β.
(2) Show that any element P ∈ D(U) can be written in a unique way as∑

α aα∂
α
x or

∑
α ∂

α
x bαwith aα, bα ∈ O(U). Conclude that DX is a locally free

left and right module over OX .
(3) Show that max{|α| ; aα ̸= 0} = max{|α| ; bα ̸= 0}. It is denoted by
ordxP .
(4) Show that ordxP does not depend on the coordinate system chosen on U .
(5) Show that PQ = 0 in D(U) ⇒ P = 0 or Q = 0.
(6) Identify FkDX with the subsheaf of local sections of DX having order ⩽ k (in
some or any local coordinate system). Show that it is a locally free OX -module
of finite rank.
(7) Show that the filtration F•DX is exhaustive (i.e., DX =

⋃
k FkDX) and that

it satisfies
FkDX · FℓDX = Fk+ℓDX .

(The left-hand term consists by definition of all sums of products of a section
of FkDX and a section of FℓDX .)
(8) Show that the bracket [P,Q] := PQ−QP induces for each k, ℓ a C-bilinear
morphism FkDX ⊗C FℓDX → Fk+ℓ−1DX .
(9) Conclude that the graded ring grFDX is commutative.
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The sheaf DX is not commutative. The lack of commutativity of DX is analyzed
in Exercise 1.1.7.

Exercise 1.1.7 (The graded sheaf grF DX ). The goal of this exercise is to show that the
sheaf of graded rings grF DX may be canonically identified with the sheaf of graded
rings Sym ΘX . If one identifies ΘX with the sheaf of functions on the cotangent space
T ∗X which are linear in the fibres, then Sym ΘX is the sheaf of functions on T ∗X

which are polynomial in the fibres. In particular, grF DX is a sheaf of commutative
rings.

(1) Identify the OX -module Symk ΘX with the sheaf of symmetric C-linear
forms ξ : OX ⊗C · · · ⊗C OX on the k-fold tensor product, which behave like a
derivation with respect to each factor.

(2) Show that Sym ΘX := ⊕k Symk ΘX is a sheaf of graded OX -algebras on X

and identify it with the sheaf of functions on T ∗X which are polynomial in the
fibres.

(3) Show that the map FkDX → Hom C
( k
⊗COX ,OX

)
which sends any section

P of FkDX to

φ1 ⊗ · · · ⊗ φk 7−→ [· · · [[P,φ1]φ2] · · ·φk]

induces an isomorphism of OX -modules grF
k DX → Symk ΘX .

(4) Show that the induced morphism

grF DX := ⊕kgrF
k DX −→ Sym ΘX

is an isomorphism of sheaves of OX -algebras.

On the other hand, it has no non-trivial two-sided ideals (see Exercise 1.1.8), hence
it is simple.

Exercise 1.1.8 (The sheaf of rings DX has no non-trivial two-sided ideals)
Let I be a non-zero two-sided ideal of DX .

(1) Let x ∈ X and 0 ̸= P ∈ Ix. Show that there exists f ∈ OX,x such that
[P, f ] ̸= 0. [Hint: use local coordinates to express P ].

(2) Conclude by induction on the order that Ix contains a non-zero g ∈ OX,x.

(3) Show that Ix contains all iterated differentials of g, and conclude that Ix

contains h ∈ OX,x such that h(x) ̸= 0.

(4) Conclude that Ix ∋ 1, hence Ix = DX,x.

This leads us to consider left or right DX -modules (or ideals), and the theory of
two-sided objects is empty.
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Exercise 1.1.9 (The universal connection)
(1) Show that the natural left multiplication of ΘX on DX can be written as a
connection

∇ : DX −→ Ω1
X ⊗OX

DX ,

i.e., as a C-linear morphism satisfying the Leibniz rule ∇(fP ) = df ⊗P +f∇P ,
where f is any local section of OX and P any local section of DX . [Hint: ∇(1)
is the global section of Ω1

X ⊗OX
ΘX considered in Exercise 1.1.1.]

(2) Extend this connection for any k ⩾ 1 as a C-linear morphism
(k)∇ : Ωk

X ⊗OX
DX −→ Ωk+1

X ⊗OX
DX

satisfying the Leibniz rule written as
(k)∇(ω ⊗ P ) = dω ⊗ P + (−1)kω ∧∇P.

(3) Show that (k+1)∇ ◦ (k)∇ = 0 for any k ⩾ 0 (i.e., ∇ is flat).
(4) Show that the morphisms (k)∇ are right DX -linear (but not left OX -linear).

Exercise 1.1.10. More generally, show that a left DX -module M is nothing but an
OX -module with an integrable connection ∇ : M → Ω1

X ⊗OX
M . [Hint: to get

the connection, tensor the left DX -action DX ⊗OX
M → M by Ω1

X on the left and
compose with the universal connection to get DX ⊗M → Ω1

X ⊗M ; compose it on
the left with M → DX ⊗M given by m 7→ 1 ⊗ m.] Define similarly the iterated
connections (k)∇ : Ωk

X ⊗OX
M → Ωk+1

X ⊗OX
M . Show that (k+1)∇ ◦ (k)∇ = 0.

In conclusion:

Proposition 1.1.11. Giving a left DX-module M is equivalent to giving an OX-
module M together with an integrable connection ∇.

Proof. Exercises 1.1.1, 1.1.9 and 1.1.10.

1.2. Left and right

The categories of left (resp. right) DX -modules are denoted by ℓM(DX) (resp.
rM(DX). We analyze the relations between both categories in this section. Let us
first recall the basic lemmas for generating left or right D-modules. We refer for
instance to [CJ93, § 1.1] for more details.

Lemma 1.2.1 (Generating left DX -modules). Let M left be an OX-module and let φleft :
ΘX ⊗CX

M left →M left be a C-linear morphism such that, for any local sections f of
OX , ξ, η of ΘX and m of M left, one has

(1) φleft(fξ ⊗m) = fφleft(ξ ⊗m),
(2) φleft(ξ ⊗ fm) = fφleft(ξ ⊗m) + ξ(f)m,
(3) φleft([ξ, η]⊗m) = φleft(ξ ⊗ φleft(η ⊗m))− φleft(η ⊗ φleft(ξ ⊗m)).
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Then there exists a unique structure of left DX-module on M left such that ξm =
φleft(ξ ⊗m) for any ξ,m.

Lemma 1.2.2 (Generating right DX -modules). Let M right be an OX-module and let
φright : M right ⊗CX

ΘX → M right be a C-linear morphism such that, for any local
sections f of OX , ξ, η of ΘX and m of M right, one has

(1) φright(mf⊗ξ) = φright(m⊗fξ) (φright is in fact defined on M right⊗OX
ΘX),

(2) φright(m⊗ fξ) = φright(m⊗ ξ)f −mξ(f),
(3) φright(m⊗ [ξ, η]) = φright(φright(m⊗ ξ)⊗ η)− φright(φright(m⊗ η)⊗ ξ).

Then there exists a unique structure of right DX-module on M right such that mξ =
φright(m⊗ ξ) for any ξ,m.

Example 1.2.3 (Most basic examples)
(1) DX is a left and a right DX -module.
(2) OX is a left DX -module (Exercise 1.2.4).
(3) ωX := Ωdim X

X is a right DX -module (Exercise 1.2.5).

Exercise 1.2.4 (OX is a simple left DX -module)
(1) Use the left action of ΘX on OX to define on OX the structure of a left
DX -module.
(2) Let f be a nonzero holomorphic function on Cn. Show that there exists a
multi-index α ∈ Nn such that (∂αf)(0) ̸= 0.
(3) Conclude that OX is a simple left DX -module, i.e., does not contain any
proper non trivial DX -submodule. Is it simple as a left OX -module?

Exercise 1.2.5 (ωX is a simple right DX -module)
(1) Use the right action of ΘX on ωX to define on ωX the structure of a right
DX -module.
(2) Show that it is simple as a right DX -module.

Exercise 1.2.6 (Tensor products over OX )
(1) Let M and N be two left DX -modules.

(a) Show that the OX -module M ⊗OX
N has the structure of a left DX -

module by setting, by analogy with the Leibniz rule,

ξ · (m⊗ n) = ξm⊗ n+m⊗ ξn.

(b) Notice that, in general, m⊗ n 7→ (ξm)⊗ n (or m⊗ n 7→ m⊗ (ξn)) does
not define a left DX -action on the OX -module M ⊗OX

N .
(c) Let φ : M → M ′ and ψ : N → N ′ be DX -linear morphisms. Show
that φ⊗ ψ is DX -linear.
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(2) Let M be a left DX -module and N be a right DX -module. Show that
N ⊗OX

M has the structure of a right DX -module by setting

(n⊗m) · ξ = nξ ⊗m− n⊗ ξm.

Remark: one can define a right DX -module structure on M⊗OX
N by using the

natural involution M ⊗OX
N

∼−→ N ⊗OX
M , so this brings no new structure.

(3) Assume that M and N are right DX -modules. Does there exist a (left or
right) DX -module structure on M ⊗OX

N defined with analogous formulas?

Exercise 1.2.7 (Hom over OX )

(1) Let M ,N be left DX -modules. Show that Hom OX
(M ,N ) has a natural

structure of left DX -module defined by

(ξ · φ)(m) = ξ · (φ(m)) + φ(ξ ·m),

for any local sections ξ of ΘX , m of M and φ of Hom OX
(M ,N ).

(2) Similarly, if M ,N are right DX -modules, then Hom OX
(M ,N ) has a nat-

ural structure of left DX -module defined by

(ξ · φ)(m) = φ(m · ξ)− φ(m) · ξ.

Exercise 1.2.8 (Tensor product of a left DX -module with DX )
Let M left be a left DX -module. Notice that M left ⊗OX

DX has two commuting
structures of OX -module. Similarly DX ⊗OX

M left has two such structures. The goal
of this exercise is to extend them as DX -structures and examine their relations.

(1) Show that M left ⊗OX
DX has the structure of a left and of a right DX -

module which commute, given by the formulas:

(M left ⊗OX
DX)tens :

{
f · (m⊗ P ) = (fm)⊗ P = m⊗ (fP ),
ξ · (m⊗ P ) = (ξm)⊗ P +m⊗ ξP,(left)

(M left ⊗OX
DX)triv :

{
(m⊗ P ) · f = m⊗ (Pf),
(m⊗ P ) · ξ = m⊗ (Pξ),(right)

for any local vector field ξ and any local holomorphic function f . Show that a
left DX -linear morphism φ : M left

1 →M left
2 extends as a bi-DX -linear morphism

φ⊗ 1 : M left
1 ⊗OX

DX →M left
2 ⊗OX

DX .
(2) Similarly, show that DX ⊗OX

M left also has such structures which commute
and are functorial, given by formulas:

(DX ⊗OX
M left)triv :

{
f · (P ⊗m) = (fP )⊗m,
ξ · (P ⊗m) = (ξP )⊗m,(left)

(DX ⊗OX
M left)tens :

{
(P ⊗m) · f = P ⊗ (fm) = (Pf)⊗m,
(P ⊗m) · ξ = Pξ ⊗m− P ⊗ ξm.(right)
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(3) Show that both morphisms

M left ⊗OX
DX −→ DX ⊗OX

M left DX ⊗OX
M left −→M left ⊗OX

DX

m⊗ P 7−→ (1⊗m) · P P ⊗m 7−→ P · (m⊗ 1)

are left and right DX -linear, induce the identity M left ⊗ 1 = 1 ⊗M left, and
their composition is the identity of M left⊗OX

DX or DX⊗OX
M left, hence both

are reciprocal isomorphisms. Show that this correspondence is functorial (i.e.,
compatible with morphisms).
(4) Let M be a left DX -module and let L be an OX -module. Justify the
following isomorphisms of left DX -modules and right OX -modules:

M ⊗OX
(DX ⊗OX

L ) ≃ (M ⊗OX
DX)⊗OX

L

≃ (DX ⊗OX
M )⊗OX

L ≃ DX ⊗OX
(M ⊗OX

L ).

Assume moreover that M and L are OX -locally free. Show that M ⊗OX

(DX ⊗OX
L ) is DX -locally free.

Exercise 1.2.9 (Tensor product of a right DX -module with DX )
Let M right be a right DX -module.

(1) Show that M right ⊗OX
DX has two structures of right DX -module which

commute, denoted ·triv (trivial) and ·tens (tensor; the latter defined by using the
left structure on DX and Exercise 1.2.6(2)), given by:

(M right ⊗OX
DX)triv :

{
(m⊗ P ) ·triv f = m⊗ (Pf),
(m⊗ P ) ·triv ξ = m⊗ (Pξ),(right)triv

(M right ⊗OX
DX)tens :

{
(m⊗ P ) ·tens f = mf ⊗ P = m⊗ fP,
(m⊗ P ) ·tens ξ = mξ ⊗ P −m⊗ (ξP ).(right)tens

(2) Show that there is a unique involution ι : M right ⊗OX
DX

∼−→M right ⊗OX
DX

which exchanges both structures and is the identity on M right ⊗ 1, given by
(m ⊗ P )triv 7→ (m ⊗ 1) ·tens P . [Hint: show first the properties of ι by using
local coordinates, and glue the local constructions by uniqueness of ι.]
(3) For each p ⩾ 0, consider the pth term FpDX of the filtration of DX by the or-
der (see Exercise 1.1.4) with both structures of OX -module (one on the left, one
on the right) and equip similarly M right⊗OX

FpDX with two structures (one on
the left, one on the right) of OX -modules. Show that, for each p, ι induces an iso-
morphism of OX -modules (M right⊗OX

FpDX)tens
∼−→ (M right ⊗OX

FpDX)triv.

Definition 1.2.10 (Right-left transformation). Any left DX -module M left gives rise to
a right one M right by setting (see [CJ93] for instance) M right = ωX ⊗OX

M left and,
for any vector field ξ and any function f ,

(ω ⊗m) · f = fω ⊗m = ω ⊗ fm, (ω ⊗m) · ξ = ωξ ⊗m− ω ⊗ ξm.
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Conversely, set M left = Hom OX
(ωX ,M right), which also has in a natural way the

structure of a left DX -module (see Exercise 1.2.7(2)).

Exercise 1.2.11 (Compatibility of right-left transformations)
Show that the natural morphisms

M left −→Hom OX
(ωX , ωX⊗OX

M left), ωX⊗OX
Hom OX

(ωX ,M
right) −→M right

are isomorphisms of DX -modules.

Exercise 1.2.12 (Compatibility of left-right transformation with tensor product)
Let M left and N left be two left DX -modules and denote by M right,N right the

corresponding right DX -modules (see Definition 1.2.10). Show that there is a natural
isomorphism of right DX -modules (by using the right structure given in Exercise
1.2.6(2)):

N right ⊗OX
M left ∼−→M right ⊗OX

N left

(ω ⊗ n)⊗m 7−→ (ω ⊗m)⊗ n

and that this isomorphism is functorial in M left and N left.

Exercise 1.2.13 (Local expression of the left-right transformation)
Let U be an open set of Cn.

(1) Show that there exists a unique C-linear involution P 7→ tP from D(U) to
itself such that

• ∀φ ∈ O(U), tφ = φ,
• ∀ i ∈ {1, . . . , n}, t∂xi

= −∂xi
,

• ∀P,Q ∈ D(U), t(PQ) = tQ · tP .

(2) Let M be a left (resp. right) DX -module and let tM be M equipped with
the right (resp. left) DX -module structure

P ·m := tPm.

Show that tM
∼−→M right (resp. tM

∼−→M left).

Exercise 1.2.14 (The left-right transformation is an isomorphism of categories)
To any left DX -linear morphism φleft : M left → N left is associated the OX -linear

morphism φright = IdωX
⊗φleft : M right → N right.

(1) Show that φright is right DX -linear.

(2) Define the reverse correspondence φright 7→ φleft.

(3) Conclude that the left-right correspondence ℓM(DX) 7→ rM(DX) is a func-
tor, which is an isomorphism of categories, having the right-left correspondence
rM(DX) 7→ ℓM(DX) as inverse functor.
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1.3. Examples of D-modules

We list here some classical examples of D-modules. One may get many other
examples by applying various operations on D-modules.

1.3.a. Let I be a sheaf of left ideals of DX . We will see in Lecture 2 that, locally
on X, I is generated by a finite set {P1, . . . , Pk} of differential operators (this follows
from the noetherianity and coherence properties of DX). Then the quotient M =
DX/I is a left DX -module. Locally, M is the DX -module associated with P1, . . . , Pk.

Notice that different choices of generators of I give rise to the same DX -module M .
It may be sometime difficult to guess that two sets of operators generate the same
ideal. Therefore, it is useful to develop a systematic procedure to construct from a
system of generators a division basis of the ideal in order to have a decision algorithm
(see Lecture 6 on Gröbner bases).

Exercise 1.3.1. Show that the two sets of differential operators {∂x1 , . . . , ∂xn
} and

{∂x1 , x1∂x2 + · · ·+ xn−1∂xn
} generate the same ideal of DCn .

1.3.b. Let L be an OX -module. There is a very simple way to get a right DX -
module from L : consider L ⊗OX

DX equipped with the natural right action of DX .
This is called an induced DX -module. Although this construction is very simple, it
is also very useful to get cohomological properties of DX -modules, as we will see in
Section 3.2. One can also consider the left DX -module DX ⊗OX

L (however, this
is not the left DX -module attached to the right one L ⊗OX

DX by the left-right
transformation of Definition 1.2.10).

1.3.c. One of the main geometrical examples of DX -modules are the vector bundles
on X equipped with an integrable connection. Recall that left DX -modules are OX -
modules with an integrable connection. Among them, the coherent DX -modules are
particularly interesting. We will see (see Exercise 2.4.6), that such modules are OX -
locally free, i.e., correspond to holomorphic vector bundles of finite rank on X.

It may happen that, for some X, such a category does not give any interesting
geometric object. Indeed, if for instance X has a trivial fundamental group (e.g. X =
P1(C)), then any vector bundle with integrable connection is isomorphic to the trivial
bundle Oright

X with the connection d. However, on Zariski open sets of X, there
may exist interesting vector bundles with connections. This leads to the notion of
meromorphic vector bundle with connection.

Let D be a divisor in X and denote by OX(∗D) the sheaf of meromorphic functions
on X with poles along D at most. This is a sheaf of left DX -modules, being an OX -
module equipped with the natural connection d : OX(∗D)→ Ω1

X(∗D).
By definition, a meromorphic bundle is a locally free OX(∗D) module of finite rank.

When it is equipped with an integrable connection, it becomes a left DX -module.
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1.3.d. One may twist the previous examples. Assume that ω is a closed holomorphic
form on X. Define ∇ : OX → Ω1

X by the formula ∇ = d+ ω. As ω is closed, ∇ is an
integrable connection on the trivial bundle OX .

Usually, there only exist meromorphic closed form on X, with poles on some divi-
sor D. Then ∇ is an integrable connection on OX(∗D).

If ω is exact, ω = df for some meromorphic function f on X, then ∇ may be
written as e−f ◦ d ◦ ef .

More generally, if M is any meromorphic bundle with an integrable connection ∇,
then, for any such ω, ∇+ ω Id defines a new DX -module structure on M .

1.3.e. Denote by DbX the sheaf of distributions on X: given any open set U of X,
DbX(U) is the space of distributions on U , which is by definition the week dual
of the space of C∞ forms with compact support on U , of type (dimU,dimU). By
Exercise 1.2.5, there is a right action of DX on such forms. The left action of DX

on distributions is defined by adjunction: denote by ⟨φ, u⟩ the natural pairing of a
compactly supported C∞-form φ with a distribution u on U ; let P be a holomorphic
differential operator on U ; define then P · u such that, for any φ, on has

⟨φ, P · u⟩ = ⟨φ · P, u⟩.

Given any distribution u on X, the subsheaf DX · u ⊂ DbX is the DX -module gener-
ated by this distribution. Saying that a distribution is a solution of a family P1, . . . , Pk

of differential equation is equivalent to saying that the morphism DX → DX · u send-
ing 1 to u induces a surjective morphism DX/(P1, . . . , Pk)→ DX · u.

Similarly, the sheaf CX of currents of maximal degree on X, dual to C∞c,X , is a right
DX -module.

In local coordinates x1, . . . , xn, a current of maximal degree is nothing but a dis-
tribution times the volume form dx1 ∧ · · · ∧ dxn ∧ dx1 ∧ · · · ∧ dxn.

As we are now working with C∞ forms or with currents, it is natural not to
forget the anti-holomorphic part of these objects. Denote by OX the sheaf of anti-
holomorphic functions on X and by DX the sheaf of anti-holomorphic differential
operators. Then DbX (resp. CX) are similarly left (resp. right) DX -modules. Of
course, the DX and DX actions do commute, and they coincide when considering
multiplication by constants.

It is therefore natural to introduce the following sheaves of rings:

OX,X := OX ⊗C OX ,

DX,X := DX ⊗C DX ,

and consider DbX (resp. CX) as left (resp. right) DX,X -modules.

1.3.f . One may construct new examples from old ones by using various operations.
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• Let M be a left DX -module. Then Hom DX
(M ,DX) has a natural structure

of right DX -module. Using a resolution N • of M by left DX -modules which
are acyclic for Hom DX

(•,DX), one gets a right DX -module structure on the
Ext k

DX
(M ,DX).

• Given two left (resp. a left and a right) DX -modules M and N , the same
argument allows one to put on the various Tor i,OX

(M ,N ) a left (resp. a right)
DX -module structure.

• We will see in Lecture 4 the geometric operations “direct image” and “inverse
image” of a DX -module by a holomorphic map.

1.3.g. Solutions. Let M ,N be two left DX -modules.

Definition 1.3.2. The sheaf of solutions of M in N is the sheaf Hom DX
(M ,N ).

Remark 1.3.3
(1) The sheaf Hom DX

(M ,N ) has no structure more than that of a sheaf of
C-vector spaces in general, because DX is not commutative.
(2) According to Exercise 1.2.7(1), Hom OX

(M ,N ) is a left DX -module,
that is, an OX -module with an integrable connection (Proposition 1.1.11).
Then Hom DX

(M ,N ) is the subsheaf of Hom OX
(M ,N ) consisting of local

morphisms M → N which commute with the connections on M and N ,
in other words local sections which are annihilated by the connection on
Hom OX

(M ,N ).

Example 1.3.4. Let U ⊂ X be a coordinate chart and let P ∈ DX(U). Let I =
DU · P be the left ideal of DU generated by P and let M = DU/I . We have a
canonical isomorphism Hom DX

(M ,N ) ≃ Ker[P · : N → N ], and this explains the
terminology “solutions of M in N ”.

If N = OX , we get the sheaf of holomorphic solutions of P . If N = DbX , we get
the sheaf of distributions solutions of P .

If N = DX (with its standard left structure), then P · : DX → DX is injective
(Exercise 1.1.6), so Hom DX

(M ,DX) = 0. It maybe therefore interesting to consider
higher Hom , namely, Ext sheaves. We consider the free resolution of M defined as

0 −→ DU
· P−−−−→ DU −→M −→ 0.

The map ·P is injective (same argument as for P ·), so this is indeed a resolution. By
definition, Ext 1(M ,N ) is the cokernel of

Hom DU
(DU ,N ) −→Hom DU

(DU ,N )
φ(⋆) 7−→ φ(⋆ · P ).

If one identifies Hom DU
(DU ,N ) with N by φ 7→ φ(1), the previous morphism reads

N
P ·−−−−→ N ,
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so we recover that Hom DX
(M ,N ) = Ker[P · : N → N ], and we find that

Ext 1(M ,N ) = Coker[P · : N → N ]. In other words, Ext 1(M ,N ) measures
the obstruction to the solvability of the differential equation Pm = n for n ∈ N .

Notice that, in this example, since the free resolution of M has length two, we
have Ext k

DX
(M ,N ) = 0 for k ⩾ 2, for any N .

When N has a supplementary structure which commutes with its left DX -
structure, then Hom DX

(M ,N ) and the Ext k
DX

(M ,N ) inherit this supplementary
structure.

Example 1.3.5
(1) Assume N = DX . Then the definition of Hom DX

(M ,N ) and the
Ext k

DX
(M ,N ) uses the left DX -module structure of DX , which commutes

with the right one, so these solution sheaves are right DX -modules.
(2) Assume that N = DbX . Then the definition of Hom DX

(M ,N ) and the
Ext k

DX
(M ,N ) uses the left DX -module structure of DbX , which commutes

with the left DX -structure, so these solution sheaves are left DX -modules.

1.4. de Rham and Spencer

Let M left be a left DX -module and let M right be a right DX -module.

Definition 1.4.1 (de Rham). The de Rham complex Ωn+•
X (M left) of M left is the complex

having as terms the OX -modules Ωn+•
X ⊗OX

M left and as differential the C-linear
morphism (−1)n∇ defined in Exercise 1.1.10.

Notice that the de Rham complex is shifted n = dimX with respect to the usual
convention. The shift produces, by definition, a sign change in the differential, which
is then equal to (−1)n∇. The previous definition produces a complex since ∇◦∇ = 0,
according to the integrability condition on ∇, as remarked in Exercise 1.1.10.

Definition 1.4.2 (Spencer). The Spencer complex (Sp•
X(M right), δ) is the complex hav-

ing as terms the OX -modules M ⊗OX
∧−•ΘX (with • ⩽ 0) and as differential the

C-linear map δ given by

m⊗ ξ1 ∧ · · · ∧ ξk 7
δ−−−→

k∑
i=1

(−1)i−1mξi ⊗ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξk

+
∑
i<j

(−1)i+jm⊗ [ξi, ξj ] ∧ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξk.

Exercise 1.4.3. Check that (Sp•
X(M right), δ) is indeed a complex, i.e., that δ ◦ δ = 0.

Of special interest will be, of course, the de Rham or Spencer complex of the
ring DX , considered as a left or right DX -module. Notice that, in Ωn+•

X (DX), the
differentials are right DX -linear, and in Sp•

X(DX) they are left DX -linear.
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Exercise 1.4.4 (The Spencer complex is a resolution of OX as a left DX -module)
Let F•DX be the filtration of DX by the order of differential operators. Filter the

Spencer complex Sp•
X(DX) by the subcomplexes Fp(Sp•

X(DX)) defined as

· · · δ−−−→ Fp−kDX ⊗ ∧kΘX
δ−−−→ Fp−k+1DX ⊗ ∧k−1ΘX

δ−−−→ · · ·

(1) Show that, locally on X, using coordinates x1, . . . , xn, the graded complex
grF Sp•

X(DX) := ⊕pgrF
p Sp•

X(DX) is equal to the Koszul complex of the ring
OX [ξ1, . . . , ξn] with respect to the regular sequence ξ1, . . . , ξn.
(2) Conclude that grF Sp•

X(DX) is a resolution of OX .
(3) Check that Fp Sp•

X(DX) = 0 for p < 0, F0 Sp•
X(DX) = grF

0 Sp•
X(DX) is

isomorphic to OX and deduce that the complex

grF
p Sp•

X(DX) := {· · ·
[δ]
−−→ grF

p−kDX ⊗ ∧kΘX

[δ]
−−→ grF

p−k+1DX ⊗ ∧k−1ΘX

[δ]
−−→ · · · }

is acyclic (i.e., quasi-isomorphic to 0) for p > 0.
(4) Show that the inclusion F0 Sp•

X(DX) ↪→ Fp Sp•
X(DX) is a quasi-isomorphism

for each p ⩾ 0 and deduce, by passing to the inductive limit, that the Spencer
complex Sp•

X(DX) is a resolution of OX as a left DX -module by locally free
left DX -modules.

Exercise 1.4.5. Similarly, show that the complex Ωn+•
X (DX) is a resolution of ωX as a

right DX -module by locally free right DX -modules.

Exercise 1.4.6. Let M right be a right DX -module
(1) Show that the natural morphism

M right⊗DX
(DX ⊗OX

∧kΘX) −→M right⊗OX
∧kΘX

defined by m⊗ P ⊗ ξ 7→ mP ⊗ ξ induces an isomorphism of complexes

M right ⊗DX
Sp•

X(DX) ∼−→ Sp•(M right).

(2) Similar question for Ωn+•
X (DX)⊗DX

M left → Ωn+•
X (M left).

Let M be a left DX -module and let M right the associated right module. We will
now compare Ωn+•

X (M ) and Sp•
X(M right). Given any k ⩾ 0, the contraction is the

morphism

ωX ⊗OX
∧kΘX −→ Ωn−k

X

ω ⊗ ξ 7−→ ω(ξ ∧ •).
(1.4.7)

Exercise 1.4.8. Show that the isomorphism of right DX -modules

ωX ⊗OX

(
DX ⊗OX

∧kΘX

) ι−−→∼ Ωn−k
X ⊗OX

DX[
ω ⊗ (1⊗ ξ)

]
· P 7−→ ω(ξ ∧ •)⊗ P
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(where the right structure of the right-hand term is the natural one and that of the
left-hand term is nothing but that induced by the left structure after going from left
to right) induces an isomorphism of complexes of right DX -modules

ι : ωX ⊗OX

(
Sp•

X(DX), δ
) ∼−→

(
Ωn+•

X ⊗OX
DX , (−1)n∇

)
.

[Hint: See [MHMP, Lem. 8.4.7].]

Exercise 1.4.9. Similarly, if M is any left DX -module and M right = ωX ⊗OX
M is the

associated right DX -module, show that there is an isomorphism

M right ⊗DX

(
Sp•

X(DX), δ
)
≃

(
ωX ⊗OX

M ⊗OX
∧−•ΘX , δ

)
∼−→

(
Ωn+•

X ⊗OX
M , (−1)n∇

)
≃

(
Ωn+•

X ⊗OX
DX , (−1)n∇

)
⊗DX

M

given on ωX ⊗OX
M ⊗OX

∧kΘX by

ω ⊗m⊗ ξ 7−→ ω(ξ ∧ •)⊗m.

[Hint: See [MHMP, Exer. 8.26(1)].]

Exercise 1.4.10. Consider the function

Z ε−−→ {±1}, a 7−→ ε(a) = (−1)a(a−1)/2,

which satisfies in particular

ε(a+ 1) = ε(−a) = (−1)aε(a), ε(a+ b) = (−1)abε(a)ε(b).

Using Exercise 1.4.9, show that there is a functorial isomorphism Sp•
X(M right) ∼−→

(Ωn+•
X (M ), (−1)n∇) for any left DX -module M , which is termwise OX -linear. [Hint:

See [MHMP, Exer. 8.26(3)].]

Remark 1.4.11. We will denote by pDRX(M right) the Spencer complex Sp•
X(M right)

and by pDRX(M left) the de Rham complex Ωn+•
X (M left). The previous exercise gives

an isomorphism pDRX(M right) ∼−→ pDRX(M left) and justifies this convention. We
will use this notation below. Exercise 1.4.6 clearly shows that pDRX is a functor from
the category of right (resp. left) DX -modules to the category of complexes of sheaves
of C-vector spaces. It can be extended to a functor between the corresponding derived
categories.

However, in § 3.2, we will introduce a functor DRX to a subcategory, in order to
keep the information that the differentials in such a complex are of a special kind,
i.e., are differential operators. We will then extend this functor as a functor between
suitable localized categories. Then pDRX will be the composition of DRX and the
forgetful functor Forget.

Denote by (E (n+•,0)
X , (−1)nd′) the complex C∞X ⊗OX

Ωn+•
X with the differential

induced by (−1)nd (here, we assume n + • ⩾ 0). More generally, let E
(n+p,q)
X =

E
(n+p,0)
X ∧E

(0,q)
X and let d′′ be the antiholomorphic differential. For any p, the complex
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(E (n+p,•)
X , d′′) is a resolution of Ωn+p

X . We therefore have a complex (E n+•
X , (−1)nd),

which is the single complex associated to the double complex (E (n+•,•)
X , (−1)nd′, d′′).

In particular, we have a natural quasi-isomorphism of complexes of right DX -
modules:

(Ωn+•
X ⊗OX

DX ,∇) ∼−→ (E n+•
X ⊗OX

DX ,∇)

by sending holomorphic k-forms to (k, 0)-forms. Remark that the terms of these
complexes are flat over OX .

Exercise 1.4.12. Define a sheaf E−k,ℓ
X for k, ℓ ⩾ 0 and find a Dolbeault resolution of

Sp•(DX) by fine sheaves.

Exercise 1.4.13. Let L be an OX -module.

(1) Show that, for any k, we have a (termwise) exact sequence of complexes

0→ L ⊗OX
Fk−1(Sp•

X(DX))→ L ⊗OX
Fk(Sp•

X(DX))→ L ⊗OX
grF

k (Sp•
X(DX))→ 0.

[Hint: use that the terms of the complexes Fj(Sp•
X(DX)) and grF

k (Sp•
X(DX))

are OX -locally free.]

(2) Show that L ⊗OX
grF Sp•

X(DX) is a resolution of L as an OX -module.

(3) Show that L ⊗OX
Sp•

X(DX) is a resolution of L as an OX -module.

Definition 1.4.14 (Godement resolution)

(1) The Godement functor C0 (see [God64, p. 167]) associates to any sheaf L

the flabby sheaf C0(L ) of its discontinuous sections and to any morphism the
corresponding family of germs of morphisms. Then there is a canonical injection
L ↪→ C0(L ).

(2) Set inductively (see [God64, p. 168])

Z0(L ) = L , Zk+1(L ) = Ck(L )/Zk(L ), Ck+1(L ) = C0(Zk+1(L ))

and define δ : Ck(L ) → Ck+1(L ) as the composition Ck(L ) → Zk+1(L ) →
C0(Zk+1(L )). This defines a complex (C•(L ), δ), that we will denote as
(God•

L , δ).

(3) Given any sheaf L , (God•
L , δ) is a resolution of L by flabby sheaves. For a

complex (L •, d), we view God•
L • as a double complex ordered as written, i.e.,

with differential (δi, (−1)idj) on Godi L j , and therefore also as the associated
simple complex.

The following exercise will be useful when computing direct images of D-modules
in Lecture 4
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Exercise 1.4.15 (Compatibility with the Godement functor)
(1) Show that, if L and F are OX -modules and if F is locally free, then we
have a natural inclusion C0(L )⊗OX

F ↪→ C0(L ⊗OX
F ), which is an equality

if F has finite rank. More generally, show by induction that we have a natural
morphism Ck(L )⊗OX

F → Ck(L ⊗OX
F ), which is an equality if F has finite

rank.
(2) With the same assumptions, show that both complexes God•(L ) ⊗OX

F

and God•(L ⊗OX
F ) are resolutions of L ⊗OX

F . Conclude that the natu-
ral morphism of complexes God•(L ) ⊗OX

F → God•(L ⊗OX
F ) is a quasi-

isomorphism.
(3) Let M be a DX -module. Show that pDRX God•

M = God• pDRX M .

1.5. Filtered objects: the Rees construction

Definition 1.5.1 (of a filtered DX -module). A filtration F•M of a DX -module M will
mean an increasing filtration satisfying (for left modules for instance)

FkDX · FℓM ⊂ Fk+ℓM ∀ k, ℓ ∈ Z.

We usually assume that FℓM = 0 for ℓ≪ 0 and that the filtration is exhaustive, i.e.,⋃
ℓ FℓM = M .

Definition 1.5.2 (of the de Rham complex of a filtered DX -module)
Let F•M be a filtered DX -module. The de Rham complex pDR M is filtered by

sub-complexes Fp
pDR M defined by

Fp
pDR M =

· · ·
δ−−→ Fp−kM right ⊗ ∧kΘX

δ−−→ Fp−k+1M
right ⊗ ∧k−1ΘX

δ−−→ · · ·

· · · ∇−−−→ Ωn+k
X ⊗ Fp+kM left ∇−−−→ Ωn+k+1

X ⊗ Fp+k+1M
left ∇−−−→ · · ·

and the filtered de Rham complex is denoted by pDRF•M .

Exercise 1.5.3. Show that the isomorphisms in Exercises 1.2.8 and 1.2.9 are isomor-
phisms of filtered objects M left⊗OX

F•DX , F•DX ⊗OX
M left and M right⊗OX

F•DX .

It is possible to apply the techniques of the previous sections to filtered objects.
A simple way to do that is to introduce the Rees object associated to any filtered ob-
ject. Introduce a new variable z. We will replace the base field C with the polynomial
ring C[z].

Definition 1.5.4 (Rees ring and Rees module). If (A , F•) is a filtered ring, we denote
by Ã (or RF A if we want to insist on the dependence with respect to the filtration)
the subring ⊕kFkA · zk of A ⊗C C[z, z−1]. For instance, if FkA = 0 for k ⩽ −1 and
FkA = A for k ⩾ 0, we have Ã = A ⊗C C[z]. Any filtered module (M , F•) on the
filtered ring (A , F•) gives rise similarly to a module M̃ on Ã .
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Notice that Ã is a graded ring with a central element z and that M̃ is a graded
module on this graded ring. Notice also that, as M̃ is contained in M ⊗C C[z, z−1],
the multiplication by z is injective on M .

Exercise 1.5.5

(1) Show that the Rees construction gives an equivalence between the category
of filtered (A , F•)-modules (the morphisms should preserve the filtrations up
to some fixed shift) and the subcategory of the category of graded Ã -modules
(the morphisms are homogeneous), the object of which have no z-torsion. [Hint:
recover M from M̃ by setting M = M̃ /(z − 1)M̃ .]

(2) Recover grF M as M̃ /zM̃ .
(3) Show that, if one defines the filtration

F̃kM̃ =
⊕
j⩽k

FjM zj ⊕
⊕
j>k

FkM zj ,

then grF̃ M̃ can be identified with grF M ⊗C C[z], where the grading in the
previous term is the sum of the grading on grF M and of the grading of C[z]
by the degree in z.

Applying this construction to the filtered ring (DX , F•) and its (left or right) mod-
ules, we obtain the following properties:

• ÕX = OX [z];
• in local coordinates, any local section of D̃X may be written in a unique way

as
∑

α aα(x)ðα
x =

∑
α ðβ

xbα(x), where we set ðxi
:= z∂xi

;
• Θ̃X is the locally free sheaf locally generated by ðx1 , . . . ,ðxn

and we have
[ðxi , φ] = z∂φ/∂xi for any local section φ of ÕX ;

• the sheaf Ω̃1
X is defined as z−1C[z]⊗CΩ1

X , and Ω̃k
X = ∧kΩ̃1

X ; the differential d̃
is induced by the differential d on Ωk

X ; the local basis (d̃xi = z−1dxi)i is dual
to the basis (ðxi)i of Θ̃X .

Exercise 1.5.6

(1) Extend the results of §§ 1.1-1.4 to graded D̃X -modules.

(2) Show that the same results hold for unnecessarily graded D̃X -modules and
unnecessarily homogeneous morphisms.

Definition 1.5.7 (z-connection). Let M̃ be a ÕX -module. A z-connection on M̃ is a
C[z]-linear morphism ∇̃ : M̃ → Ω̃1

X ⊗ M̃ which satisfies the Leibniz rule

∇̃(f̃ m̃) = f̃ ∇̃m̃+ d̃ f̃ ⊗ m̃.

Exercise 1.5.8

(1) Show that D̃X has a universal z-connection ∇̃ for which ∇̃(1) =
∑

i d̃xi⊗ðxi
.
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(2) Show the equivalence between left D̃X -modules and ÕX -modules equipped
with an integrable z-connection.

Definition 1.5.9. Let M̃ be a left D̃X -module. The de Rham complex p̃DRM̃ is
the complex having as terms the ÕX -modules Ω̃n+•

X ⊗ M̃ and as differentials the
z-connection (−1)n∇̃.

Right analogues (in particular, the Spencer complex) are defined similarly as well
as the right-left correspondence. All properties of §1.4 extend in this setting.

Exercise 1.5.10. Using Exercise 1.4.4, show that S̃p(D̃X) is a resolution of ÕX .





LECTURE 2

COHERENCE

Although it would be natural to develop the theory of coherent DX -modules in
a way similar to that of OX -modules, some points of the theory are not known to
extend to DX -modules (the lemma on holomorphic matrices). The approach which
is therefore classically used consists in using the OX -theory, and the main tools for
that purpose are the good filtrations.

This lecture is much inspired from [GM93].

2.0. A reminder on coherence

Let us begin by recalling the definition of coherence. Let A be a sheaf of rings on
a space X.

Definition 2.0.1

(1) A sheaf of A -modules F is said to be A -coherent if it is locally of finite
type:

∀x ∈ X, ∃Vx, ∃ q, ∃A q
|Vx
→−→ F|Vx

,

and if, for any open set U of X and any A -linear morphism φ : A r
|U → F|U ,

the kernel of φ is locally of finite type.

(2) The sheaf A is a coherent sheaf of rings if it is coherent as a (left and right)
module over itself.

Lemma 2.0.2. Assume A coherent. Let F be a sheaf of A -module. Then F is A -
coherent if and only if F is locally of finite presentation: ∀x ∈ X, ∃Vx, ∃ p, q and
an exact sequence

A p
|Vx
−→ A q

|Vx
−→ F|Vx

−→ 0.

Classical theorems of Cartan and Oka claim the coherence of OX .
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2.1. Coherence of DX

Let K be a compact subset of X. We say K is a compact polycylinder if there exist
a neighbourhood Ω of K, an analytic chart ϕ : Ω→W of X, and (ρ1, . . . , ρn) ∈ (R+)n

such that
ϕ(K) = {(x1, . . . , xn) ∈ Cn | ∀ i ∈ {1, . . . , n}, |xi| ⩽ ρi}.

In particular a point x ∈ X is a compact polycylinder. Let F be a sheaf on X and
K a polycylinder. We know by [God64], that

lim−→
U⊃K
Uopen

F (U) ≃ F|K(K)

denoted by F (K). We have DX|Ω ≃ DCn|W and this isomorphism is compatible with
the filtrations. Thus, to study local properties of grF DX or of DX in the neighbour-
hood of a polycylinder K we can assume that K ⊂ Cn is a usual polycylinder.

We have DX(K) ⊂Hom C(OX ,OX)(K) and any element of DX(K) can be written
in a unique way as

∑
α∈I cα∂

α, with cα ∈ OX(K) and I ⊂ Nn finite. The relations
in Exercise 1.1.6 remain true when we replace U by K. We also have

lim−→
U⊃K
Uopen

FkDX(U) =
{
P ∈ DX(K) | P =

∑
|α|⩽k cα∂

α with cα ∈ OX(K)
}
.

Let FkDX(K) be this O(K)-submodule of D(K). We get a filtration of DX(K) having
the same properties as that of DX(U). Finally, we deduce from Exercise 1.1.7 the
existence of a canonical ring isomorphism

grF (DX(K)) ∼−→ (grF DX)(K).

We thus have an isomorphism

grF (DX(K)) ≃ OCn(K)[ξ1, . . . , ξn]

by an inductive limit on U ⊃ K. By a theorem of Frisch [Fri67], OCn(K) is a
Noetherian ring and, for any x ∈ K, the ring OCn,x is flat over OCn(K). We therefore
get:

Proposition 2.1.1. If K is a compact polycylinder, grF DX(K) is a Noetherian ring.

Proposition 2.1.2. The ring DX(K) is Noetherian.

Proof. Let I ⊂ DX(K) be a left ideal. We have to prove that it is finitely generated.
Set FkI = I ∩ FkDX(K). Then grF I = ⊕k∈NFkI/Fk−1I is an ideal in grF DX(K),
thus is of finite type. Let e1, . . . , eℓ be homogeneous generators of grF I, of degrees
d1, . . . , dℓ and P1, . . . , Pℓ elements of I with σ(Pj) = ej . It is easy to prove, by
induction on the order of P ∈ I, that I =

∑ℓ
i=1 DX(K) · Pi (left to the reader).

Theorem 2.1.3. The sheaf of rings DX is coherent.
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Proof. If U ⊂ X is open and

ϕ : (DX|U )q −→ (DX|U )p

is a morphism of left DX|U -modules, we have to prove that Kerϕ is locally of finite
type. We may assume that U is an open chart, thus in fact an open subset of
Cn. Let ε1, . . . , εq be the canonical base of DX(U)q and k ∈ N be such that, for
all i ∈ {1, . . . , q}, ϕ(εi) ∈ FkDX(U)p. We then have ϕ(FℓD

q
U ) ⊂ Fk+ℓD

p
U , and

Kerϕ ∩ FℓD
q
U is the kernel of a morphism between locally free OU -modules of finite

type
FℓD

q
U −→ Fk+ℓD

p
U .

Thus Kerϕ ∩ FℓD
q
U is OU coherent, and Kerϕ is the union of these OU -modules.

Let K ⊂ U be a compact polycylinder. By Theorem A of Cartan, for any x ∈ K,
the sheaf [Kerϕ∩FℓD

q
X|U ]x is generated by Γ(K,Kerϕ∩FℓD

q
X|U ), which is included

in Γ(K,Kerϕ). Thus for any x ∈ K, (Kerϕ)x is generated by Γ(K,Kerϕ), i.e., any
germ of section of Kerϕ at x is a linear combination with coefficients in OX,x of
sections of Kerϕ over K. By left exactness of Γ(K, •) we have an exact sequence of
left DX(K)-modules:

0 −→ Γ(K,Kerϕ) −→ Γ(K,Dq
U ) = DX(K)p Γ(K,ϕ)

−−−−−−−−→ DX(K)p.

Because DX(K) is Noetherian, Γ(K,Kerϕ) is then of finite type as a left DX(K)-
module. It is then easy to build a surjective morphism of left DX|K-modules

(DX|K)r −→ (Kerϕ)|K −→ 0

using the two properties above. This proves that Kerϕ is locally of finite type.

Exercise 2.1.4

(1) Prove similarly the coherence of the sheaf of rings grF DX and that of the
Rees sheaf of rings RF DX (see Definition 1.5.4).
(2) Let D ⊂ X be a hypersurface and let OX(∗D) be the sheaf of meromorphic
functions on X with poles on D at most (with arbitrary order). Prove similarly
that OX(∗D) is a coherent sheaf of rings.
(3) Prove that DX(∗D) := OX(∗D)⊗OX

DX is a coherent sheaf of rings.
(4) Let i : Y ↪→ X denote the inclusion of a smooth submanifold. Show that
i∗DX := OY ⊗OX

DX is a coherent sheaf of rings on Y .

2.2. Coherent DX-modules and good filtrations

Let M be a DX -module. From Theorem 2.1.3 and the preliminary reminder on
coherence, we know that M is DX-coherent if it is locally finitely presented, i.e.,
if for any x ∈ X there exists an open neighbourhood U of x an an exact sequence
Dq

X|U → Dp
X|U →M|U .
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Exercise 2.2.1

(1) Let M ⊂ N be a DX -submodule of a coherent DX -module N . Show that,
if M is locally finitely generated, then it is coherent.
(2) Let ϕ : M → N be a morphism between coherent DX -modules. Show that
Kerϕ and Cokerϕ are coherent.

Definition 2.2.2 (Good filtrations). Let F•M be a filtration of M (see § 1.5). We say
that the filtration is good if the Rees module RF M is coherent over the coherent sheaf
RF DX (i.e., locally finitely presented).

It is useful to have various criteria for a filtration to be good.

Exercise 2.2.3 (Characterization of good filtrations). Show that the following properties
are equivalent:

(1) F•M is a good filtration;
(2) for any k ∈ Z, FkM is OX -coherent, and, for any x ∈ X, there exists a
neighbourhood U of x and k0 ∈ Z such that, for any k ⩾ 0, FkDX|U ·Fk0M|U =
Fk+k0M|U ;
(3) the graded module grF M is grF DX -coherent.

Conclude that, if F•M , G•M are two good filtrations of M , then, locally on X, there
exists k0 such that, for any k, we have

Fk−k0M ⊂ GkM ⊂ Fk+k0M .

Proposition 2.2.4 (Local existence of good filtrations). If M is DX-coherent, then it
admits locally on X a good filtration.

Proof. Exercise 2.2.5.

Exercise 2.2.5 (Local existence of good filtrations)

(1) Show that, if M has a good filtration, then it is DX -coherent and grF M is
grF DX -coherent. In particular, a good DX -module is coherent. [Hint: use that
the tensor product C[z]/(z − 1)⊗C[z] • is right exact.]
(2) Conversely, show that any coherent DX -module admits locally a good fil-
tration. [Hint: choose a local presentation Dq

X |U
φ−→ Dp

X |U → M|U → 0, and
show that the filtration induced on M|U by F•D

p
X |U is good by using Exercise

2.2.3: Set K = Imφ and reduce the assertion to showing that FjDX ∩ K

is OX -coherent; prove that, up to shrinking U , there exists ko ∈ N such that
φ(FkDq

X |U ) ⊂ Fk+ko
Dp

X |U for each k; deduce that φ(FkDq
X |U ), being locally of

finite type and contained in a coherent OX -module, is OX -coherent for each k;
conclude by using the fact that an increasing sequence of coherent OX -modules
in a coherent OX -module is locally stationary.]
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(3) Show that, locally, any coherent DX -module is generated over DX by a
coherent OX -submodule.
(4) Let M be a coherent DX -module and let F be an OX -submodule which is
locally finitely generated. Show that F is OX -coherent. [Hint: choose a good
filtration F•M and show that, locally, F ⊂ FkM for some k; apply then the
analogue of Exercise 2.2.1(1) for OX -modules.]

Good filtrations are the main tool to get results on coherent DX -modules from
theorems on coherent OX -modules. This justifies the following definition:

Definition 2.2.6 (Good D-modules, see [SS94]). A DX -module is good if, for any com-
pact set K ⊂ X, there exists, on some neighbourhood U of K, a finite filtration of
M|U by DU -submodules such that each successive quotient has a good filtration.

Remark 2.2.7. It is not known whether any coherent DX -module has globally a good fil-
tration, or even whether it is good. Nevertheless, it is known that any holonomic DX -
module (see Definition 5.2.1) has a good filtration (see [Mal94a, Mal94b, Mal96]);
in fact, if such is the case, there even exists a coherent OX -submodule F of M which
generates M , i.e., such that the natural morphism DX ⊗OX

F → M is onto (this
is a little stronger than the existence of a good filtration, if the manifold X is not
compact).

The main results concerning coherent DX -modules are obtained from the theorems
of Cartan and Oka for OX -modules.

Theorem 2.2.8 (Theorems of Cartan-Oka for DX -modules). Let M be a left DX-module
and let K be a compact polycylinder contained in an open subset U of X, such that M

has a good filtration on U . Then,
(1) Γ(K,M ) generates M|K as an OK-module,
(2) For any i ⩾ 1, Hi(K,M ) = 0.

Proof. This is easily obtained from the theorems A and B for OX -modules, by using
inductive limits (for A it is obvious and, for B, see [God64, Th. 4.12.1]).

Theorem 2.2.9 (Characterization of coherence for DX -modules)
(1) Let M be a left DX-module. Then, for any small enough compact polycylin-
der K, we have the following properties:

(a) M (K) is a finite type D(K)-module,
(b) For any x ∈ K, Ox ⊗O(K) M (K)→Mx is an isomorphism.

(2) Conversely, if there exists a covering {Kα} by polycylinders Kα such that
X = ∪

◦
Kα and that on any Kα the properties (1a) and (1b) are fulfilled, then M

is DX-coherent.
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Proof. Let U ⊂ X be an open subset small enough for M to have a presentation

0 −→ N −→ Dp
U −→M|U −→ 0.

The DU -module N is coherent, therefore we haveH1(K,N ) = 0 for any small enough
compact polycylinder K ⊂ U , and Dp(K)→M (K) is surjective. This proves (1a).

The OX -module FkM|U := imageFkDp
U being coherent we also have for any k an

isomorphism Ox ⊗ FkM (K) → FkMx, by Theorem A of Cartan-Oka. From this we
get (1b) by using an inductive limit

Ox ⊗O(K) M (K) ≃ lim−→
k

Ox ⊗O(K) FkM (K).

Conversely, if Condition (1a) is fulfilled we have, since D(K) is Noetherian, a finite
presentation

Dq(K) ϕ−−−→ Dp(K) π−−−→M (K) −→ 0,
which gives sheaf morphisms which we denote again by ϕ, π:

Dq
X|K

ϕ−−−→ Dp
X|K

π−−−→M|K −→ 0,

and, by the exactness of the functor Dx⊗D(K), an exact sequence

Dq
x

ϕx−−−−→ Dp
x

px−−−→ Dx ⊗D(K) M (K) −→ 0.

By Condition (1b) and the lemma below, the morphism

cx : Dx ⊗D(K) M (K) −→Mx

is an isomorphism. We deduce from this, and from the equality πx = cx ◦ px that
M|K = Coker(ϕ) is finitely presented on K.

Lemma 2.2.10. For any left D(K)-module N , the canonical homomorphism

Ox ⊗O(K) N −→ Dx ⊗D(K) N

is an isomorphism.

Proof. This is clear when N = D(K), hence for any free module and finally, in the
general case, by the right exactness of the functors Ox ⊗O(K) • and Dx ⊗D(K) • .

Exercise 2.2.11

(1) Show similar statements for RF DX -modules, grF DX -modules, OX(∗D)-
modules, DX(∗D)-modules and i∗DX -modules (see Exercise 2.1.4).
(2) Let M be a coherent DX -module. Show that DX(∗D)⊗DX

M is DX(∗D)-
coherent and that i∗M is i∗DX -coherent.

Exercise 2.2.12 (External product)

(1) Let A,B be two Noetherian C-algebras. Show that A⊗C B is Noetherian.
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(2) Let X1, X2 be two complex manifolds and let p1, p2 be the projections from
X1 ×X2 to X and Y respectively. For any pair of sheaves of C-vector spaces
F1,F2 on X and Y respectively, set F1⊠CF2 := p−1

1 F1⊗C p
−1
2 F2. Show that

OX1 ⊠C OX2 is a coherent sheaf of rings on X1×X2. [Hint: Use an analogue of
Theorem 2.2.9(2).]
(3) Prove similar properties for DX1 ⊠C DX2 .
(4) Show that OX1×X2 is faithfully flat over OX1 ⊠C OX2 . [Hint:.] A compléter
(5) Show that

DX1×X2 = OX1×X2⊗(OX1⊠COX2 )(DX1⊠CDX2) = (DX1⊠CDX2)⊗(OX1⊠COX2 )OX1×X2 .

(6) For an OX1 -module L1 (resp. a DX1 -module M1) and an OX2 -module L2
(resp. a DX2 -module M2), set

L1 ⊠O L2 = (L1 ⊠C L2)⊗OX1⊠COX2
OX1×X2

M1 ⊠D M2 = (M1 ⊠C M2)⊗OX1⊠COX2
OX1×X2resp.

= (M1 ⊠C M2)⊗DX1⊠CDX2
DX1×X2

≃M1 ⊠O M2.

Show that if L1,L2 are O-coherent (resp. M1,M2 are D-coherent), then
L1 ⊠O L2 is OX1×X2-coherent (resp. M1 ⊠D M2 is DX1×X2-coherent).
(7) Show that, if F•M1, F•M2 are good filtrations, then Fj(M1 ⊠D M2) :=∑

k+ℓ=j FkM1 ⊠O FℓM2 is a good filtration of M1 ⊠D M2 for which

grF (M1 ⊠D M2) = grF M1 ⊠grF D grF M2.

[Hint: See [Kas03, §4.3].]

A first application of Theorem 2.2.9 is a variant of the classical Artin-Rees Lemma:

Corollary 2.2.13. Let M be a DX-module with a good filtration F•M and let N be a
coherent DX-submodule of M . Then the filtration F•N := N ∩ F•M is good.

Proof. Let K be a small compact polycylinder for RF M . Then Γ(K,RF M ) is finitely
generated, hence so is Γ(K,RF N ), as Γ(K,RF DX) is Noetherian. It remains to be
proved that, for any x ∈ K and any k, the natural morphism

Ox ⊗O(K) (FkM (K) ∩N (K)) −→ FkMx ∩Nx

is an isomorphism. This follows from the flatness of Ox over O(K) (see [Fri67]).

Exercise 2.2.14
(1) Similarly, prove that if φ : M → N is a surjective morphism of coherent
DX -modules and if F•M is good, then F•N := φ(F•M ) is good as well.
(2) Let M be a good DX -module (see Definition 2.2.6). Show that any coherent
DX -submodule and any coherent quotient DX -module of M is good.
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2.3. Support

Let M be a coherent DX -module. Being a sheaf on X, M has a support Supp M ,
which is the closed subset complement to the set of x ∈ X in the neighbourhood
of which M is zero. Recall that the support of a coherent OX -module is a closed
analytic subset of X. Such a property extends to coherent DX -modules:

Proposition 2.3.1. The support Supp M of a coherent DX-module M is a closed ana-
lytic subset of X.

Proof. The property of being an analytic subset being local, we may assume that M

is generated over DX by a coherent OX -submodule F (see Exercise 2.2.5(3)). Then
the support of M is equal to the support of F .

Let Y ⊂ X be a complex submanifold. The following is known as “Kashiwara’s
equivalence”.

Proposition 2.3.2. There is a natural equivalence between coherent DX-modules sup-
ported on Y and coherent DY -modules.

Proof. We will prove this in the special case where X is an open set in Cn with
coordinates x1, . . . , xn and Y is defined by xn = 0. Given a coherent DX -module
M supported on Y , we set N := Ker[xn· : M → M ]: this is a DY -module. We
also set N [∂xn

] := N ⊗C C[∂xn
]: this is a DX -module by the following rule; let

f(x1, . . . , xn) =
∑

k fk(x1, . . . , xn−1)xk
n be a holomorphic function and n be a section

of N ; then we set

f · (n⊗ ∂j) =
∑
k⩽j

(−1)kj!
(j − k)! (fk · n)⊗ ∂j−k

xn
.

We first claim that M = N [∂xn ]. Indeed, let m be a local section of M . We will
prove that it decomposes uniquely as

∑
j ⊗∂j

xn
nj for some local sections nj of N .

The section m generates an OX -submodule of M , which is finitely generated, hence
coherent since M is coherent, and is supported on Y . Therefore, locally, there exists ℓ
such that xℓ+1

n m = 0. Then

0 = ∂xn
(xℓ+1

n m) = (ℓ+1)xℓ
nm+xℓ+1

n ∂xn
m = xℓ

n

(
(ℓ+1)+xn∂xn

)
m = xℓ

n(ℓ+∂xn
xn)m,

so m = m1 + ∂xn
m2, m1 = (ℓ+ ∂xn

xn)m/ℓ, m2 = −xnm/ℓ, with xℓ
nm1 = xℓ

nm2 = 0.
This gives the existence by decreasing induction on ℓ. Uniqueness is obtained similarly.
It remains to be proved that the natural DY -linear morphism N [∂xn

]→M defined
by

∑
j nj ⊗ ∂j

xn
7→

∑
j ∂

j
xn
nj is a DX -linear isomorphism, which is straightforward.

Lastly, the proof that N is DY -coherent is obtained by using the coherence crite-
rion given by Theorem 2.2.9.
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2.4. Characteristic variety

The support is usually not the right geometric object attached to a DX -module M ,
as it does not provide enough information on M . A finer object is the characteristic
variety that we introduce below. The following lemma will justify its definition.

Lemma 2.4.1. Let M be a coherent DX-module. Then there exists a coherent sheaf
I (M ) of ideals of grFDX such that, for any open set U of X and any good filtration
F•M|U , we have I (M )|U = Rad(anngrFDU

grFM|U ).

We denote by Rad(I) the radical of the ideal I and by ann the annihilator ideal of
the corresponding module. Hence, for any x ∈ U , we have

Rad(anngrFDX,x
grFMx) = {φ ∈ grFDX,x | ∃ ℓ, φℓgrFMx = 0}.

Proof. It is a matter of showing that, if F•M|U and G•M|U are two good filtrations,
then the corresponding ideals coincide. Notice first that these ideals are homogeneous,
i.e., if φ belongs to the ideal, then so does any homogeneous component of φ. Let φ
be a homogeneous element of degree j in the ideal corresponding to F•M and let φ̃
be a lifting of φ in FjDX . Then, locally, there exists ℓ such that, for any k, we have
φ̃ℓFkM ⊂ Fk+jℓ−1M and thus, for any p ⩾ 0,

φ̃(p+1)ℓFkM ⊂ Fk+j(p+1)ℓ−p−1M .

Taking k0 as in Exercise 2.2.3, associated to F•M , G•M , we have

φ̃(2k0+1)ℓGkM ⊂ φ̃(2k0+1)ℓFk+k0M ⊂ Fk+k0+j(2k0+1)ℓ−2k0−1M

⊂ Gk+2k0+j(2k0+1)ℓ−2k0−1M

= Gk+j(2k0+1)ℓ−1M .

This shows that, by setting ℓ′ = (2k0 + 1)ℓ, φ̃ℓ′
GkM ⊂ Gk+jℓ′−1M , and thus φ is in

the ideal corresponding to G•M . By a symmetric argument, we find that both ideals
are identical.

Notice that we consider the radicals of the annihilator ideals, and not these anni-
hilator ideals themselves, because of the shift k0. In fact, the annihilator ideals may
not be equal, as shown by the following example.

Exercise 2.4.2. Let t be a coordinate on C and set M = OC(∗0)/OC. Consider the two
elements m1 = [1/t] and m2 = [1/t2], where [•] denotes the class modulo OC. Show
that the good filtrations generated respectively by m1 and m2 do not give rise to the
same annihilator ideals.

Definition 2.4.3 (Characteristic variety). The characteristic variety Char M is the sub-
set of the cotangent space T ∗X defined by the ideal I (M ).
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Locally, given any good filtration of M , the characteristic variety is defined as the
set of common zeros of the elements of anngrFDX

grFM .
Assume that M is the quotient of DX by the left ideal J . Then one may choose

for F•M the filtration induced by F•DX , so that Char M is the locus of common zeros
of the elements of grFJ . In general, finding generators of grFJ from generators of J

needs the use of Gröbner bases.
In local coordinates x1, . . . , xn, denote by ξ1, . . . , ξn the complementary symplectic

coordinates in the cotangent space. Then grFJ is generated by a finite set of homo-
geneous elements aα(x)ξα, where α belongs to a finite set of multi-indices. Hence the
homogeneity of the ideal I (M ) implies that

(2.4.4) Supp M = π(Char M ) = Char M ∩ T ∗XX,

where π : T ∗X → X denotes the bundle projection and T ∗XX denotes the zero section
of the cotangent bundle.

Exercise 2.4.5. Let 0→M ′ →M →M ′′ → 0 be an exact sequence of DX -modules.
Show that Char M = Char M ′ ∪ Char M ′′. [Hint: take a good filtration on M and
induce it on M ′ and M ′′.]

Exercise 2.4.6 (Coherent DX -modules with characteristic variety T ∗XX)
Recall that a local section m of a left DX -module M is said to be horizontal if

∇m = 0, i.e., in local coordinates, forall i ∈ N, (∂/∂xi)m = 0. Let M be a coherent
DX -module such that Char M = T ∗XX. Show that

(1) for every x ∈ X, Mx is an OX,x-module of finite type;
(2) Mx is therefore free over OX,x;
(3) Mx has an OX,x-basis made of horizontal sections;
(4) M is locally isomorphic, as a DX-module, to Od

X for some d.

Exercise 2.4.7 (Coherent DX -modules with characteristic variety contained in T ∗Y X)
Let i : Y ↪→ X be the inclusion of a smooth codimension p closed submani-

fold. Define the p-th algebraic local cohomology with support in Y by RpΓ[Y ]OX =
lim−→k

Ext p(OX/J k
Y ,OX), where JY is the ideal defining Y . RpΓ[Y ]OX has a natu-

tal structure of DX -module. In local coordinates (x1, . . . , xn) where Y is defined by
x1 = · · · = xp = 0, we have

RpΓ[Y ]OX ≃
OCn [1/x1 · · ·xn]∑p

i=1 OCn(xi/x1 · · ·xn)
.

Denote this DX -module by BY X.
(1) Show that BY X has support contained in Y and characteristic variety equal
to T ∗Y X.
(2) Identify BY X with i+OY .
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(3) Let M be a coherent DX -module with characteristic variety equal to T ∗Y X.
Show that M is locally isomorphic to (BY X)d for some d.

2.5. Involutiveness of the characteristic variety

Let M be a coherent DX -module, Char M ⊂ T ∗X its characteristic variety and
Supp M its support. For (x, 0) ∈ T ∗X, we denote by dim(x,0) Char M the dimension
at (x, 0) of the analytic space Char M .

Proposition 2.5.1. Let M be a nonzero coherent DX-module. Then, for any x ∈ X,
dim(x,0) Char M ⩾ dimX.

This inequality is called Bernstein’s inequality.

Proof. We can assume that X = Cn. The proposition is proved by induction on
dimX. If Supp M is n-dimensional, the inequality is obvious. Then, it is enough
to prove the proposition for every x in the smooth part of Supp M . Therefore, we
have to consider the case where Supp M is contained in the hypersurface xn = 0.
The proposition follows from Kashiwara’s equivalence of categories between coherent
DCn -modules supported on xn = 0 and coherent DCn−1 -modules (Proposition 2.3.2)
(for the details, see [GM93, p. 129]).

But there exists a more precise result. In order to state it, consider on T ∗X

the fundamental 2-form ω. In local coordinates (x1, . . . , xn, ξ1, . . . , ξn), it is written
ω =

∑n
1=1 dξi ∧dxi. For any (x, ξ) ∈ T ∗X, ω defines on T(x,ξ)(T ∗X) a nondegenerate

bilinear form. We denote by E⊥ the orthogonal space in the sense of ω of the vector
subspace E of T(x,ξ)(T ∗X). Recall that if V is a reduced analytic subspace of T ∗X,
with smooth part V0,

• V is said to be isotropic if, for any a ∈ V0, we have TaV ⊂ (TaV )⊥,
• V is said to be involutive (or co-isotropic) if, for any a ∈ V0, we have

(TaV )⊥ ⊂ TaV ,
• V is said to be Lagrangean if, for any a ∈ V0, we have (TaV )⊥ = TaV .

We observe that if V is involutive, the dimension of any irreducible components
of V is bigger than dimX.

Exercise 2.5.2. Let V be a reduced analytic subspace of T ∗X of pure dimension dimV .

(1) Show that if dimV = 1, then V is isotropic.

(2) Show that if codimV = 1, then V is involutive. (Hint: for E ⊂ T(x,ξ)(T ∗X)
of codimension 1, show that E⊥ has dimension 1, and thus E⊥ ⊂ E⊥⊥ = E.)

Theorem 2.5.3. Let M be a nonzero coherent DX-module. Then Char M is an invo-
lutive set in T ∗X.
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The first proof has been given by Sato, Kawai, Kashiwara [SKK73]. Next, Mal-
grange gave a very simple proof in a seminar Bourbaki talk ([Mal78], see also [GM93,
p. 165]). And finally, Gabber gave the proof of a general algebraic version of this the-
orem (see [Gab81], see also [Bjö93, p. 473]).

A consequence is that any irreducible component of the characteristic variety of
a coherent DX -module has a dimension ⩾ dimX. On the other hand, we can get
homological consequences of this result by using the homological theory of dimension.

Let M be a DX -module coherent and x ∈ X and let F•M a local good filtration
of M . The dimension of the characteristic variety Char M at x ∈ X can be deter-
mined with grFM . Let (x, ξ) ∈ Char M and let m(x,ξ) be the maximal ideal defining
(x, ξ). For d sufficiently large, dim grFM /md

(x,ξ) is a polynomial in d. Let d(x, ξ) be
its degree. We have

dimx Char M = sup{d(x, ξ) | (x, ξ) ∈ T ∗X}.

Then, the following results can be proved using algebraic properties of grFDX

(see e.g. [Bjö79, GM93]).

Proposition 2.5.4. Let M be a coherent DX-module. We have

Ext i
DX

(M ,DX) = 0 for i ⩾ n+ 1.

Theorem 2.5.5. Let M be a coherent DX-module and x ∈ Supp M . Then

2n− dimx Char M = inf{i ∈ N | Ext i
DX,x

(Mx,DX,x) = 0}.

Another useful consequence of the homology theory of the dimension is the follow-
ing proposition:

Proposition 2.5.6. Let M a coherent DX-module. Then, the DX-submodule of M

consisting of local sections m such that dim DXm ⩽ k is coherent.

2.6. Non-characteristic restrictions

Let i : Y ↪→ X denote the inclusion of a closed submanifold with ideal IY (in
local coordinates (x1, . . . , xn), IY is generated by x1, . . . , xp, where p = codimY ).
A local section ξ of i−1ΘX (vector field on X, considered at points of Y only; we
denote by i−1 the sheaf-theoretic pull-back) is said to be tangent to Y if, for any
local section f of IY , ξ(f) ∈ IY . This defines a subsheaf ΘX|Y of i−1ΘX . Then
ΘY = OY ⊗i−1OX

ΘX|Y = i∗ΘX|Y is a subsheaf of i∗ΘX .
Given a left DX -module, the action of i−1ΘX on i−1M restricts to an action

of ΘY on i∗M = OY ⊗i−1OX
i−1M . The criterion of Lemma 1.2.1 is fulfilled since

it is fulfilled for ΘX and M , defining therefore a left DY -module structure on i∗M .
We denote this left DY -module by i+M .
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Without any other assumption, coherence is not preserved by i+. For example,
i+DX is not DY -coherent if codimY ⩾ 1. A criterion for coherence of the pull-back
is given below.

The cotangent map to the inclusion defines a natural bundle morphism

ϖ : T ∗X|Y −→ T ∗Y,

the kernel of which is by definition the conormal bundle T ∗Y X of Y in X.

Lemma-Definition 2.6.1 (Non-characteristic property). We say that Y is non-charac-
teristic with respect to the coherent DX -module M if one of the following equivalent
conditions is satisfied:

• T ∗Y X ∩ Char M ⊂ T ∗XX,
• ϖ : Char M|Y → T ∗Y is finite, i.e., proper with finite fibres.

Exercise 2.6.2. Show that both conditions in Definition 2.6.1 are indeed equivalent.
(Hint: use the homogeneity property of Char M .)

Theorem 2.6.3 (Coherence of non-characteristic restrictions)
Assume that M is DX-coherent and that Y is non-characteristic with respect

to M . Then i+M is DY -coherent and Char i+M ⊂ ϖ(Char M|Y ).

Sketch of proof. The question is local near a point x ∈ Y . We may therefore assume
that M has a good filtration F•M .

(1) Set Fki
+M = image[i∗FkM → i∗M ]. Then, using Exercise 2.2.11(2), one

shows that F•i
+M is a good filtration with respect to F•i

+DX .
(2) The module grF i+M is a quotient of i∗grFM , hence its support is contained
in Char M|Y . By Remmert’s Theorem, it is a coherent grFDY -module.
(3) The filtration F•i

+M is thus a good filtration of the DY -module i+M . By
Exercise 2.2.5(1), i+M is DY -coherent. Using the good filtration above, it is
clear that Char i+M ⊂ ϖ(Char M|Y ).





LECTURE 3

DIFFERENTIAL COMPLEXES AND LOCAL DUALITY

3.1. Introduction

This lecture relies on [Sai89a]. The de Rham functor is a functor between two
very different derived categories, that of DX -modules and that of sheaves of C-vector
spaces. This makes complicated checking compatibility of various functors with the
de Rham functor. The idea of differential complexes is to replace the derived cat-
egory of DX -modules with a category that looks like that of sheaves of C-vector
spaces: this is the category of differential complexes, that is, the category complexes
whose terms are OX -modules and differentials are differential operators. Passing
from a DX -module to a differential complex is best seen if one starts from an in-
duced DX-module, that is, a right DX -module of the form L ⊗OX

DX for some
OX -module L . The associated differential complex is simply L in degree zero, with
differential equal to zero. The differential de Rham functor diffDR induces an equiva-
lence between bounded derived categories of DX -modules and differential complexes.
It has an explicit quasi-inverse functor diffDR-1, which takes values in complexes of
induced DX -modules. In that way, the composed functor diffDR-1diffDR replaces a
bounded complex of DX -modules with an isomorphic complex whose terms are in-
duced DX -modules.

Before starting the main course, let us illustrate the previous considerations on the
case of vector bundles with flat connection, as an appetizer.

Let (V ,∇) be a vector bundle of finite rank on X with a flat connection, that we
also regard as a left DX -module, then simply denoted by V . We also denote by ∇
the differentials Ωk

X ⊗ V → Ωk+1
X ⊗ V . On the other hand, let ∇ also denote the

connection on DX regarded as a left DX -module.

Proposition 3.1.1. The complex

(3.1.1 ∗) · · · −→ Ωk
X ⊗ V ⊗DX

∇⊗ Id + Id⊗∇−−−−−−−−−−−−−→ Ωk+1
X ⊗ V ⊗DX −→ · · · ,

where we put the term Ωn
X ⊗V ⊗DX = ωX ⊗V ⊗DX in degree zero, is a complex of

right DX-modules when DX is equipped with its right DX-module structure, and is a
resolution of the right DX-module V right = ωX ⊗V by locally free right DX-modules.
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This proposition is instrumental when comparing operations on vector bundles
with flat connection with the similar operations on DX -modules.

Proof. Let us make precise the augmentation morphism ωX ⊗ V ⊗ DX → ωX ⊗ V :
it is defined, for local sections ω, v, P of each sheaf, by ω ⊗ v ⊗ P 7→ (ω ⊗ v) · P .

The question is local, so that we will work with germs, and with a local coordinate
system (x1, . . . , xn). For J ⊂ {1, . . . , n}, let D (J) denote the subring of D consisting
of germs of differential operators not containing ∂xj

for j ∈ J . We represent the
complex (3.1.1 ∗) as the simple complex associated to the n-cube with vertices V ⊗D

and all arrows in the i-th direction equal to ∂xi
⊗ Id + Id⊗∂xi

. By a straightforward
induction, it is enough to prove that for each J ⊂ {1, . . . , n} and each i /∈ j, the
morphism

(3.1.2) V ⊗D (J) ∂xi
⊗ Id + Id⊗∂xi−−−−−−−−−−−−−−−→ V ⊗D (J)

is injective and has cokernel isomorphic to V ′ := V ⊗D (J∪{i}) with right action of ∂xi

induced by the left action of −∂xi
on V ′. We write V ⊗D (J) =

⊕
k⩾0 V ′ ⊗ ∂k

xi
and

(∂xi ⊗ Id + Id⊗∂xi)
∑

k

v′k ⊗ ∂k
xi

=
∑
k⩾0

(∂xiv
′
k + v′k−1)⊗ ∂k

xi
.

Injectivity is then clear. The morphism
⊕

k⩾0 V ′ ⊗ ∂k
xi
→ V ′ defined by∑

k

v′k ⊗ ∂k
xi
7−→

∑
k

(−∂xi)kv′k

identifies the cokernel of (3.1.2) with V , and the formula above shows that the right
action of ∂xi induces the left action of −∂xi on V ′.

3.2. Induced D-modules and differential morphisms

3.2.a. Right induced D-modules. Let L be an OX -module. It induces a right
DX -module L ⊗OX

DX (the left OX -module structure of DX is used for the tensor
product).

Remark 3.2.1. We note that L ⊗OX
DX has two structures of OX -module, one on the

left and one on the right, and they do not coincide. We will mainly use the right one.
The “left” OX -module structure on L ⊗OX

DX will only be used when noticing that
some naturally defined sheaves of C-vector spaces are in fact sheaves of OX -modules.

When we need to distinguish both structures, we denote them by (L ⊗OX
DX)left

and (L ⊗OX
DX)right, and in general L ⊗OX

DX will mean (L ⊗OX
DX)right.

The category Mi(DX) of right induced differential modules is the full subcategory
of M(DX) (right DX -modules) consisting of induced DX -modules (i.e., we consider
as morphisms all DX -linear morphisms).
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There is a natural OX -linear morphism (with the right structure on the right-hand
term)

L −→ L ⊗OX
DX , ℓ 7−→ ℓ⊗ 1.

There is also a (only) C-linear morphism

(3.2.2) L ⊗OX
DX −→ L

defined at the level of local sections by ℓ⊗P 7→ P (1)ℓ, where P (1) is the result of the
action of the differential operator P on 1, which is equal to the degree 0 coefficient
of P if P is locally written as

∑
α aα(x)∂α

x . In an intrinsic way, consider the natural
augmentation morphism DX → OX , which is left DX -linear, hence left OX -linear;
then apply L⊗OX

• to it.

Remark 3.2.3. Notice however that (3.2.2) is OX -linear on (L ⊗OX
DX)left.

For the right DX -module L ⊗OX
DX , the de Rham complex pDR(L ⊗OX

DX) is
by definition the Spencer complex Sp•

X(L ⊗OX
DX). By using the left structure on

L ⊗OX
DX , one checks that this is a complex in the category of OX -modules (i.e., the

terms are OX -modules and the differential is OX -linear). The proof of the following
lemma is straightforward.

Lemma 3.2.4. The Spencer complex Sp•
X(L ⊗OX

DX) is a resolution of L as an
OX-module and the morphism (3.2.2) is the augmentation morphism

L ⊗OX
DX = Sp0

X(L ⊗OX
DX) −→ L .

The category Mi(DX) is an additive category. One can associate to it the category
C⋆

i (DX) of complexes which are ⋆-bounded (i.e., for ⋆ = ∅,+,−,b, no condition,
bounded from below, bounded from above, bounded), and the category K⋆

i (DX) of
complexes up to homotopy. The category C⋆

i (DX) is a full subcategory of C⋆(DX).
Note also that two morphisms in C⋆

i (DX) are homotopic when regarded as morphisms
in C⋆(DX) if and only if they are homotopic in C⋆

i (DX). Therefore, K⋆
i (DX) is also

a full subcategory of K⋆(DX). Moreover, since the mapping cone of a morphism
in C⋆

i (DX) is equal to the mapping cone of this morphism considered in C⋆(DX), a
triangle in K⋆

i (DX) is distinguished if and only if it is distinguished when regarded as
a triangle in K⋆(DX).

Since M(DX) is an abelian category, we have the usual definition of a null sys-
tem N in K⋆(DX) (see [KS90, Def. 1.6.6] and Lemma 3.3.3 below for the definition
of a null system in a triangulated category, and [KS90, (1.7.1)]): an object K• be-
longs to N if HjK• = 0 for all j. Inverting the associated multiplicative system
S(N ) gives rise to the derived category D⋆(DX) (see [KS90, §1.6]).

Let us now define Ni as the family of objects of K⋆
i (DX) which belong to N when

regarded as objects of K⋆(DX), that is, which are quasi-isomorphic to 0 in K⋆(DX).
This clearly defines a null system in the triangulated category K⋆

i (DX). Inverting the
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associated multiplicative system gives rise to the category that we denote by D⋆
i (DX).

By definition, there is a natural functor D⋆
i (DX) 7→ D⋆(DX).

3.2.b. Differential morphisms. Let L ,L ′ be two OX -modules. A (right) DX -lin-
ear morphism

(3.2.5) v : L ⊗OX
DX −→ L ′ ⊗OX

DX

is uniquely determined by the OX -linear morphism

(3.2.6) w : L −→ L ′ ⊗OX
DX

that it induces (where the right OX -module structure is chosen on L ′ ⊗OX
DX) by

the formula, for any differential operator P and any local section ℓ of L :

v(ℓ⊗ P ) = w(ℓ) · P.

In other words, the natural morphism

HomOX
(L ,L ′ ⊗OX

DX) −→ HomDX
(L ⊗OX

DX ,L
′ ⊗OX

DX)

is an isomorphism. We also have, at the sheaf level,

(3.2.7) Hom OX
(L ,L ′ ⊗OX

DX) ∼−→Hom DX
(L ⊗OX

DX ,L
′ ⊗OX

DX).

Notice that Hom OX
(L ,L ′⊗OX

DX) is naturally equipped with an OX -module struc-
ture by using the left OX -module structure on L ′ ⊗OX

DX (see Remark 3.2.1), and
similarly HomOX

(L ,L ′ ⊗OX
DX) is a Γ(X,OX)-module.

Now, w induces a C-linear morphism

(3.2.8) u : L −→ L ′,

by composition with (3.2.2): L ′ ⊗OX
DX → L ′. By Lemma 3.2.4, u is nothing but

the morphism

H 0(pDR(v)) : H 0( pDR(L ⊗OX
DX)

)
−→H 0( pDR(L ′ ⊗OX

DX)
)
.

To any such morphism u corresponds at most one v:

Lemma 3.2.9. The morphism

HomDX
(L ⊗OX

DX ,L
′ ⊗OX

DX) −→ HomC(L ,L ′)
v 7−→ u = H 0(pDR(v))

is injective.

Proof. Recall that, for any multi-index β, we have ∂α
x (xβ) = 0 if βi < αi for some i,

and ∂α
x (xα) = α!. Assume that u ≡ 0. Let ℓ be a local section of L and, using local

coordinates (x1, . . . , xn), write in a unique way w(ℓ) =
∑

α w(ℓ)α ⊗ ∂α
x , where the

sum is taken on multi-indices α, and w is as in (3.2.6). If w(ℓ) ̸= 0, let β be minimal
(with respect to the usual partial ordering on Nn) among the multi-indices α such
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that w(ℓ)α ̸= 0. Then w(xβℓ) =
∑

α w(ℓ)α ⊗ ∂α
x x

β and the coefficient of order zero
with respect to ∂x is by definition u(xβℓ), so that

0 = u(xβℓ) =
∑

α

∂α
x (xβ)w(ℓ)α = β!w(ℓ)β ,

a contradiction.

Definition 3.2.10 (Differential operators between two OX -modules)
The C-vector space HomDiff(L ,L ′) of differential operators from L to L ′ is the

image of the injective morphism

HomDX
(L ⊗OX

DX ,L
′ ⊗OX

DX)
H 0(pDR(•))
−−−−−−−−−−−→ HomC(L ,L ′).

Similarly we define the sheaf of C-vector spaces Hom Diff(L ,L ′) as the image of the
injective morphism

Hom DX
(L ⊗OX

DX ,L
′ ⊗OX

DX)
H 0(pDR(•))
−−−−−−−−−−−→Hom C(L ,L ′).

By using the left OX -module structure, Hom OX
(L ,L ′ ⊗OX

DX) has a natural
structure of OX -module, which can be transferred to its image Hom Diff(L ,L ′) in
Hom C(L ,L ′). We note that Hom Diff(L ,L ′) contains Hom OX

(L ,L ′): indeed,
any OX -linear morphism u : L → L ′ is a differential operator from L to L ′

with corresponding v being u⊗ 1. However, Hom Diff(L ,L ′) in general bigger than
Hom OX

(L ,L ′).

Caveat 3.2.11. Both Hom OX
(L ,L ′)⊗OX

DX and Hom OX
(L , (L ′⊗DX)left) have a

right DX -module structure and a left OX -module structure, and the natural morphism

Hom OX
(L ,L ′)⊗OX

DX −→Hom OX
(L , (L ′ ⊗DX)left),

is linear for both structures. However, we have used above Hom OX
(L ,L ′ ⊗DX) =

Hom OX
(L , (L ′ ⊗ DX)right) and, in general, there does not exist a morphism from

Hom OX
(L ,L ′)⊗OX

DX to Hom OX
(L ,L ′⊗DX). As a consequence, the subsheaf

Hom OX
(L ,L ′) of Hom Diff(L ,L ′) is not obtained as the image of

H 0 pDR(•) : Hom OX
(L ,L ′)⊗OX

DX −→Hom OX
(L ,L ′).

(See however Proposition 3.2.24 for the case where L ′ is a right DX -module.)

Examples 3.2.12

(1) Let us checks that Hom Diff(OX ,OX) = DX . Using the notation u, v, w as
above, for any holomorphic function φ we have w(f) = w(1) · f and w(1) is a
differential operator P . Then u(f) = (P · f)(1) = P (f), so that u is identified
with the differential operator P .
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(2) Let L be an OX -module and let ∇ : L → Ω1
X ⊗OX

L be an inte-
grable connection on L . Then ∇ is a differential morphism, i.e., belongs to
HomDiff(L ,Ω1

X ⊗OX
L ): this is seen by considering the right DX -linear mor-

phism
v(ℓ⊗ P ) := ∇(ℓ)⊗ P + ℓ⊗∇(P ),

for any local section ℓ of L and P of DX , and where ∇P is defined in Exer-
cise 1.1.9. This extends to the connections (k)∇.

Similarly, let L ′,L ′′ be OX -submodules of L such that (k)∇ induces a
C-linear morphism (k)∇′ : Ωk

X ⊗OX
L ′ → Ωk+1

X ⊗OX
L ′′. Then (k)∇′ is a

differential morphism.

Lemma 3.2.13. The composition of differential morphisms is a differential morphism.

Proof. We have to check that, under the composition

HomC(L ,L ′)×HomC(L ′,L ′′) ◦−−→ HomC(L ,L ′′),

the subspace HomDiff(L ,L ′) × HomDiff(L ′,L ′′) is sent to HomDiff(L ,L ′′). This
amounts to checking, with the notation above, that

H 0 pDR(v′ ◦ v) = H 0 pDR(v′) ◦H 0 pDR(v).

By using the notation as in Lemma 3.2.9, we have

v′v(ℓ⊗ 1) = v′
(∑

α

w(ℓ)α∂
α
x

)
=

∑
α,β

w′(w(ℓ)α)β∂
α+β
x ,

so that H 0 pDR(v′ ◦ v)(ℓ ⊗ 1) = w′(w(ℓ)0)0. On the other hand, u(ℓ) = w(ℓ)0 and
u′u(ℓ) = w′(w(ℓ)0)0.

Definition 3.2.14 (The category M(OX ,DiffX)). We denote by M(OX ,DiffX) the cat-
egory whose objects are OX -modules and morphisms are HomDiff(L ,L ′) (this is
justified by Lemma 3.2.13).

We note that M(OX ,DiffX) is an additive category, i.e.,
• HomDiff(L ,L ′) is a C-vector space and the composition is C-bilinear,
• the OX -module 0 satisfies HomDiff(0, 0) = 0,
• HomDiff(L1 ⊕L2,L ′) = HomDiff(L1,L ′)⊕HomDiff(L2,L ′) and similarly

with L ′1,L
′
2.

Also, M(OX) is a subcategory of M(OX ,DiffX), since any OX -linear morphism is
a differential operator (of degree zero). It has the same objects but less morphisms.
For the restriction of this inclusion functor to M(DX), it will be convenient to have a
notation

(3.2.15) can : M(DX) 7−→M(OX ,DiffX).

Note that any DX -linear morphism (on the left category) is regarded as a differential
operator of degree zero (on the right category).
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Exercise 3.2.16 (A relative version of differential morphisms)
Let f : X → Y be a holomorphic map between to complex manifolds. Let L ,L ′

be OX -modules.
(1) Define a C-linear morphism L ⊗f−1OY

f−1DY → L and a morphism

Homf−1DY
(L ⊗f−1OY

f−1DY ,L
′ ⊗f−1OY

f−1DY ) −→ HomC(L ,L ′).

Define the space HomDiffY
(L ,L ′) as the image of this morphism

(2) Show that the category M(OX ,DiffY ) is additive. Introduce the cate-
gory M(f−1OY ,DiffY ) and show that M(OX ,DiffY ) is a full subcategory of
M(f−1OY ,DiffY ).
(3) Using the projection formula (see [KS90, Prop. 2.5.13]), define a functor f!
(direct image with proper support) from M(OX ,DiffY ) (or M(f−1OY ,DiffY ))
to M(OY ,DiffY ), sending L to f!L (in the usual sheaf-theoretical sense).

3.2.c. The inverse de Rham functor. We will now show that the correspondence
L 7→ L ⊗OX

DX induces a functor M(OX ,DiffX) 7→Mi(DX). We will then compose
with the inclusion Mi(DX) 7→ M(DX). According to Lemma 3.2.9, the following
definition is meaningful.

Definition 3.2.17 (The inverse de Rham functor). The functor
diffDR-1 : M(OX ,DiffX) −→Mi(DX)

is defined by diffDR-1(L ) = L ⊗OX
DX and diffDR-1(u) = v.

Definition 3.2.10 then reads

(3.2.18) Hom Diff(L ,L ′)
= image[Hom DX

(diffDR-1L , diffDR-1L ′)→Hom C(L ,L ′)].

Let L be an OX -module. Recall that H k
( pDR(L ⊗OX

DX)
)

= 0 for k ̸= 0 and
H 0( pDR(L ⊗OX

DX)
)

= L (Lemma 3.2.4). By definition, H 0 pDR is a functor
Mi(DX) 7→M(OX ,DiffX), that will be denoted by diffDR.

Lemma 3.2.19. The functor diffDR-1 : M(OX ,DiffX) 7→ Mi(DX) is an equivalence of
categories, a quasi-inverse functor being diffDR : L ⊗OX

DX 7→ L , diffDR(v) = u.

Proof. This follows from Lemma 3.2.9.

Furthermore, the composed functor M(OX ,DiffX) 7→ Mi(DX) 7→ M(DX), still
denoted by diffDR-1, is fully faithful, i.e., it induces a bijective morphism

HomDiff(L ,L ′) ∼−→ HomDX
(diffDR-1L , diffDR-1L ′).

(One may think that we “embed” the additive category M(OX ,DiffX), which is non-
abelian, in the abelian category M(DX); we will use this “embedding” to define below
acyclic objects).
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Remark 3.2.20. When considered as taking values in M(DX), the functor diffDR-1 is
not, however, an equivalence of categories, i.e., is not essentially surjective. The reason
is that, first, not all DX -modules are isomorphic to some L ⊗OX

DX and, next, its
natural quasi-inverse is the de Rham functor diffDR which takes values in a category
of complexes. Nevertheless, if one extends suitably these functors to categories of
complexes, they become equivalences (see below Theorem 3.3.7).

3.2.d. Induced DX-modules from DX-modules. We give more details on the
functor can of (3.2.15). Recall that, for a right DX -module M , there are two natural
DX -module structures on M ⊗OX

DX , denoted (right)triv and (right)tens that are
isomorphic via the involution ι (see Exercise 1.2.9). We can write

diffDR-1can(M ) = (M ⊗OX
DX)triv.

On the other hand, the OX -module structure underlying (M ⊗OX
DX)tens has been

denoted (M ⊗OX
DX)left when regarding M only as an OX -module. Remark 3.2.3 is

more precise in the present setting.

Lemma 3.2.21. The augmentation morphism (3.2.2), (M ⊗OX
DX)triv→M , becomes

DX-linear when composed by ι, in other words, it is DX-linear when we equip
M ⊗OX

DX with its (right)tens structure.

Proof. In a local coordinate system, let us check for example that of[
(3.2.2)(m⊗ P )

]
· ∂xi

= (3.2.2)
(
m∂xi

⊗ P −m⊗ ∂xi
P

)
=: (3.2.2)

[
(m⊗ P ) ·tens ∂xi

]
.

The left-hand side is equal to (m ·P (1)) · ∂xi
= (m∂xi

) ·P (1)−m(∂xi
(P (1))) and the

right-hand side is equal to (m∂xi
) · P (1)−m(∂xi

P )(1)). The conclusion follows from
the equality (∂xi

P )(1) = [∂xi
, P ](1) = ∂xi

(P (1)).

The difficulty emphasized in Caveat 3.2.11 can be overcome when L ′ is a right
DX -module, and not only an OX -module. Let us explain this. Let L ,L ′ be OX -mod-
ules. There is a natural morphism L ′ ↪→ L ′ ⊗OX

DX which is OX -linear for both
OX -structures (L ′⊗OX

DX)right and (L ′⊗OX
DX)left (see Remark 3.2.1) and which

induces OX -linear morphisms

(3.2.22) Hom OX
(L ,L ′) −→

{
Hom OX

(L , (L ′ ⊗OX
DX)left)

Hom OX
(L , (L ′ ⊗OX

DX)right)

On the other hand, Hom OX
(L , (L ′ ⊗OX

DX)left) is naturally equipped with a right
DX -module structure induced by that on (L ′ ⊗OX

DX)right, and that we denote by[
Hom OX

(L , (L ′⊗OX
DX)left)

]
triv. Therefore, there is a natural DX -linear morphism

(3.2.23) Hom OX
(L ,L ′)⊗OX

DX −→
[
Hom OX

(L , (L ′ ⊗OX
DX)left)

]
triv.

As indicated in Caveat 3.2.11, the identification (3.2.7) uses (L ′⊗OX
DX)right. How-

ever, when L ′ is a right DX -module, the involution ι considered in Exercise 1.2.9 can
be used to circumvent this difficulty.
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For any OX -module L , the sheaf Hom DX
(L , (L ′⊗OX

DX)right) is equipped with
the right DX -module structure coming from (right)tens on L ′ ⊗DX . Then

L 7−→Hom DX
(L , (L ′ ⊗OX

DX)triv)tens

defines a contravariant functor Mi(DX) 7→M(DX). This functor can be extended as
a functor C⋆

i (DX) 7→ C⋆(DX). The right-hand side also reads

Hom DX
(L ⊗OX

DX , (L ′ ⊗OX
DX)triv)tens.

Proposition 3.2.24. There exists a natural bi-functorial morphism of right DX-modules,
for L ∈M(OX) and L ′ ∈M(DX):

Hom OX
(L ,L ′)⊗OX

DX −→
[
Hom OX

(L , (L ′ ⊗OX
DX)triv)

]
tens

=
[
Hom DX

(L ⊗OX
DX , (L ′ ⊗OX

DX)triv)
]

tens,

and the image of the composed morphism

Hom OX
(L ,L ′)⊗OX

DX −→Hom OX
(L , (L ′ ⊗OX

DX)triv) −→Hom C(L ,L ′)

is equal to H 0 pDR[Hom OX
(L ,L ′)⊗OX

DX ], that is, Hom OX
(L ,L ′).

Proof. The natural morphism (3.2.23) is a DX -linear morphism

Hom OX
(L ,L ′)⊗OX

DX −→
[
Hom OX

(L , (L ′ ⊗OX
DX)tens)

]
triv,

and the involution ι changes the right-hand side to the desired one.
We check the second assertion locally. Let v =

∑
α vα ⊗ ∂α

x , where vα is a lo-
cal section of Hom OX

(L ,L ′). Its image in Hom OX
(L , (L ′ ⊗OX

DX)tens)triv is
ṽ : ℓ 7→

∑
α(vα(ℓ) ⊗ 1) ·tens ∂

α
x , and thus ι(ṽ) sends ℓ to

∑
α(vα(ℓ) ⊗ 1) ·triv ∂

α
x .

The corresponding u is the morphism ℓ 7→ v0(ℓ). In other words, the image of the
section v is v0. This is nothing but the image of v by the augmentation morphism
Hom OX

(L ,L ′)⊗OX
DX →Hom OX

(L ,L ′) of the Spencer complex.

3.3. Differential complexes

Since M(OX ,DiffX) is an additive category, one can consider the category
C⋆(OX ,DiffX) of ⋆-bounded complexes of objects of M(OX ,DiffX) (with ⋆ =
∅,+,−,b), and the category K⋆(OX ,DiffX) of ⋆-bounded complexes up to homotopy
(see [KS90, Def. 1.3.4]). These are called ⋆-bounded differential complexes. Further-
more, we can extend can of (3.2.15) as a functor can : C⋆(DX) 7→ C⋆(OX ,DiffX).

Since connections are differential operators, the de Rham complex of a left DX -
module M is a complex in Cb(OX ,DiffX), that we denote diffDR M as such. By
using the isomorphism pDR(M ) ≃ pDR(M left) of Exercise 1.4.10 for a right DX -
module M , one makes pDR(M ) a complex in Cb(OX ,DiffX), that is also denoted by
diffDR M . We can then extend diffDR as a functor diffDR : C⋆(DX) 7→ C⋆(OX ,DiffX),
and then as a functor of triangulated categories K⋆(DX)→ K⋆(OX ,DiffX).
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On the other hand, there is a natural forget functor Forget from M(OX ,DiffX) to
M(CX), and by extension a functor Forget at the level of C⋆ and K⋆. The previous
considerations show that we can decompose the pDR functor as

M(DX)
diffDR

//

pDR

))

Cb(OX ,DiffX)
Forget

// Cb(CX)

and

K⋆(DX)
diffDR

//

pDR

))

K⋆(OX ,DiffX)
Forget

// K⋆(CX)

Exercise 3.3.1 (Stability by the Godement functor). Let M be a DX -module. Use
Exercise 1.4.15 to show that God• diffDR M is a differential complex. [Hint: Identify
this complex with diffDR God•

M .]

In order to define the “derived category” of the additive category M(OX ,DiffX),
one needs to define the notion of null system in K⋆(OX ,DiffX) and localize the cat-
egory with respect to the associated multiplicative system. A possible choice would
be to say that an object belongs to the null system if it belongs to the null system
of C⋆(CX) when forgetting the Diff structure, i.e., which has zero cohomology when
considered as a complex of sheaves of C-vector spaces. This is not the choice made
below. One says that a differential morphism u : L → L ′ as in (3.2.8) is a Diff-
quasi-isomorphism if the corresponding v as in (3.2.5) is a quasi-isomorphism of right
DX -modules.

The functor diffDR-1 of Definition 3.2.17 extends as a functor C⋆(OX ,DiffX) 7→
C⋆

i (DX) and K⋆(OX ,DiffX) 7→ K⋆
i (DX) in a natural way, and is a functor of triangu-

lated categories on K. Moreover, according to Lemma 3.2.19, it is an equivalence of
triangulated categories.

We wish now to define acyclic objects in the triangulated category K⋆(OX ,DiffX),
and show that they form a null system in the sense of [KS90, Def. 1.6.6].

Definition 3.3.2. We say that a object L • of K⋆(OX ,DiffX) is Diff-acyclic if
diffDR-1(L •) is acyclic in K⋆

i (DX) (equivalently, in K⋆(DX)).

Lemma 3.3.3. The family N of Diff-acyclic objects forms a null system in the category
K⋆(OX ,DiffX), i.e.,

• the object 0 belongs to N ,
• an object L • belongs to N iff L •[1] does so,
• if L • → L ′• → L ′′• → L •[1] is a distinguished triangle of K⋆(OX ,DiffX),

and if L •,L ′• are objects in N , then so is L ′′•.
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Proof. It follows from the property that the extension of diffDR-1 to the categories K⋆

is a functor of triangulated categories.

Define, as in [KS90, (1.6.4)], the family S(N ) as the family of morphisms which
can be embedded in a distinguished triangle of K⋆(OX ,DiffX), with the third term
being an object of N . We call such morphisms Diff-quasi-isomorphisms. Clearly,
they correspond exactly via diffDR-1 to quasi-isomorphisms in K⋆(DX).

We now may localize the category K⋆(OX ,DiffX) with respect to the null system N

and get a category denoted by D⋆(OX ,DiffX). By construction, we still get a functor

(3.3.4) diffDR-1 : D⋆(OX ,DiffX) ∼−→ D⋆
i (DX) −→ D⋆(DX),

where the first equivalence is by definition of the null system (since we have an equiv-
alence at the level of the categories K⋆).

On the other hand, the functor can defined by (3.2.15) extends as a functor between
the triangulated categories K⋆(DX) and K⋆(OX ,DiffX), factoring through K⋆(OX).
Since DX is OX -flat, if L • is acyclic in K⋆(OX), then L • ⊗OX

DX is acyclic in
K⋆(DX). Then the previous functor extends as a functor

D⋆(OX) 7−→ D⋆(OX ,DiffX).

By composing with the forgetful functor D⋆(DX) 7→ D⋆(OX), we extend can as a
functor

can : D⋆(DX) 7−→ D⋆(OX ,DiffX).

Caveat 3.3.5. Do not confuse can and pDR.

Remark 3.3.6. The category M(OX ,DiffX) is also naturally a subcategory of the cat-
egory M(CX) of sheaves of C-vector spaces because HomDiff(L ,L ′) is a subset
of HomC(L ,L ′). We therefore have a natural functor Forget : K⋆(OX ,DiffX) →
K⋆(CX), forgetting that the differentials of a complex are differential operators, and
forgetting also that the homotopies should be differential operators too. As a conse-
quence of Theorem 3.3.7, we will see in Proposition 3.3.12 that any object in the null
system N defined above is sent to an object in the usual null system of K⋆(CX), i.e.,
objects with zero cohomology. In other words, a Diff-quasi-isomorphism is sent into a
usual quasi-isomorphism. But there may exist morphisms in K⋆(OX ,DiffX) which are
quasi-isomorphisms when viewed in K⋆(CX), but are not Diff-quasi-isomorphisms.

Theorem 3.3.7. The functors diffDR and diffDR-1 induce quasi-inverse and induce equiv-
alences of categories

D⋆(DX)

diffDR
))

D⋆(OX ,DiffX).

diffDR-1

ii
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Lemma 3.3.8. There is an isomorphism of functors diffDR-1◦ diffDR ∼−→ Id from
D⋆(DX) (right DX-modules) to itself.

This lemma enables one to attach to each object of D⋆(DX) a canonical resolution
by induced DX -modules since diffDR-1 takes values in D⋆

i (DX).

Proof. Let us recall that there exists an explicit side-changing isomorphism of com-
plexes pDR M left ≃ pDR M right which is given by termwise OX -linear morphisms.
If we regard these complexes as objects of Cb(OX ,Diff), we deduce that the side-
changing isomorphism is an isomorphism in this category. In other words, we have
diffDR(M left) ≃ diffDR(M right).

For the proof of the lemma, start with a left DX -module M left. By definition,
diffDR-1diffDR M left = (Ωn+•

X ⊗M left) ⊗ DX with differential diffDR-1(∇). This is
nothing but the complex Ωn+•

X ⊗ (M left⊗DX) where the differential is the connection
on the left DX -module (M left ⊗ DX)tens. Furthermore, this identification is right
DX -linear with respect to the (right)triv structure on both terms.

We note that
[
(M left⊗OX

DX)right]
tens ≃ (M right⊗OX

DX)tens, i.e., both with the
tensor structure, respectively left and right, and this isomorphism is compatible with
the right DX -structure (right)triv on both terms. By side-changing we find[ pDR(M left ⊗OX

DX)tens
]

triv ≃
[ pDR(M right ⊗OX

DX)tens
]

triv,

and by using the involution of Exercise 1.2.9,[ pDR(M right ⊗OX
DX)tens

]
triv ≃

[ pDR(M right ⊗OX
DX)triv

]
tens.

Lastly, we have
pDR(M right ⊗OX

DX)triv = M right ⊗OX
Sp•(DX) ≃M right ⊗OX

OX = M right,

and the remaining right DX -structure is deduced from the tens one, which is the nat-
ural right structure on M right. We conclude that, functorially, diffDR-1diffDR M left ≃
M right. Since diffDR M left ≃ diffDR M right, the lemma follows.

Proof of Theorem 3.3.7. From the previous lemma, it is now enough to show that,
if L • is a complex in C⋆(OX ,DiffX), there exists a a Diff-quasi-isomorphism
diffDR diffDR-1L • → L •, and, by definition, this is equivalent to showing the exis-
tence of a quasi-isomorphism diffDR-1diffDR diffDR-1L • → diffDR-1L •, that we know
from the previous result applied to M = diffDR-1L •.

Remark 3.3.9. Lemma 3.2.4 only shows the existence of a quasi-isomorphism
pDR diffDR-1L • ∼−→ Forget L •

in the category of sheaves of C-vector spaces.
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Exercise 3.3.10. Show that the following diagram commutes:

D⋆(DX)
diffDR

//

pDR

))

D⋆(OX ,DiffX)
Forget

// D⋆(CX)

Corollary 3.3.11. The natural functor D⋆
i (DX) 7→ D⋆(DX) is an equivalence of cate-

gories.

Proof. This follows from the isomorphism of functors diffDR-1diffDR ∼−→ Id from
D⋆(DX) to itself, and (3.3.4).

Proposition 3.3.12. The functor Forget induces a functor D⋆(OX ,DiffX) 7→ D⋆(CX),
and we have an isomorphism of functors

pDR diffDR-1 ∼−→ Forget : D⋆(OX ,DiffX) 7−→ D⋆(CX).

Proof. If L • is Diff-acyclic, Forget L • is acyclic indeed, by definition, diffDR-1(L •)
is acyclic; then pDR diffDR-1(L •) is also acyclic and quasi-isomorphic to : Forget L •.
This shows the first part of the statement. The second part follows from Theorem
3.3.7 and of the commutativity of the diagram of Exercise 3.3.10.

Remark 3.3.13 (The Godement resolution of a differential complex)
Let L • be an object of C+(OX ,DiffX). Then God•

L • is maybe not a differential
complex (see Exercise 1.4.15(1)). However, God• diffDR diffDR-1L • is a differential
complex, being equal to diffDR God• diffDR-1L •. Therefore, the composite functor
God• diffDR diffDR-1 plays the role of Godement resolutions in the category of differ-
ential complexes.

Exercise 3.3.14 (Differential complexes in the relative situation)
Keep notation of Exercise 3.2.16.

(1) Show the analogue of Lemma 3.2.9 and deduce the existence of a functor
and diffDR-1

Y : M(f−1OY ,DiffY )→M(f−1DY ).

(2) Construct the derived categories D⋆(f−1OY ,DiffY ) and show that diffDR
and diffDR-1

Y are quasi-inverse functors.

(3) Using Godement resolutions, define a functor

Rf! : D+(f−1OY ,DiffY ) −→ D+(OY ,DiffY ).

[Hint: Given a complex L • in C+(f−1OY ,DiffY ), replace it with the complex
diffDR God• diffDR-1

Y L •.]
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(4) Show that the following diagrams commute:

D+(f−1DY )
diffDR //

Rf!
��

D+(f−1OY ,DiffY )

Rf!
��

D+(DY )
diffDR // D+(OY ,DiffY )

D+(f−1DY )

Rf!
��

D+(f−1OY ,DiffY )
diffDR-1

Yoo

Rf!
��

D+(DY ) D+(OY ,DiffY )
diffDR-1

Yoo

D+(f−1OY ,DiffY )

Rf!
��

Forget
// D+(CX)

Rf!
��

D+(OY ,DiffY )
Forget

// D+(CY )

Of special interest for us will be the composed functor can defined by (3.2.15),
diffDR-1◦ can : D+(DX) −→ D+(DX).

Lemma 3.3.15. We have a functorial isomorphism of functors
diffDR ◦(diffDR-1◦ can) ≃ can : D+(DX) −→ D+(OX ,DiffX).

In other words, diffDR◦(diffDR-1◦can), which a priori takes values in D+(OX ,DiffX),
takes in fact values in D+(DX).

Proof. If M is a right DX -module, then diffDR-1◦ can(M ) = (M ⊗OX
DX)triv. It fol-

lows that
diffDR(diffDR-1◦ can)(M ) = diffDR(M ⊗OX

DX)triv

= M ⊗OX
Sp•(DX) ≃M ⊗OX

OX = M .

A priori, these equalities hold as OX -modules. However, putting the (right)tens
DX -module structure on M ⊗OX

DX makes diffDR(M ⊗OX
DX)triv a complex

of right DX -modules and the above equalities are compatible with this structure
(see Lemma 3.2.21). These isomorphisms are functorial with respect to M ∈M(DX),
so that this identification also holds for morphisms in D+(DX).

3.4. Differential complexes of finite order

In order to deal with local duality, we would need that, when L ′• is a complex of
right DX -module, Hom Diff(L ,L ′•) is a differential complex. This would be the case
if the morphism Hom OX

(L ,L ′) ⊗OX
DX → Hom OX

(L ,L ′ ⊗OX
DX) of Propo-

sition 3.2.24 were an isomorphism, according to the second part of this proposition.
This is not the case in general. For that reason, we introduce the notion of differential
morphism of finite order.
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Recall (see (3.2.7)) that we have a natural identification

Hom OX
(L ,L ′ ⊗OX

DX) ∼−→Hom DX
(L ⊗OX

DX ,L
′ ⊗OX

DX).

and that DX is filtered by F•DX (see Definition 1.1.4), that we consider with its
OX -module structures by multiplication on the left and on right. This defines a
filtration

Fp Hom OX
(L ,L ′ ⊗OX

DX) := Hom OX
(L ,L ′ ⊗OX

FpDX),

(where the left OX -module structure of FpDX is used for the tensor product and the
right one for Hom OX

) that we also write as Fp Hom DX
(L ⊗OX

DX ,L ′ ⊗OX
DX),

according to the previous identification. This filtration is not exhaustive in general,
and we set

Hom i,f
DX

(L ⊗OX
DX ,L

′ ⊗OX
DX) =

⋃
p
Fp Hom DX

(L ⊗OX
DX ,L

′ ⊗OX
DX),

and the space of DX -linear morphisms locally of finite order from L ⊗OX
DX to

L ′ ⊗OX
DX is defined as

Homi,f
DX

(L ⊗OX
DX ,L

′ ⊗OX
DX) = Γ(X,Hom i,f

DX
(L ⊗OX

DX ,L
′ ⊗OX

DX)).

(The exponent i recalls that this is only defined for induced DX -modules.) In other
words, a DX -linear morphism L ⊗OX

DX → L ′ ⊗OX
DX is locally of finite order if

and only if, in the neighbourhood of each point of X there exists po such that the
morphism sends L ⊗OX

FpDX to L ′ ⊗OX
Fp+po

DX for each p.
The following is easily checked:

Lemma 3.4.1

(1) The composition of morphisms of finite order has finite order.

(2) Any OX-linear morphism L → L ′ has order zero, and that any integrable
connection ∇ : L → Ω1

X ⊗OX
L has order ⩽ 1, as well as any of its extensions

∇(k) (see Example 3.2.12(2)).

Exercise 3.4.2

(1) Let L = DX (with its right structure of OX -module) and L ′ = OX . Let
w = Id ∈ HomOX

(DX ,OX ⊗OX
DX) = HomOX

(DX ,DX). Show that w does
not belong to any Fp HomOX

(DX ,DX).

(2) Assume that L is OX -coherent. Show that

Hom i,f
DX

(L ⊗OX
DX ,L

′ ⊗OX
DX) = Hom DX

(L ⊗OX
DX ,L

′ ⊗OX
DX).

Definition 3.4.3. The category Mi,f(DX) is the additive category of induced D-modules
with DX -linear morphisms locally of finite order. It gives rise to the categories of
complexes C⋆

i,f(DX) and that of complexes up to homotopy K⋆
i,f(DX).
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Note that Mi,f(DX) is not a full subcategory of M(DX). However, one can con-
struct the corresponding category of complexes C⋆

i,f(DX), that of complexes up to
homotopy K⋆

i,f(DX) and there is a natural functor K⋆
i,f(DX) 7→ K⋆

i (DX) since a ho-
motopy of finite order is a homotopy. Defining then the null system in K⋆

i,f(DX)
as consisting of complexes which are acyclic in K⋆

i (DX) (equivalently, in K⋆(DX)),
we define the derived category D⋆

i,f(DX), which is equipped with a natural functor
to D⋆

i (DX). We can then enhance Proposition 3.2.24 with the assumption of finite
order.

Definition 3.4.4 (Differential operators of finite order). The space Homf
Diff(L ,L ′) of

differential operator L → L ′ which have (locally) finite order is the image of

Γ
(
X,Hom i,f

DX
(L ⊗OX

DX ,L
′ ⊗OX

DX)
)

in HomDiff(L ,L ′). The filtration on Hom OX
(L ,L ′ ⊗OX

DX) defines a filtration
F• Hom Diff(L ,L ′). We also set Hom Difff (L ,L ′) =

⋃
p Fp Hom Diff(L ,L ′) ⊂

Hom Diff(L ,L ′)

Examples 3.4.5
(1) We have F• Hom Diff(OX ,OX) = F•DX (see Example 3.2.12(1)).
(2) If L is OX -coherent, the filtration F• Hom Diff(L ,L ′) is exhaustive, i.e.,
Hom Difff (L ,L ′) = Hom Diff(L ,L ′).

Due to the composition property seen above, one can define the category
M(OX ,Difff

X), whose objects are OX -modules and morphisms are differential opera-
tors of finite order. This category is additive. By the same proof as in Lemma 3.2.19,
one checks that the functor diffDR-1 sends M(OX ,Difff

X) to Mi,f(DX) and that it is
an equivalence of categories, a quasi-inverse functor being diffDR : L ⊗OX

DX 7→ L ,
diffDR(v) = u.

One then constructs the categories denoted by C⋆(OX ,Difff
X) and K⋆(OX ,Difff

X),
respectively equivalent to C⋆

i,f(DX) and K⋆
i,f(DX). By defining acyclic objects in

K⋆
i,f(DX) as objects whose image by the functor K⋆

i,f(DX) 7→ K⋆(DX) is acyclic, and
correspondingly acyclic objects in K⋆(OX ,Difff

X), one checks that they form a null
system in K⋆(OX ,Difff

X). This leads to the derived category D⋆(OX ,Difff
X).

Since any OX -linear morphism has order zero, the natural functor

C⋆(OX) 7−→ C⋆(OX ,DiffX)

takes values in C⋆(OX ,Difff
X) and

D⋆(OX) 7−→ D⋆(OX ,DiffX)

takes values in D⋆(OX ,Difff
X). As a consequence, the functor can of (3.2.15) can be

regarded as a functor

(3.4.6) can : D⋆(DX) 7−→ D⋆(OX ,Difff
X).
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Let M be a left DX -module. Then diffDR M is an object of Cb(OX ,Difff
X), since

the connection has order one. By the side-changing isomorphism, which has termwise
finite order (order zero), we conclude that the same property holds for a right DX -
module M .

Let M • be an object of C⋆(DX). Then that diffDR(M •) is an object of
C⋆(OX ,Difff

X), because the differentials of the complex M • induce differential
morphisms of order zero.

It follows that diffDR defines a functor D⋆(DX) 7→ D⋆(OX ,Difff
X). As a conse-

quence, the functor diffDR-1diffDR is regarded as a functor D⋆(DX) 7→ D⋆
i,f(DX).

In a way analogous to Theorem 3.3.7, and since Lemma 3.3.8 only makes use of
Cb(OX ,Difff) according to the above remarks, one obtains:

Theorem 3.4.7. The functors diffDR and diffDR-1 induce quasi-inverse and induce equiv-
alences of categories

D⋆(DX)

diffDR
))

D⋆(OX ,Difff
X),

diffDR-1

ii

the functor diffDR-1 takes values in D⋆
i,f(DX), and the natural functor D⋆

i,f(DX) 7→
D⋆(DX) is an equivalence of categories.

3.5. A prelude to local duality

3.5.a. A refinement of Proposition 3.2.24
Proposition 3.5.1. Assume that L ′ is a right DX-module. Then the sheaf of C-vector
spaces Hom i,f

DX
(L ⊗OX

DX ,L ′⊗OX
DX) has a natural structure of right DX-module,

denoted Hom i,f
DX

(L ⊗OX
DX ,L ′ ⊗OX

DX)tens, making it isomorphic to the induced
DX-module Hom OX

(L ,L ′)⊗OX
DX .

More precisely, for each p ⩾ 0, the morphism of Proposition 3.2.24 induces an
OX-linear isomorphism

Hom OX
(L ,L ′)⊗OX

FpDX
∼−→Hom OX

(L , (L ′ ⊗OX
FpDX)triv),

where the OX-structure on the left-hand term is induced by the right one on FpDX ,
and thus a DX-linear isomorphism which is bi-functorial with respect to L ∈M(OX)
and L ′ ∈M(DX):

(3.5.1 ∗) Hom OX
(L ,L ′)⊗OX

DX

∼−→
[
Hom i,f

DX
(L ⊗OX

DX , (L ′ ⊗OX
DX)triv)

]
tens.

Proof. This follows from the strictness of ι with respect to the filtration F•

(see Exercise 1.2.9(3)) and from the OX -coherence of FpDX .
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It follows from Exercise 3.4.2(2) that, if L is OX -coherent, we have an isomorphism
of right DX -modules

Hom OX
(L ,L ′)⊗OX

DX
∼−→Hom DX

(L ⊗OX
DX ,L

′ ⊗OX
DX).

Similarly, if L • is a bounded complex of OX -modules (and OX -linear differentials)
with coherent cohomology, then the natural right DX -linear morphism is a quasi-
isomorphism:

(3.5.2) Hom OX
(L •

,L ′)⊗OX
DX

∼−→Hom DX
(L • ⊗OX

DX ,L
′ ⊗OX

DX)

The isomorphism (3.5.1 ∗) shows that, if L ′ is a right DX -module, the contravari-
ant functor Hom i,f

DX
(•,L ′⊗OX

DX) from Mi,f(DX) to M(DX) takes values in Mi(DX).

Proposition 3.5.3 (Refinement of Proposition 3.5.1)

(1) The functor Hom i,f
DX

(•,L ′⊗OX
DX) from Mi,f(DX) to M(DX) takes values

in Mi,f(DX).

(2) The functor Hom i,f
DX

(L ⊗OX
DX , • ⊗OX

DX) is a covariant functor from
M(DX) to Mi(DX) which takes values in Mi,f(DX).

Proof. For (1), it amounts to proving that a morphism L1 ⊗OX
DX → L2 ⊗OX

DX

of finite order p induces a morphism of finite order

Hom OX
(L2,L

′)⊗OX
DX −→Hom OX

(L1,L
′)⊗OX

DX .

The result follows from considering the composition

Fq Hom i,f
DX

(L2 ⊗OX
DX , (L ′ ⊗OX

DX)triv) ≃Hom OX
(L2, (L ′ ⊗OX

FqDX)triv)
↪−→Hom OX

(L2 ⊗OX
FpDX , (L ′ ⊗OX

Fp+qDX)triv)
−→Hom OX

(L1, (L ′ ⊗OX
Fp+qDX)triv)

≃ Fp+q Hom i,f
DX

(L1 ⊗OX
DX , (L ′ ⊗OX

DX)triv).

The argument for (2) is similar.

Corollary 3.5.4. Let L • be a complex in Db(OX ,Difff
X) and let L ′• be in D+(DX).

Then the simple complex associated to Hom i,f
DX

(diffDR-1L •, (diffDR-1◦ can)L ′•) is a
complex in D+

i,f(DX), and there is an isomorphism in C+(OX ,Difff
X):

(3.5.4 ∗) Hom Difff (L •
, can L ′•) ≃ diffDR Hom i,f

DX
(diffDR-1L •

, (diffDR-1◦ can)L ′•).

Proof. The assertion for Hom i,f
DX

follows from Proposition 3.5.3. The isomorphism
(3.5.4 ∗) then follows from the isomorphism (3.5.1 ∗) together with the last assertion
in Proposition 3.2.24.
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3.5.b. Properties of the functor Hom i,f
DX

applied to DX-modules. Let N • be
a complex in Cb

i,f(DX), and let L ′ be a right DX -module. It follows from Proposition
3.5.3(1) that Hom i,f

DX
(N •,L ′⊗OX

DX) is a complex in Cb
i,f(DX) (i.e., the differentials

are morphisms of finite order). From Theorem 3.4.7 we deduce that, for any bounded
complex M • in Cb(DX), the complex Hom i,f

DX
(diffDR-1diffDR M •,L ′ ⊗OX

DX) is a
complex in Cb

i,f(DX), and we have a natural morphism in Db(DX):

(3.5.5) Hom i,f
DX

(diffDR-1diffDR M •
,L ′ ⊗OX

DX)
−→Hom DX

(diffDR-1diffDR M •
,L ′ ⊗OX

DX)
−→ R Hom DX

(diffDR-1diffDR M •
,L ′ ⊗OX

DX).

Let us also notice that, according to Lemma 3.3.8,

R Hom DX
(diffDR-1diffDR M •

,L ′⊗OX
DX) ≃

[
R Hom DX

(M •
, (L ′⊗OX

DX)triv)
]

tens.

The morphism (3.5.5) is functorial with respect to L ′. Indeed, a DX -linear morphism
u : L ′1 → L ′2 gives rise to a DX -linear morphism v = diffDR-1(u) : (L ′1⊗OX

DX)triv →
(L ′2⊗OX

DX)triv. The morphism u being OX -linear, we have v = u⊗ 1, and it is also
DX -linear with respect to the (right)tens structure. It induces therefore a morphism
between the corresponding last two terms of (3.5.5) (for L ′1 and L ′2). Since u ⊗ 1
sends L ′1 ⊗ FpDX to L ′2 ⊗ FpDX for each p, it also induces a morphism between the
corresponding first terms of (3.5.5). Finally, the diagram (3.5.5)(L ′1) → (3.5.5)(L ′2)
commutes.

The main reason for using differential complexes of finite order instead of differen-
tial complexes is given by the following property.

Proposition 3.5.6. Let L ′ be a right DX-module which is OX-injective and let M • be
a bounded complex of right DX-modules which is acyclic. Then the complex of right
DX-modules Hom i,f

DX
(diffDR-1diffDR M •,L ′ ⊗OX

DX) is also acyclic.

Proof. Recall (see the proof of Theorem 3.3.7) that, if δ denotes the differential of M •

and ∇ is the connection on each M left,k, diffDR-1diffDR M • is the simple complex
associated to the bi-complex

(Ωn+•
X ⊗OX

M left,• ⊗OX
DX ,

diffDR-1(∇), δ̃),

where diffDR-1(∇) is the connection on (M left,• ⊗OX
DX)tens and δ̃ is induced by

δ ⊗ 1 (see Exercise 1.2.8(1)). Recall also that diffDR-1(∇) is of finite order (in fact,
order ⩽1), as well as δ̃ (order zero). It is then enough to prove the acyclicity for
each k of the complex

Hom i,f
DX

(
(Ωn+k

X ⊗OX
M left,• ⊗OX

DX , δ̃),L ′ ⊗OX
DX

)
.

By definition of δ̃ and of Hom i,f
DX

and according to functoriality in Proposition 3.5.3,
this complex is nothing but the complex Hom OX

((Ωn+k
X ⊗OX

M left,•, δ),L ′)⊗OX
DX ,
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where we still denote by δ the OX -linear morphism associated to δ. Since L ′ is OX -in-
jective and (M left,•, δ) is acyclic, the complex Hom OX

((Ωn+k
X ⊗OX

M left,•, δ),L ′) is
acyclic, hence so is the complex Hom OX

((Ωn+k
X ⊗OX

M left,•, δ),L ′)⊗OX
DX since

DX is OX -flat.

According to Proposition 3.5.3, Hom i,f
DX

(diffDR-1diffDR M •,L ′⊗OX
DX) is an ob-

ject of Cb
i,f(DX), therefore of Kb

i,f(DX), and acyclicity in Kb(DX) is by definition
equivalent to acyclicity in Kb

i,f(DX).
One can choose for L ′ an injective DX -module. (1) Note that L ′ ⊗OX

DX is not
DX -injective in general, and we cannot assert the property of Proposition 3.5.6 for
Hom DX

. Since we are mainly interested in the latter, we will complement this result
with the following extension of Exercise 3.4.2(2) and of (3.5.2).

Proposition 3.5.7. Let M • be an object of Db
coh(DX) and let L ′ be a right DX-module

which is OX-injective. Then (3.5.5) is an isomorphism.

For the proof of Proposition 3.5.7, we cannot directly apply (3.5.2), since
diffDR-1diffDR M • is in general not of the form L • ⊗OX

DX with L • in Db
coh(OX).

We will use the following.

Lemma 3.5.8 (see [Har75, Prop. I.4.4]). Let (F •
p )p∈N be a projective system of complexes

of sheaves of C-vector spaces. Assume that
(1) for each k ∈ Z, the morphisms F k

p+1 → F k
p are onto (in particular the

Mittag-Leffler condition is satisfied for each projective system (F k
p )p∈N),

(2) there exists po such that, for each p ⩾ po, the morphism F •
p+1 → F •

p is
a quasi-isomorphism (in particular the Mittag-Leffler condition is satisfied for
each projective system (H kF •

p )p∈N).
Then, for each k ∈ Z, the natural morphisms

H k
(

lim←−
p

F •
p

)
−→ lim←−

p

(H kF •
p ) −→H kF •

po

1. Let A ,B be sheaves of rings with unit, A being commutative, and assume that B is a left and
right A -module, which is left A -flat. Let K be an injective right B-module. Then K is injective
as a right A -module. Indeed, let F ↪→ G be a monomorphism of sheaves of right A -modules and
let φ : F → K be A -linear. Since B is left A -flat, F ⊗A B → G ⊗A B is a monomorphism and
the composed B-linear morphism

φB : F ⊗A B −→ K ⊗A B −→ K

extends as a morphism ψB : G ⊗A B → K since K is B-injective. On the other hand, the
composition of φB with

F −→ F ⊗ 1 ↪−→ F ⊗A B

is equal to φ, hence the composition ψ of ψB with

G −→ G ⊗ 1 ↪−→ G ⊗A B

extends φ.
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are isomorphisms.

Exercise 3.5.9 (Hom , lim−→ and lim←−)
(1) Let A be a ring and let F,G be A-modules. Let (Fp)p∈N be an exhaustive
increasing filtration of F . Show that

HomA(F,G) = lim←−
p

HomA(Fp, G),

i.e., giving a morphism ϕ : F→G is equivalent to giving morphisms ϕp : Fp→G

subject to the condition that ϕp+1|Fp
= ϕp.

(2) Let A be a sheaf of rings on a topological space X and let F ,G be two
sheaves of A -modules. Let (Fp)p∈N be an exhaustive increasing filtration of F .

(a) Show that, for each open set U ⊂ X, the natural morphism

Γ(U,Hom A (F ,G )) −→ lim←−
p

Γ(U,Hom A (Fp,G )) = Γ(U, lim←−
p

Hom A (Fp,G ))

is an isomorphism. [Hint: use (1) and Exercise 1.1.2.]
(b) Conclude that the natural morphism

Hom A (F ,G ) −→ lim←−
p

Hom A (Fp,G )

is an isomorphism.

Proof of Proposition 3.5.7. We first assume that M • = M consists of a coherent
DX -module. The question is local on X, so we can assume that M has a good
filtration (FpM )p∈Z with FpM = 0 for p ≪ 0. The de Rham complex diffDR M

is naturally filtered, by setting Fp(M ⊗OX
∧kΘX) = (Fp−kM ) ⊗OX

∧kΘX , and
Fp

diffDR M is an object of Cb(OX ,Difff
X), according to Lemma 3.4.1(2).

Lemma 3.5.10. For each p, grF
p

diffDR M is a complex in Cb(OX).

Proof. Let us prove the lemma for left DX -modules. It is a matter of showing that, if∇
denotes the connection on M , that we regard as a connection FpM → Ω1

X ⊗Fp+1M ,
then the induced map gr1∇ : grF

p M → Ω1
X ⊗grF

p+1M is OX -linear. This follows from
the Leibniz rule.

Lemma 3.5.11. Locally, there exists po such that diffDR-1grF
p

diffDR M is acyclic for
p ⩾ po.

Proof. According to the previous lemma,
diffDR-1grF

p
diffDR M =(grF

p
diffDR M )⊗OX

DX .

It suffices therefore to prove the acyclicity of grF
p

diffDR M in Cb(OX). One can find,
locally, a resolution the filtered DX -module (M , F•M ) (more precisely, a resolution
of the associated Rees module, see §1.5) by coherent filtered DX -modules of the form⊕

k Lk ⊗OX
F•[nk]DX , where Lk is OX -free of finite rank, F•DX is the standard
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filtration of DX , F•[nk] is the same filtration shifted by some integer nk, and the
direct sum is finite.

It is therefore enough to prove the assertion for such summands, by a classical
argument of homological algebra, and then for (DX , F•DX), for which the assertion
was proved in Exercise 1.4.4(3) for p ⩾ 1.

We now consider the commutative diagram

Hom i,f
DX

(diffDR-1DR M ,L ′⊗OX
DX) a //

b
��

Hom DX
(diffDR-1DR M ,L ′⊗OX

DX)

c
��

Hom i,f
DX

(diffDR-1Fp DR M ,L ′⊗OX
DX)

ap
// Hom DX

(diffDR-1Fp DR M ,L ′⊗OX
DX)

and we will prove that ap, c, b, hence a, are quasi-isomorphisms locally for p≫ 0.
(1) For ap, we identify

diffDR-1
Fp DR M to (Ωn+•

X ⊗OX
Fp+•M

left ⊗OX
DX ,

diffDR-1(∇)),

as in the proof of Proposition 3.5.6. Then ap is termwise an isomorphism for
each p, according to Exercise 3.4.2(2).
(2) According to Exercise 3.5.9(2), we identify

Hom DX
(diffDR-1DR M ,L ′ ⊗OX

DX)

to
lim←−

p

Hom DX
(diffDR-1

Fp DR M ,L ′ ⊗OX
DX)

and thus to

lim←−
p

Hom i,f
DX

(diffDR-1
Fp DR M ,L ′ ⊗OX

DX).

That Condition 3.5.8(1) is fulfilled follows from the OX -injectivity of L ′ and
(3.5.2). Condition 3.5.8(2) follows from Lemma 3.5.11. Therefore, c is a quasi-
isomorphism for p≫ 0, according to Lemma 3.5.8.
(3) In order to prove that b is a quasi-isomorphism, we will first analyze the
differential of the corresponding complexes. We cannot apply directly Lemma
3.5.8 to these complexes, since the terms are of the form

Hom OX
(Ωk

X ⊗M left,L ′)⊗OX
DX

and we cannot assert that lim←−p
(•p)⊗OX

DX = lim←−p
(•p⊗OX

DX) for a projective
system •p of OX -modules, since DX is not of finite rank over OX . We will thus
consider the filtration F•DX in order to use lim←−p

.

The differential ∂ of the complex Hom i,f
DX

(diffDR-1DR M ,L ′⊗OX
DX) sends

a local section φ of Hom OX
(Ωn+k+1

X ⊗M left,L ′) to the section

φ ◦ ∇+ φ(•⊗∇(1))
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of Hom OX
(Ωn+k

X ⊗M left,L ′ ⊗ F1DX), where ∇(1) is the same as in Exercise
1.1.9(1).

We can therefore filter the complex Hom i,f
DX

(diffDR-1DR M ,L ′⊗OX
DX) by

setting

Gp Hom OX
(Ωn−k

X ⊗M left,L ′ ⊗DX) = Hom OX
(Ωn−k

X ⊗M left,L ′ ⊗ Fp+kDX).

The differential gr1∂ of the graded complex satisfies gr1∂(φ) = φ(• ⊗ ∇(1)).
The graded complex can then be identified, up to a shift by n in the grading, to
the complex Hom OX

(M ,L ′ ⊗ grF Sp•
DX). According to Exercise 1.1.9, we

find that the inclusion of complexes

G0 Hom i,f
DX

(diffDR-1DR M ,L ′ ⊗OX
DX) ↪−→Hom i,f

DX
(diffDR-1DR M ,L ′ ⊗OX

DX)

is a quasi-isomorphism. A similar argument applies for each p to the complex
Hom i,f

DX
(diffDR-1Fp DR M ,L ′ ⊗OX

DX). We can now apply Exercise 3.5.9(2)
to terms of the complexes G0(•) in order to obtain

G0 Hom i,f
DX

(diffDR-1DR M ,L ′ ⊗OX
DX)

= lim←−
p

G0 Hom i,f
DX

(diffDR-1
Fp DR M ,L ′ ⊗OX

DX).

Since[
G0 Hom i,f

DX
(diffDR-1

Fp DR M ,L ′ ⊗OX
DX)

]k

= Hom OX
(Ωn−k

X ⊗ Fp−kM left,L ′ ⊗ Fp+kDX) =: F k
p ,

Condition 3.5.8(1) holds by the OX -injectivity of L ′ ⊗ Fp+kDX and Condi-
tion 3.5.8(2) follows moreover from the local acyclicity of diffDR-1grF

p DR M

for p≫ 0.

End of the proof of Proposition 3.5.7. We continue to assume that M • = M , and we
will prove that the composition of the arrows in (3.5.5) is an isomorphism. This is
a local question. Let M • be a resolution of M by locally free DX -modules of finite
rank. Then diffDR-1diffDR M • is a resolution of diffDR-1diffDR M by locally free right
DX -modules, so by definition

Hom DX
(diffDR-1diffDR M •

,L ′⊗OX
DX)=R Hom DX

(diffDR-1diffDR M ,L ′⊗OX
DX).

On the other hand, Proposition 3.5.6 applied to the acyclic complex · · · → M 1 →
Ker d0 → 0, with d0 : M 0 →M , shows that

Hom i,f
DX

(diffDR-1diffDR M ,L ′⊗OX
DX) −→Hom i,f

DX
(diffDR-1diffDR M •

,L ′⊗OX
DX).

is a quasi-isomorphism. Since

Hom i,f
DX

(diffDR-1diffDR M k,L ′⊗OX
DX) −→Hom DX

(diffDR-1diffDR M k,L ′⊗OX
DX)
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is an isomorphism for each k, we obtain that (3.5.5) is an isomorphism when M is
DX -coherent. By using similar arguments, we get that (3.5.5) is an isomorphism for
any bounded complex M • with DX -coherent cohomology.

3.6. Behaviour with respect to external tensor product

3.6.a. The C-external tensor product. It is straightforward to adapt the results
of §§3.2–3.5 to the sheaves OX1 ⊠C OX2 and DX1 ⊠C DX2 . Furthermore, we have a
natural identification

(3.6.1) (L1⊗OX1
DX1)⊠C (L2⊗OX2

DX2) ≃ (L1 ⊠C L2)⊗OX1⊠COX2
(DX1 ⊠C DX2).

In particular, the C-external product ⊠C defines functors

M(OX1 ,Difff
X1

)×M(OX2 ,Difff
X2

) 7−→M(OX1 ⊠C OX2 ,Difff
X1

⊠C Difff
X2

),

where Difff
X1

⊠C Difff
X2

refers to differential complexes over X1 ×X2 with respect to
the sheaves of rings OX1 ⊠COX2 and DX1 ⊠CDX2 . Such functors extend to the derived
categories Db and D+. Then one checks that the following diagram commutes:

M(OX1 ,Difff
X1

)×M(OX2 ,Difff
X2

) � //

_

Forget
��

_

Forget
��

M(OX1 ⊠C OX2 ,Difff
X1

⊠C Difff
X2

)
_

Forget
��

M(CX1)×M(CX2) � // M(CX1×X2)

and similarly for Db and D+.

3.6.b. The Diff-external tensor product. We keep the notation of Exercise
2.2.12. Recall that we have defined bifunctors

⊠O : M(OX1)×M(OX2) 7−→M(OX1×X2),
⊠D : M(DX1)×M(DX2) 7−→M(DX1×X2).

From (3.6.1) it immediately follows that

(3.6.2) (L1 ⊗OX1
DX1) ⊠D (L2 ⊗OX2

DX2) ≃ (L1 ⊠O L2)⊗OX1×X2
DX1×X2 .

Given DXi-linear morphisms vi : Li⊗OXi
DXi → L ′i ⊗OXi

DX1 (i = 1, 2), v1 ⊠C v2
induces a morphism

v1 ⊠D v2 : (L1⊗OX1
DX1)⊠D (L2⊗OX2

DX2) −→ (L ′1⊗OX1
DX1)⊠D (L ′2⊗OX2

DX2),

that is,

v1 ⊠D v2 : (L1 ⊠O L2)⊗OX1×X2
DX1×X2 −→ (L ′1 ⊠O L ′2)⊗OX1×X2

DX1×X2 ,

so that the external product ⊠D is a bifunctor Mi(DX1)×Mi(DX2) 7→Mi(DX1×X2).
Similarly, it extends as a bifunctor Mi,f(DX1) ×Mi,f(DX2) 7→ Mi,f(DX1×X2). Fur-
thermore, this construction can be enhanced to the categories of complexes and the
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derived categories (the D-external tensor product of complexes, one of which is quasi-
isomorphic to zero, is also quasi-isomorphic to zero).

From (3.6.2) we deduce that

diffDR
[
(L1 ⊗OX1

DX1) ⊠D (L2 ⊗OX2
DX2)

]
= L1 ⊠O L2.

Lemma 3.6.3. The bifunctor ⊠O : M(OX1) ×M(OX2) 7→ M(OX1×X2) extends as a
bifunctor

⊠Diff : M(OX1 ,Difff
X1

)×M(OX2 ,Difff
X2

) 7−→M(OX1×X2 ,Difff
X1×X2

),

by setting

L1 ⊠Diff L2 = L1 ⊠O L2 and u1 ⊠Diff u2 = H 0 pDR(v1 ⊠D v2),

if ui = H 0 pDR(vi) (i = 1, 2).

These constructions extend to the derived categories Db and D+, and by definition
they are compatible with the functors diffDR and diffDR-1, i.e., the following diagrams
commute:

Db(DX1)×Db(DX2) �
⊠D //

_

diffDR
��

_

diffDR
��

Db(DX1×X2)
_

diffDR
��

Db(OX1 ,Difff
X1

)×Db(OX2 ,Difff
X2

) �
⊠Diff // Db(OX1×X2 ,Difff

X1×X2
)

and

(3.6.4)

Db(DX1)×Db(DX2) �
⊠D // Db(DX1×X2)

Db(OX1 ,Difff
X1

)×Db(OX2 ,Difff
X2

) �
⊠Diff //

_
diffDR-1

OO

_
diffDR-1

OO

Db(OX1×X2 ,Difff
X1×X2

)
_

diffDR-1

OO

Let us denote by Db
coh(OX1 ,Difff

X1
) (resp. Db

hol(OX1 ,Difff
X1

)) the full subcategory
of Db(OX1 ,Difff

X1
) whose objects L •

1 are such that diffDR-1L •
1 has DX1 -coherent

(resp. DX1-holonomic) cohomology. Then, according to Proposition 5.5.2 and Exer-
cise 3.3.10, the following diagram commutes:

Db
hol(OX1 ,Difff

X1
)×Db

coh(OX2 ,Difff
X2

) �
⊠Diff //

_

Forget
��

_

Forget
��

Db
coh(OX1×X2 ,Difff

X1×X2
)

_

Forget
��

Db(CX1)×Db(CX2) �
⊠C // Db(CX1×X2)
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We deduce the commutativity of

(3.6.5)

Db
hol(DX1)×Db

hol(DX2) �
⊠D //

_
pDR

��

_
pDR
��

Db
hol(DX1×X2)

_
pDR
��

Db
C-c(CX1)×Db

C-c(CX2) �
⊠C // Db

C-c(CX1×X2)



LECTURE 4

DIRECT IMAGES OF DX-MODULES

The notion of direct image of a D-module answers the following problem: given a
C∞ differential form η of maximal degree on a complex manifold X, which satisfies a
linear system of holomorphic differential equations (recall that DX acts on the right
on the sheaf E n,n

X of forms of maximal degree), what can be said of the form (or more
generally the current) obtained by integrating η along the fibres of a holomorphic map
f : X → Y ? Does it satisfy a finite (i.e., coherent) system of holomorphic differential
equations on Y ? How can one define intrinsically this system?

Such a question arises in many domains of algebraic geometry. The system of
differential equation is often called the “Picard-Fuchs system”, or the Gauss-Manin
system. A way of “solving” a linear system of holomorphic or algebraic differential
equations on a space Y consists in recognizing in this system the Gauss-Manin system
attached to some holomorphic or algebraic function f : X → Y . The geometric
properties of f induce interesting properties of the system. Practically, this reduces
to expressing solutions of the system as integrals over the fibers of f of some differential
forms.

The definition of the direct image of a D-module cannot be as simple as that of
the direct image of a sheaf. One is faced to a problem which arises in differential
geometry: the cotangent map of a holomorphic map f : X → Y is not a map from
the cotangent space T ∗Y of Y to that of X, but is a bundle map from the pull-back
bundle f∗T ∗Y to T ∗X. In other words, a vector field on X does not act as a derivation
on functions on Y . The transfer module DX→Y will give a reasonable solution to this
problem.

We have seen that the notion of a left DX -module is equivalent to that of an OX -
module equipped with a flat connection. Correspondingly, there are two notions of
direct images.

• The direct image of an OX -module with a flat connection is known as the
Gauss-Manin connection attached to te original one. This notion is only coho-
mological. Although many examples were given some centuries ago (related to
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the differential equations satisfied by the periods of a family of elliptic curves),
the systematic construction was only achieved in [KO68]. The construction
with a filtration is due to Griffiths [Gri70a, Gri70b] (the main result is called
Griffiths’ transversality theorem). There is a strong constraint however: the
map should be smooth (i.e., without critical points).

• The direct image of left D-modules was constructed in [SKK73]. This con-
struction has the advantage of being very functorial, and defined at the level
of derived categories, not only at the cohomology level as is the first one. It
is very flexible. The filtered analogue is straightforward. It appears as a basic
tool in various questions in algebraic geometry.

4.1. Example of computation of a Gauss-Manin differential equation

Let f ∈ C[x±1
1 , . . . , x±1

n ] be a Laurent polynomial in n variables. Consider the
following integral depending on a parameter t:

I(t) =
∫

Tn

ω

f − t
, ω = dx1

x1
∧ · · · ∧ dxn

xn
,

where Tn is the real torus {|xi| = 1∀ i}.

Proposition 4.1.1. There exists a non-zero differential operator q(t, ∂t) with polynomial
coefficients such that q(t, ∂t)I(t) = 0.

We will show how to compute algebraically this differential operator. Denote by
Ωk = Ωk((C∗)n) the space of differential forms of degree k with Laurent polynomials
as coefficients and by Ωk[τ ] the space of polynomials in the new variable τ with
coefficients in Ωk. The differential d : Ωk → Ωk+1 gives rise to a twisted differential

d− τdf∧ : Ωk[τ ] −→ Ωk+1[τ ].

Lemma 4.1.2. We have (d− τdf∧)2 = 0, hence (Ω•[τ ], d− τdf∧) is a complex.

Definition 4.1.3. The k-th Gauss-Manin system GMk(f) is defined as the k-th coho-
mology Hk

(
Ω•[τ ], d− τdf ∧

)
.

Lemma 4.1.4. The following action:

∂t · (
∑
ηiτ

i) =
∑
ηiτ

i+1

t · (
∑
ηiτ

i) =
∑

(fηi − (i+ 1)ηi+1)τ i

defines an action of the Weyl algebra C[t]⟨∂t⟩ := D(A1
t ) on GMk(f) for each k.

The Gauss-Manin systems GM•(f) are an algebraic version of the direct image
f+O(C∗)n that we will consider later.

Theorem 4.1.5 (Bernstein). Each non-zero element of GMk(f) is annihilated by a non-
zero element of C[t]⟨∂t⟩.
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Proposition 4.1.6. Let p ∈ C[t]⟨∂t⟩ be such that p · [ω] = 0 in GMn(f). Then there
exists N ⩾ 0 such that

∂N
t · p(t, ∂t) · I(t) = 0.

Proof. We write p as p =
∑d

i=0 ∂
i
tai(t). The relation p · [ω] = 0 shows that there exists

k ⩾ 0 and η0, . . . , ηd+k ∈ Ωn−1 such that
0 = − df ∧ ηd+k

0 = dηd+k − df ∧ ηd+k−1

...
0 = dηd+1 − df ∧ ηd

ad ◦ f · ω = dηd − df ∧ ηd−1

...
a0 ◦ f · ω = dη0.

(4.1.7)

Claim. We have for all j, ℓ:∫
Tn

dηj

(f − t)ℓ
= ℓ

∫
Tn

df ∧ ηj

(f − t)ℓ+1 .

This follows from Stokes formula:
∫

Tn

d
(
ηj/(f − t)ℓ

)
= 0. From (4.1.7) we get∫

Tn

dηd

(f − t) =
∫

Tn

df ∧ ηd

(f − t)2 =
∫

Tn

dηd+1

(f − t)2 = · · · = 0.

On the other hand, let us work modulo C[t], and use the sign ≡ instead of =. For
any polynomial a(t) we thus have

a(t)
∫

Tn

ω

(f − t) ≡
∫

Tn

a ◦ f · ω
(f − t) mod C[t],

since [a(t)− a ◦ f ]/(f − t) ∈ C[x±1
1 , . . . , x±1

n ][t]. Now,
d

dt
ad(t)

∫
Tn

ω

f − t
≡ d

dt

∫
Tn

ad ◦ f · ω
f − t

≡ d

dt

∫
Tn

−df ∧ ηd

f − t
=

∫
Tn

− df ∧ ηd

(f − t)2 ,

and by using Stokes formula,
d

dt
ad(t)

∫
Tn

ω

f − t
≡

∫
Tn

−dηd−1

f − t
≡ −ad−1(t)

∫
Tn

ω

f − t
−

∫
Tn

df ∧ ηd−2

f − t
.

Iterating this reasoning (by applying d/dt once more, etc.) gives:

p(t, ∂t)
∫

Tn

ω

f − t
≡ 0, i.e., ∈ C[t].

Applying now a sufficiently high power of d/dt to kill the polynomial, we get

∂N
t p(t, ∂t)

∫
Tn

ω

f − t
= 0.
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4.2. Inverse images of left D-modules

Let us begin with some relative complements to § 1.2. Let f : X → Y be a
holomorphic map between analytic manifolds. For any section ξ of the sheaf ΘX of
vector fields on X, Tf(ξ) is a local section of OX ⊗f−1OY

f−1ΘY . We hence have an
OX -linear map

Tf : ΘX −→ OX ⊗f−1OY
f−1ΘY ,

and dually
T ∗f : OX ⊗f−1OY

Ω1
Y −→ Ω1

X .

Therefore, if N is any left DY -module, the connection ∇Y on N can be lifted as a
connection

∇X : OX ⊗f−1OY
f−1N −→ Ω1

X ⊗f−1OY
f−1N

by setting

(4.2.1) ∇X = d⊗ Id +(T ∗f ⊗ IdN ) ◦ (1⊗∇Y ).

Exercise 4.2.2 (Definition of the inverse image of a left DX -module)

(1) Show that the connection ∇X on f∗N := OX ⊗f−1OY
f−1N is integrable

and defines the structure of a left DX -module on f∗N . The corresponding
DX -module is denoted by f+N .

(2) Show that, if N also has a right DY -module structure commuting with the
left one, then ∇X is right f−1DY -linear, and f+N is a right f−1DY -module.

Exercise 4.2.3

(1) Express the previous connection in local coordinates on X and Y .

(2) Show that, if M left is any left DX -module and N any left f−1DY -module,
then M left ⊗f−1OY

f−1N may be equipped with a left DX -module structure:
if ξ is a local vector field on X, set

ξ · (m⊗ n) = (ξm)⊗ n+ Tf(ξ)(m⊗ n).

[Hint: identify M left ⊗f−1OY
f−1N with M left ⊗OX

f+N and use Exer-
cise 4.2.2.]

Definition 4.2.4 (Transfer modules, see, e.g. [CJ93] for details)

(1) The sheaf DX→Y =OX⊗f−1OY
f−1DY =f+DY is a left-right (DX , f

−1DY )-
bimodule when using the natural right f−1DY -module structure and the left
DX -module introduced above.

(2) The sheaf DY←X is obtained from DX→Y by using the usual left-right trans-
formation on both sides:

DY←X = Hom f−1OY

(
ωY , ωX ⊗OX

DX→Y

)
.
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Notice that, DY being a locally free OY -module, f+DY is a locally free OX -module.
Choose local coordinates x1, . . . , xn on X and y1, . . . , ym on Y . Then DX→Y =

OX [∂y1 , . . . , ∂ym
]. The left DX -structure is given by

∂xi ·
∑

α

aα(x)∂α
y =

∑
α

(∂aα

∂xi
+

m∑
j=1

aα(x)∂fj

∂xi
∂yj

)
∂α

y .

Exercise 4.2.5 (DX→Y for a closed embedding). Assume that X is a complex submani-
fold of Y of codimension d, defined by g1 = · · · = gd = 0, where the gi are holomorphic
functions on Y . Show that

DX→Y = DY

/ ∑d
i=1 giDY

with its natural right DY structure. In local coordinates (x1, . . . , xn, y1, . . . , yd) such
that gi = yi, show that DX→Y = DX [∂y1 , . . . , ∂yd

].
Conclude that, if f is an embedding, the sheaves DX→Y and DY←X are locally

free over DX .

Exercise 4.2.6 (Filtration of DX→Y ). Put FkDX→Y = OX ⊗f−1OY
f−1FkDX . Show

that this defines a filtration (see Definition 1.5.1) of DX→Y as a left DX -module and
as a right f−1DY -module, and that grF DX→Y = OX ⊗f−1OY

f−1grF DY .

Exercise 4.2.7 (The chain rule). Consider holomorphic maps f : X→Y and g : Y →Z.
(1) Give an canonical isomorphism DX→Y ⊗f−1DY

f−1DY→Z
∼−→ DX→Z as

right (g ◦ f)−1DZ-modules.
(2) Use the chain rule to show that this isomorphism is left DX -linear.
(3) Same question with filtrations F•.

We can now give a better definition of the inverse image of a left DY -module N ,
better in the sense that it is defined inside of the category of D-modules. It also
allows one to give a definition of a derived inverse image.

Definition 4.2.8 (of the inverse image of a left DY -module). Let N be a left DY -module.
The inverse image f+N is the left DX -module DX→Y ⊗f−1DY

N .

Exercise 4.2.9

(1) Show that the provious definition coincides with that of Exercise 4.2.2(1).
(2) Let f : X → Y , g : Y → Z be holomorphic maps and let N be a left
DZ-module. Show that (g ◦ f)+N ≃ f+(g+N ).

The derived inverse image Lf+N is now defined by the usual method, i.e., by
taking a flat resolution of N as a left DY -module, or by taking a right f−1DY -flat res-
olution of DX→Y by (DX , f

−1DY )-bimodules. The cohomology modules Ljf+N :=
Tor f−1DY

j (DX→Y , f
−1N ) are left DX -modules.
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4.3. Direct images of right D-modules

Recall that the Spencer complex Sp•
X(DX), which was defined in 1.4.2, is a complex

of left DX -modules. Denote by Sp•
X→Y (DX) the complex Sp•

X(DX)⊗OX
DX→Y (the

left OX -structure on each factor is used for the tensor product). It is a complex
of (DX , f

−1DY )-bimodules: the right f−1DY structure is the trivial one; the left
DX -structure is that defined by Exercise 1.2.6(1).

Exercise 4.3.1 (The (filtered) relative Spencer complex)

(1) Show that Sp•
X→Y (DX) is a resolution of DX→Y as a bimodule.

(2) Show that the terms of the complex Sp•
X→Y (DX) are locally free left DX -

modules. [Hint: use Exercise 1.2.8(4).]
(3) Define the filtration of Sp•

X→Y (DX) by the formula

Fℓ Sp•
X→Y (DX) =

∑
j+k=ℓ

Fj Sp•
X(DX)⊗f−1OY

FkDX→Y ,

where the filtration on the Spencer complex is defined in Exercise 1.4.4. Show
that, for any ℓ, Fℓ Sp•

X→Y (DX) is a resolution of FℓDX→Y .

Examples 4.3.2

(1) For f = Id : X → X, the complex Sp•
X→X(DX) = DX ⊗OX

Sp•
X(DX) is a

resolution of DX→X = DX as a left and right DX -module (notice that the left
structure of DX is used for the tensor product).
(2) For f : X → pt, the complex Sp•

X→pt(DX) = Sp•
X(DX) is a resolution of

DX→pt = OX .
(3) If X = Y ×Z and f is the projection, denote by ΘX/Y the sheaf of relative
tangent vector fields, i.e., which do not contain ∂yj

in their local expression in
coordinates adapted to the product Y × Z. The complex DX ⊗OX

∧−•ΘX/Y

is also a resolution of DX→Y as a bimodule by locally free left DX -modules
(Exercise: describe the right f−1DY -module structure). We moreover have a
canonical quasi-isomorphism as bimodules

Sp•
X→Y (DX) =

(
DX ⊗OX

∧−•ΘX/Y

)
⊗

f−1OY

f−1(
∧−• ΘY ⊗OY

DY

)
=

(
DX ⊗OX

∧−•ΘX/Y

)
⊗

f−1DY

f−1(
Sp•

Y (DY )⊗OY
DY

)
∼−→

(
DX ⊗OX

∧−•ΘX/Y

)
⊗

f−1DY

f−1DY→Y

= DX ⊗OX
∧−•ΘX/Y .

Recall that the flabby sheaves are injective with respect to the functor f∗ (direct
image) in the category of sheaves (of modules over a ring) and, being c-soft, are
injective with respect to the functor f! (direct image with proper support).
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Definition 4.3.3 (Direct images of D-modules)

(1) The direct image f+ is the functor from M(DX) to C+(DY ) defined by (we
take the single complex associated to the double complex)

f+M = f∗God•
(
M ⊗DX

Sp•
X→Y (DX)

)
.

It is a realization of Rf∗
(
M ⊗L

DX
DX→Y

)
.

(2) The direct image with proper support f† is the functor from M(DX) to
C+(DY ) defined by (we take the single complex associated to the double com-
plex)

f†M = f! God•
(
M ⊗DX

Sp•
X→Y (DX)

)
.

It is a realization of Rf!
(
M ⊗L

DX
DX→Y

)
.

Remarks 4.3.4

(1) If M is a left DX -module, one defines f†M as (f†M right)left.
(2) If f is proper, or proper on the support of M , we have an isomorphism in
the category D+(DY ):

f†M
∼−→ f+M .

(3) One may replace M with a complex of right DX -modules which is bounded
from below. Then M ⊗DX

Sp•
X→Y (DX) is first replaced with the associated

single complex. Up to this modification, one defines similarly f+, f†. These can
be extended as functors from D+(DX) to D+(DY ).
(4) If F is any sheaf on X, we have Rjf∗F = 0 and Rjf!F = 0 for j ̸∈
[0, 2 dimX]. Therefore, taking into account the length dimX of the rela-
tive Spencer complex, we find that H jf+M and H jf†M are zero for j ̸∈
[−dimX, 2 dimX]: we say that f+M , f†M have bounded amplitude. Similarly,
if M • has bounded amplitude, then so has f†M •.

Theorem 4.3.5

(1) Let f : X → Y and g : Y → Z be two maps. There is a functorial
canonical isomorphism of functors (g ◦ f)† = g†f†. If f is proper, we also have
(g ◦ f)+ = g+f+.
(2) If f is an embedding, then f†M = f+M = f∗(M ⊗DX

DX→Y ).
(3) If f : X = Y × Z → Y is the projection, we have

f+M = f∗God• (
M ⊗OX

∧−•ΘX/Y

)
and f†M = f! God• (

M ⊗OX
∧−•ΘX/Y

)
.

Proof. Let us begin with (1). We have a natural morphism of complexes

Sp•
X→Y (DX) ⊗

f−1DY

f−1 Sp•
Y→Z(DY ) −→ Sp•

X→Y (DX) ⊗
f−1DY

f−1DY→Z ,
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lifting the identity morphism of DX→Y ⊗f−1DY
f−1DY→Z , obtained by using the

augmentation morphism Sp•
Y→Z(DY )→ DY→Z .

On the one hand, the left-hand term is a resolution (in the category of (DX , (g ◦
f)−1DZ)-bimodules) of DX→Z by locally free DX -modules. Indeed, remark that, as
Sp•

Y→Z(DY ) is DY locally free, one has

Sp•
X→Y (DX) ⊗

f−1DY

f−1 Sp•
Y→Z(DY ) ∼−→ DX→Y ⊗

f−1DY

f−1 Sp•
Y→Z(DY )

= OX ⊗
f−1OY

f−1 Sp•
Y→Z(DY )

= OX

L
⊗

f−1OY

f−1DY→Z

= OX ⊗
g−1f−1OZ

g−1f−1DZ (DY→Z is OY locally free)

= DX→Z .

On the other hand, there is a natural morphism

Sp•
X→Y (DX) ⊗

f−1DY

f−1DY→Z −→ Sp•
X→Z(DX).

Indeed, we have a natural morphism[
Sp•

X(DX) ⊗
OX

DX→Y

]
⊗

f−1DY

f−1DY→Z
∼−→ Sp•

X(DX) ⊗
OX

DX→Z ,

which, according to the chain rule (Exercise 4.2.7), is an isomorphism of (DX , (g ◦
f)−1DZ)-bimodules.

We have found a morphism, lifting the identity,

Sp•
X→Y (DX) ⊗

f−1DY

f−1 Sp•
Y→Z(DY ) −→ Sp•

X→Z(DX),

between two resolutions (in the category of (DX , (g ◦ f)−1DZ)-bimodules) of DX→Z

by locally free DX -modules. This morphism is therefore a quasi-isomorphism.
We now have, for an object M of M(DX) of D+(DX):

(g ◦ f)†M = (g ◦ f)! God• (
M ⊗

DX

Sp•
X→Z(DX)

)
≃ (g ◦ f)! God• (

M ⊗
DX

Sp•
X→Y (DX) ⊗

f−1DY

f−1 Sp•
Y→Z(DY )

)
≃ g! God•

f! God• (
M ⊗

DX

Sp•
X→Y (DX) ⊗

f−1DY

f−1 Sp•
Y→Z(DY )

)
(4.3.6)

≃ g! God•
f!

[
God• (

M ⊗
DX

Sp•
X→Y (DX)

)
⊗

f−1DY

f−1 Sp•
Y→Z(DY )

]
(4.3.7)

≃ g! God•
[
f! God• (

M ⊗
DX

Sp•
X→Y (DX)

)
⊗
DY

Sp•
Y→Z(DY )

]
(4.3.8)

= g†f†M .
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Indeed, (4.3.6), as f! God• is c-soft, it is acyclic for g!, hence the natural morphism
g!f! God• → g! God•

f! God• is an isomorphism. Next, (4.3.7) follows from Exer-
cise 1.4.15, as the terms of Sp•

Y→Z(DY ) are DY -locally free. Last, (4.3.8) follows from
the projection formula for f! (see, e.g. [KS90, Prop. 2.5.13]).

If f is proper, then f! = f∗ and f! God• is flabby, so (4.3.6) still holds with g∗, and
the same reasoning gives (g ◦ f)+ = g+f+.

Remark 4.3.9. If f is not proper, we cannot assert in general that (g ◦ f)+ = g+f+.
However, such an identity still holds when applied to suitable subcategories of
D+(DX), the main examples being:

• the restriction of f to the support of M is proper,
• M has DX -coherent cohomology.

In such cases, the natural morphism coming in the projection formula for f∗ is a
quasi-isomorphism (see [MN93, § II.5.4] for the coherent case).

The point (2) is easy, as DX→Y is then DX locally free. For (3), use Example
4.3.2(3). Remark that the analogous result holds with f+ if f is proper on the support
of M .

This theorem reduces the computation of the direct image by any morphism f :
X → Y by decomposing it as f = p ◦ if , where if : X ↪→ X × Y denotes the graph
inclusion x 7→ (x, f(x)). As if is an embedding, it is proper, so we have f+ = p+if+.

Exercise 4.3.10 (Direct image of left DX -modules). Let f : X → Y be a holomor-
phic map (dimX = n, dimY = m) and let M be a left DX -module. As DX→Y

is a left DX -module, M ⊗OX
DX→Y has a natural structure of left DX -module

(see Exercise 1.2.6(2)) and of course a compatible structure of right f−1DY -module.
(1) Show that the de Rham complex Ωn+•

X (M ⊗OX
DX→Y ) is isomorphic, as a

complex of right f−1DY -modules, to M right ⊗DX
Sp•

X→Y (DX).
(2) Conclude that f+M is the complex of left DY -modules associated to the
double complex f∗God• Ωn+•

X (M ⊗OX
DX→Y ).

Choose local coordinates y1, . . . , ym on Y and write fj = yj ◦ f .
(3) Show that if+M = M [∂y1 , . . . , ∂ym

] with left DX×Y structure given locally
by

∂yj ·m∂α
y = m∂α+1j

y ,

∂xi
·m∂α

y = (∂xi
m)∂α

y −
m∑

j=1

∂fj

∂xi
m∂α+1j

y .

(4) Show that DY←X⊗DX
M is isomorphic to the complex Ωn+m+•

X ⊗OX
M [∂y]

with differential (−1)n+m▽ defined by

▽(ω ⊗m∂α
y ) = ∇(ω ⊗m)∂α

y −
∑

j

dfj ∧ ω ⊗m∂α+1j
y ,
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where ∇ : Ωk
X ⊗M → Ωk+1

X ⊗M is the differential of the de Rham complex
(see Exercise 1.1.10), and with left f−1DY structure given by

yj(ω ⊗m∂α
y ) = ω ⊗ fjm∂

α
y − ω ⊗m[∂α

y , fj ],
∂yj (ω ⊗m∂α

y ) = ω ⊗m∂α+1j
y .

Exercise 4.3.11 (Direct image of induced D-modules, see [Sai89a, Lemma 3.2])
Let L be an OX -module and let L ⊗OX

DX be the associated induced right DX -
module. Let f : X → Y be a holomorphic map. Show that f†(L ⊗OX

DX) is quasi-
isomorphic to Rf!L ⊗OY

DY . [Hint: use that L ⊗OX
Sp•

X→Y (DX)→ L ⊗OX
DX→Y

is a quasi-isomorphism as DX is OX -locally free, and use the projection formula.]

Exercise 4.3.12 (Direct image of D-modules and direct image of O-modules)
Let f : X → Y be a holomorphic map and let M be a right DX -module. It is also

an OX -module. The goal of this exercise is to exhibit natural OY -linear morphisms

Rif∗M −→H if+M and Rif!M −→H if†M .

(1) Show that DX ⊗f−1OY
f−1DY has a natural global section 1.

(2) Show that there is a natural f−1OY -linear morphism of complexes

M −→M ⊗DX
Sp•

X→Y (DX), m 7−→ m⊗ 1,

where M is considered as a complex with M in degree 0 and all other terms
equal to 0, so the differential are all equal to 0. [Hint: use Exercise 1.2.8(3)
to identify Sp0

X→Y (DX) = f+DY ⊗OX
DX with DX ⊗OX

f+DY equipped with
its trivial left DX structure, and then identify M ⊗DX

(DX ⊗OX
f+DY ) with

M ⊗OX
f+DY = M ⊗f−1OY

f−1DY .]
(3) Conclude with the existence of the desired morphisms.

4.4. Direct images of differential complexes

We wish to define, in this section, the direct images as functors

fDiff †, fDiff + : D+(OX ,DiffX) −→ D+(OY ,DiffY ).

These functors should make the following natural diagrams to commute up to func-
torial isomorphism:

(4.4.1)

D+(DX)

f†
��

DRX // D+(OX ,DiffX)
diffDR-1

X

oo

fDiff †
��

Forget
// D+(CX)

Rf! = f! God•

��

D+(DY )
DRY // D+(OY ,DiffY )

diffDR-1
Y

oo
Forget

// D+(CY )

and a similar diagram for fDiff +.
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Let M = L ⊗OX
DX be an induced DX -module. Recall that, after Exercise 4.3.11,

we have

M ⊗DX
Sp•

X→Y (DX) = M ⊗DX
DX→Y = L ⊗f−1OY

f−1DY .

Let L ,L ′ be two OX -modules and let u : L → L ′ be a differential morphism. Let
v : M = L ⊗OX

DX →M ′ = L ′⊗OX
DX be the corresponding DX -linear morphism

(see Lemma 3.2.9). It defines a f−1DY -linear morphism v ⊗ 1 : M ⊗DX
DX→Y →

M ′ ⊗DX
DX→Y , where 1 is the section introduced in Exercise 4.3.12(1). This is

therefore a morphism ṽ : L ⊗f−1OY
f−1DY → L ′ ⊗f−1OY

f−1DY .

Proposition 4.4.2 ([Sai89a]). Under these conditions, we have H 0 DRY (ṽ) = u.

In other words, M(OX ,DiffX) is a subcategory of M(OX ,DiffY ).

Proof. We keep notation of the beginning of § 3.2. The problem is local, so that we
can use coordinates on X and Y and write f = (f1, . . . , fm). Let ℓ be a local section
of L , and let 1X be the unit of DX . Then, v(ℓ⊗ 1X) = w(ℓ) =

∑
α w(ℓ)α ⊗ ∂α

x and
ṽ(ℓ⊗ 1X) = v(ℓ⊗ 1X)⊗ 1X→Y . If αi ̸= 0, we have

∂αi
xi
⊗ 1X→Y = ∂αi−1

xi

∑
j

∂fj

∂xi
⊗ ∂yj

.

The image of ṽ(ℓ⊗1X) by the map L ⊗f−1OY
f−1DY → L is therefore equal to the

image of w(ℓ)0, which is nothing but u(ℓ) by definition of u.

Let L • be a differential complex on X, i.e., an object of C+(OX ,DiffX). It is
therefore also an object of C+(OX ,DiffY ) and we have (see Exercise 3.3.14) a quasi-
isomorphism in this category:

DRY
diffDR-1

Y L • ∼−→ L •
.

We define the functor fDiff † from C+(OX ,DiffX) to C+(OY ,DiffY ) as the composite
f! DRY God• diffDR-1

Y = f! God• DRY
diffDR-1

Y .

Corollary 4.4.3. If L • is DiffX-acyclic, i.e., if diffDR-1
X L • is acyclic, then fDiff †L

•

is DiffY -acyclic. The functor fDiff † can be extended as a functor from the derived
category D+(OX ,DiffX) to D+(OY ,DiffY ) and the following diagrams commutes up
to functorial isomorphisms:

D+(DX)

f†
��

D+(OX ,DiffX)
diffDR-1

Xoo

fDiff †
��

Forget
// D+(CX)

Rf! = f! God•

��

D+(DY ) D+(OY ,DiffY )
diffDR-1

Yoo
Forget

// D+(CY ).
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Proof. By Proposition 4.4.2 and Exercise 4.3.11, we have by definition
diffDR-1

Y L • = (diffDR-1
X L •)⊗DX

Sp•
X→Y (DX).

Hence, f† diffDR-1
X L • = f! God• diffDR-1

Y L • and therefore

fDiff †L
• = DRY f†

diffDR-1
X L •

.

If L • is DiffX -acyclic, then f†
diffDR-1

X L • is acyclic, so fDiff †L
• is DiffY -acyclic.

The other points are then left to the reader.

Using the isomorphisms diffDR-1
X DRX → Id and diffDR-1

Y DRY → Id, we get the
essential commutativity of the diagram

D+(DX)

f†
��

DRX // D+(OX ,DiffX)

fDiff †
��

D+(DY )
DRY // D+(OY ,DiffY ).

We also get:

Corollary 4.4.4 (Compatibility of direct images with the de Rham functor)
Let M right be a right DX-module or, more generally, an object of D+(DX). Let

f : X → Y be a holomorphic map. Then there is a functorial canonical isomorphism
pDRY f†M

right ∼−→ Rf!
pDRX M right.

If f is proper on Supp M right or if M right has DX-coherent cohomology, there is a
similar isomorphism with f+ and Rf∗.

Notice that this corollary can also be obtained directly, by applying the proof of
Theorem 4.3.5(1) with Z = pt and forgetting g! in the proof.

4.5. Direct image of currents

Let φ be a C∞ form of maximal degree on X. If f : X → Y is a proper holomorphic
map which is smooth, then the integral of φ in the fibres of f is a C∞ form of maximal
degree on Y , that one denotes by

∫
f
φ.

If f is not smooth, then
∫

f
φ is only defined as a current of maximal degree on Y ,

and the definition extends to the case where φ is itself a current of maximal degree
on X (see § 1.3.e for the notion of current).

Exercise 4.5.1. Extend the notion and properties of direct image of a right (resp. left)
DX,X -module, by introducing the transfer module DX→Y,X→Y = DX→Y ⊗C DX→Y .
One denotes these direct images by f++ or f††.
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Definition 4.5.2 (Integration of currents of maximal degree)
Let f : X → Y be a proper holomorphic map and let T be a current of maximal

degree on X. The current
∫

f
T of maximal degree on Y is defined by〈 ∫

f

T, φ
〉

= ⟨T, φ ◦ f⟩.

We continue to assume that f is proper. We will now show how the integration of
currents is used to defined a natural DY,Y morphism H 0f++ CX → CY . Let us first
treat as an exercise the case of a closed embedding.

Exercise 4.5.3. Assume that X is a closed submanifold of Y and denote by f : X ↪→ Y

the embedding (which is a proper map). Denote by 1 the canonical section of
DX→Y,X→Y . Show that the natural map

H 0f++ CX = f∗
(
CX ⊗D

X,X
DX→Y,X→Y

)
−→ CY , T ⊗ 1 7−→

∫
f

T

induces an isomorphism of the right DY,Y -module H 0f++ CX with the submodule
of CY consisting of currents supported on X. [Hint: use a local computation.]

By going from right to left, identify H 0f++ DbX with the sheaf of distributions
on Y supported on X.

Denote by Dbn−p,n−q
X or DbX,p,q the sheaf of currents of degree p, q, which are

linear forms on C∞ differential forms of degree p, q. The integration of currents is a
morphism ∫

f

: Dbn−p,n−q
X −→ Dbm−p,m−q

Y ,

if m = dimY and n = dimX, which is compatible with the d′ or d′′ differential of
currents on X and Y .

Exercise 4.5.4
(1) Show that the complex f++ CX is quasi-isomorphic to the single complex
associated to the double complex f∗(Dbn−•,n−•

X ⊗O
X,X

DX→Y,X→Y ). [Hint: use
Exercise 4.3.10(1).]
(2) Show that the integration of currents

∫
f

induces a DY,Y -linear morphism of
complexes ∫

f

: f++ CX −→ CY ⊗D
Y,Y

Sp•,•

Y→Y,Y→Y
≃ CY .

4.6. The Gauss-Manin connection

Let M be a left DX -module and let f : X → Y be a holomorphic mapping.
On the one hand, one may define the direct images f+M or f†M of M viewed as
a DX -modules. These are objects in D+(DY )left. On the other hand, it is possible,
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when f is a smooth holomorphic mapping, to define a flat connection, called the Gauss-
Manin connection on the relative de Rham cohomology of M . We will compare both
constructions, when f is smooth. Such a comparison has yet been done when f is the
projection of a product X = Y ×Z → Z (see Example 4.3.2(3) and Remark 4.3.4(3)).

Let us begin with the Gauss-Manin connection. We assume in this section that
f : X → Y is a smooth holomorphic map. We set n = dimX, m = dimY and
d = n −m (we assume that X and Y are pure dimensional, otherwise one works on
each connected component of X and Y ).

Consider the Kozsul filtration L• on the complex (Ωn+•
X , (−1)nd), defined by

Lp Ωn+i
X = Im(f∗Ωm+p

Y ⊗OX
Ωd+i−p

X −→ Ωn+i
X ).

Exercise 4.6.1

(1) Show that the Kozsul filtration is a decreasing finite filtration and that it is
compatible with the differential.
(2) Show that, locally, being in Lp means having at least m + p factors dyi in
any summand.

Then, as f is smooth, we have (by computing with local coordinates adapted to f),

grp
LΩn+i

X = f∗Ωm+p
Y ⊗OX

Ωd+i−p
X/Y ,

where Ωk
X/Y is the sheaf of relative differential forms: Ωk

X/Y = ∧kΩ1
X/Y and Ω1

X/Y =
Ω1

X

/
f∗Ω1

Y . Notice that Ωk
X/Y is OX -locally free.

Let M be a left DX -module or an object of D+(DX)left. As f is smooth, the
sheaf DX/Y of relative differential operators is well defined and, composing the flat
connection ∇ : M → Ω1

X ⊗OX
M with the projection Ω1

X → Ω1
X/Y , we get a relative

flat connection ∇X/Y on M , and thus the structure of a left DX/Y -module on M . In
particular, the relative de Rham complex is defined as

pDRX/Y M = (Ωd+•

X/Y ⊗OX
M ,∇X/Y ).

We have pDRX M = (Ωn+•
X ⊗OX

M ,∇) (see Definition 1.4.1) and the Kozsul filtration
Lp Ωn+•

X ⊗OX
M is preserved by the differential∇ (recall that being in Lp means having

at least m+p factors dyi in any summand). We may therefore induce the filtration L•

on the complex pDRX M . We then have an equality of complexes

grp
L

pDRX M = f∗Ωm+p
Y ⊗OX

pDRX/Y M [−p].

Notice that the differential of these complexes are f−1OY -linear.
The complex f∗God• pDRX M (resp. the complex f! God• pDRX M ) is filtered by

subcomplexes f∗God• Lp pDRX M (resp. f! God• Lp pDRX M ). We therefore get a
spectral sequence (the Leray spectral sequence in the category of sheaves of C-vector
spaces, see, e.g. [God64]). Using the projection formula for f! and the fact that Ωm+p

Y
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is OY -locally free, one obtains that the E1 term for the complex f! God• pDRX M is
given by

Ep,q
1,! = Ωm+p

Y ⊗OY
Rqf!

pDRX/Y M ,

and the spectral sequence converges to (a suitable graded object associated with)
Rp+qf!

pDRX M . If f is proper on Supp M or if M has DX -coherent cohomology,
one may also apply the projection formula to f∗ (see [MN93, § II.5.4]).

By definition of the spectral sequence, the differential d1 : Ep,q
1 → Ep+1,q

1 is the
connecting morphism (see Exercise 4.6.2 below) in the long exact sequence associated
to the short exact sequence of complexes

0 −→ grp+1
L

pDRX M −→ Lp pDRX M
/

Lp+2 pDRX M −→ grp
L

pDRX M −→ 0

after applying f! God• (or f∗God• if one of the previous properties is satisfied).

Exercise 4.6.2 (The connecting morphism). Let 0 → C•
1 → C•

2 → C•
3 → 0 be an exact

sequence of complexes. Let [µ] ∈ HkC•
3 and choose a representative in Ck

3 with
dµ = 0. Lift µ as µ̃ ∈ Ck

2 .

(1) Show that dµ̃ ∈ Ck+1
1 and that its differential is zero, so that the class

[dµ̃] ∈ Hk+1C•
1 is well defined.

(2) Show that δ : [µ] 7→ [dµ̃] is a well defined morphism HkC•
3 → Hk+1C•

1 .

(3) Deduce the existence of the cohomology long exact sequence, having δ as
its connecting morphism.

Lemma 4.6.3 (The Gauss-Manin connection). The morphism

∇GM := d1 : Rqf!
pDRX/Y M = E−m,q

1 −→ E−m+1,q
1 = Ω1

Y ⊗OY
Rqf!

pDRX/Y M

is a flat connection on Rqf!
pDRX/Y M , called the Gauss-Manin connection and the

complex (E•,q
1 , d1) is equal to the de Rham complex pDRY (Rqf!

pDRX/Y M ,∇GM).

Sketch of proof of Lemma 4.6.3. Instead of using the Godement resolution, one may
use C∞ differential forms E •

X . One considers the complex E n+•
X ⊗OX

M , with the
differential D defined by

D(φ⊗m) = (−1)ndφ⊗m+ (−1)kφ ∧∇m,

if φ is a local section of E n+k
X (k ⩽ 0). This C∞ de Rham complex is quasi-isomorphic

to the holomorphic one, and is equipped with the Kozsul filtration. The quasi-
isomorphism is strict with respect to L•. One may therefore compute with the C∞
de Rham complex.

Choose a partition of unity (χα) such that f is locally a product on a neighbourhood
of Suppχα for any α.
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Let η ∧ (φ ⊗m) be a section of E m+p
Y ⊗ f!(E d+q

X/Y ⊗M ). In the neighbourhood of
Suppχα, we can choose a decomposition D = D

(α)
Y +D

(α)
X/Y . As

∑
α χα ≡ 1, we have

d1[η ∧ (φ⊗m)] =
∑

α

χαd1[η ∧ (φ⊗m)] =
∑

α

χαD
(α)
Y [η ∧ (φ⊗m)]

=
∑

α

χα

[
(−1)mdη ∧ (φ⊗m) + (−1)rη ∧ (φ∇(α)

Y m)
]
,

for a suitable r. One gets the desired result by a local computation.

This lemma shows in particular that the E1 complex is a complex in C+(OY ,DiffX),
and diffDR-1

Y (E•,q
1 , d1) ≃ (Rqf!

pDRX/Y M ,∇GM)right.

Theorem 4.6.4. Let f : X → Y be a smooth holomorphic map and let M be left
DX-module—or more generally an object of D+(DX)left. Then there is a functorial
isomorphism of left DY -modules

Rkf!
pDRX/Y M −→H kf†M

when one endows the left-hand term with the Gauss-Manin connection ∇GM. The
same result holds for f+ instead of f† if f is proper on Supp M or M is DX-coherent
(or has coherent cohomology).

Proof. Recall that, for a left DX -module M , we have

M right ⊗DX
Sp•

X→Y (DX) ≃ Ωn+•
X (M ⊗OX

DX→Y ),

so that the direct image of M is

f†M = f! God• DRX(M ⊗OX
DX→Y ) = f! DRX((God•

M )⊗OX
DX→Y ),

by using Exercise 1.4.15(1). There is a Kozsul filtration L• DRX(M ⊗OX
DX→Y ).

Notice that grp
L DRX(M ⊗OX

DX→Y ) is equal to the complex

f∗Ωm+p
Y ⊗OX

pDRX/Y M ⊗f−1OY
f−1DY [−p],

with differential induced by ∇X/Y on M (remark that the part of the differential
involving T ∗f is killed by taking grp

L). The differential is now f−1OY -linear.
The filtered complex f! L• DRX(M ⊗OX

DX→Y ) gives rise to a spectral sequence
in the category of right DY -modules. By the previous computation, the Ep,q

1 term
of this spectral sequence is an induced DY -module, equal to diffDR-1

Y of the corre-
sponding Gauss-Manin term. We will show below that the differential d1 becomes
the Gauss-Manin d1 after applying H 0 DRY . This will prove that the Gauss-Manin
E1 complex is equal to DRY of the E1 complex of DY -modules, i.e., this complex
is isomorphic to diffDR-1

Y of the Gauss-Manin E1 complex. By Lemma 4.6.3 and
the remark after its proof, the E1 complex of the DY -Leray spectral sequence has
therefore cohomology in degree 0 only, hence this spectral sequence degenerates at
E2, this cohomology being equal to (Rqf!

pDRX/Y M ,∇GM)right. But the spectral
sequences converges (the Kozsul filtration is finite) and its limit is ⊕pgrpH qf†M for
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some suitable filtration on H qf†M . We conclude that this implicit filtration is trivial
and that H qf†M = (Rqf!

pDRX/Y M ,∇GM)right.
Let us now compare the d1 of both spectral sequences. As the construction is clearly

functorial with respect to M , we can assume that M is flabby, by replacing M by
Godℓ M for any ℓ. It is also enough to make the computation locally on Y , so that
we can write f = (f1, . . . , fm), using local coordinates (y1, . . . , ym). If µ is a section
of Ωn+k

X ⊗M and 1Y is the unit of DY , then (4.2.1) can be written as

∇X(µ⊗ 1Y ) = (∇µ)⊗ 1Y +
m∑

j=1
µ ∧ dfj ⊗ ∂yj .

Using the definition of d1 given by Exercise 4.6.2 and an argument similar to that of
Proposition 4.4.2, one gets the desired assertion.

4.7. Coherence of direct images

Let f : X → Y be a holomorphic map and M be a DX -module. We say that M

is f -good if there exists a covering of Y by open sets Vj such that M is good on each
f−1(Vj). As we indicated in Remark 2.2.7, any holonomic DX -module is good with
respect to any holomorphic map.

Theorem 4.7.1. Let M be a f -good DX-module. Assume that f is proper on the support
of M . Then f†M = f+M has DY -coherent cohomology.

This theorem is an application of Grauert’s coherence theorem for OX -modules,
and this is why we restrict to f -good DX -modules. In general, it is not known
whether the theorem holds for any coherent DX -module or not. Notice, however,
that one may relax the geometric condition on f| Supp M (properness) by using more
specific properties of D-modules: as we have seen, the characteristic variety is a
finer geometrical object attached to the D-module, and one should expect that the
right condition on f has to be related with the characteristic variety. The most
general statement in this direction is the coherence theorem for elliptic pairs, due to
P. Schapira and J.-P. Schneiders [SS94]. For instance, if X is an open set of X ′ and f
is the restriction of f ′ : X ′ → Y , and if the boundary of X is f -noncharacteristic with
respect to M (a relative variant of Definition 2.6.1) then the direct image of M has
DY -coherent cohomology.

Proof of Theorem 4.7.1. As the coherence property is a local property on Y , the state-
ment one proves is, more precisely, that the direct image of a good DX -module M

is a good DY -module when f is proper on Supp M . By an extension argument, it is
even enough to assume that M has a good filtration and show that, locally on Y , the
cohomology modules of f†M have a good filtration.
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First step: induced D-modules. Assume that M = L ⊗OX
DX and L is OX -coherent.

By Exercise 4.3.10, it is enough to prove that the cohomology of Rf!L is OY -coherent
when f is proper on Supp L : this is Grauert’s Theorem.

Second step: finite complexes of induced D-modules. Let L• ⊗OX
DX be a finite

complex of induced DX -modules. Recall that its direct image complex was defined
in Remark 4.3.4(3). Assume that f restricted to the support of each term is proper.
Using Exercise 2.2.1(2) and Artin-Rees (Corollary 2.2.13), one shows by induction on
the length of the complex that the cohomology modules of f†(L• ⊗OX

DX) have a
good filtration.

Third step: general case. Fix a compact set K of Y . We will show that the co-
homology modules of f†M have a good filtration in a neighbourhood of K. Fix a
good filtration F•M of M . As f−1(K) ∩ Supp M is compact, there exists k such
that L 0 := FkM generates M as a DX -module in some neighbourhood of f−1(K).
Hence L 0 is a coherent OX -module with support contained in Supp M and we have
a surjective morphism L 0 ⊗OX

DX → M in some neighbourhood of f−1(K) that
we still call X. The kernel of this morphism is therefore DX -coherent, has support
contained in Supp M and, by Artin-Rees (Corollary 2.2.13), has a good filtration.

The process may therefore be continued and leads to the existence, in some neigh-
bourhood of K, of a (maybe infinite) resolution L −• ⊗OX

DX by coherent induced
DX -modules with support contained in Supp M .

Fix some ℓ and stop the resolution at the ℓ-th step. Denote by N −• this bounded
complex and by M ′ the kernel of N −ℓ → N −ℓ+1. We have an exact sequence of
complexes

0 −→M ′[ℓ] −→ N −• −→M −→ 0,
where M is considered as a complex with only one term in degree 0, and M ′[ℓ] a
complex with only one term in degree −ℓ. This sequence induces a long exact sequence

· · · −→H j+ℓ(f†M ′) −→H j(f†N −•) −→H j(f†M ) −→H j+ℓ+1(f†M ′) −→ · · ·

Recall (see Remark 4.3.4(4)) that H j(f†M ) = 0 for j ̸∈ [−dimX, 2 dimX]. Choose
then ℓ big enough so that, for any j ∈ [−dimX, 2 dimX], both numbers j + ℓ and
j+ℓ+1 do not belong to [−dimX, 2 dimX]. With such a choice, we have H j(f†M ) ≃
H j(f†N −•) for j ∈ [−dimX, 2 dimX] and H j(f†M ) = 0 otherwise. By the second
step, H j(f†M ) has a good filtration in some neighbourhood of K.

4.8. Kashiwara’s estimate for the behaviour of the characteristic variety

Let M be a coherent DX -module with characteristic variety Char M . Let f : X →
Y be a holomorphic map and assume that the cohomology modules H j(f†M ) are
DY -coherent (for instance, assume that all conditions in Theorem 4.7.1 are fulfilled).
Is it possible to give an upper bound of the characteristic variety of each H j(f†M )
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in terms of that of M ? There is such an estimate which is known as Kashiwara’s
estimate.

The most natural approach to this question is to introduce the sheaf of microdiffer-
ential operators and to show that the characteristic variety is nothing but the support
of the microlocalized module associated with M . The behaviour of the support of
a microdifferential module with respect to direct images is then easy to understand
(see, e.g. [Bjö79, Mal93, Bjö93] for such a proof, see [SS94] for a very general
result and [Lau85] for an algebraic approach).

Nevertheless, we will not introduce here microdifferential operators (see however
[Sch85] for a good introduction to the subject). Therefore, we will give a direct proof
of Kashiwara’s estimate.

This estimate may be understood as a weak version of a general Riemann-Roch
theorem for DX -modules (see, e.g. [Sab97] and the references given therein).

Let f : X → Y be a holomorphic map. We will consider the following associated
cotangent diagram:

T ∗X
T ∗f←−−−−− f∗T ∗Y f−−−→ T ∗Y.

Theorem 4.8.1 (Kashiwara’s estimate for the characteristic variety)
Let M be a f -good DX-module such that f is proper on Supp M . Then, for any

j ∈ Z, we have
Char H j(f†M ) ⊂ f

(
(T ∗f)−1(Char M )

)
.

Exercise 4.8.2. Explain more precisely this estimate when f is the inclusion of a closed
submanifold.

Sketch of proof. As in the proof of Theorem 4.7.1, we first reduce to the case where M

has a good filtration F•M .
Notice first that it is possible to define a functor f† for grF DX -modules, by the

formula f†(•) = Rf!(L(T ∗f)∗(•)). Moreover, the inverse image (T ∗f)∗ is nothing but
the tensor product ⊗f−1OY

grF DY . We therefore clearly have the inclusion

Supp H jf†grF M ⊂ f
(
(T ∗f)−1(Supp grF M )

)
= f

(
(T ∗f)−1(Char M )

)
.

The problem consists now in understanding the difference between f†grF and grF f†.
In order to analyse this difference, we will put M and grF M in a one parameter
family, i.e., we will consider the associated Rees module.

One then defines direct images of RF DX -modules, still denoted by f†, and shows
the RF analogue of Theorem 4.7.1. Therefore, f†RF M has RF DY -coherent coho-
mology. One has to be careful that the cohomology of f†RF M may have z-torsion,
hence does not take the form RF of something. Nevertheless, as H j(f†RF M ) is
RF DY -coherent,

• the kernel sequence Ker
[
zℓ : H j(f†RF M ) → H j(f†RF M )

]
is locally sta-

tionary,
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• the quotient of H j(f†RF M ) by its z-torsion (i.e., locally by Ker zℓ for ℓ
big enough) is RF DY -coherent, hence is the Rees module associated with some
good filtration F• on H j(f†M ).

Consider the exact sequence

· · · −→H j(f†RF M ) zℓ

−−−→H j(f†RF M ) −→H j
(
f†(RF M /zℓRF M )

)
−→ · · ·

Then,
• H j(f†RF M )

/
zℓH j(f†RF M ) is a submodule of H j

(
f†(RF M /zℓRF M )

)
• and, on the other hand, if ℓ is big enough, RF H j(f†M )/zℓH j(f†M ) is a

quotient of H j(f†RF M )
/
zℓH j(f†RF M ).

For ℓ ⩾ 1, let us denote by grF
[ℓ] the grading with step ℓ, namely

⊕
k Fk/Fk−ℓ, and

let us define f+ for grF
[ℓ]DX -modules in a way similar to what is done for DX -modules.

The conclusion is that grF
[ℓ]H

j(f†M ) is a grF
[ℓ]DY -submodule of H j(f†grF

[ℓ]M ).
The sheaf of rings grF

[ℓ]DX is filtered by the finite filtration GjgrF
[ℓ]DX =⊕

k Fk+j−ℓDX/Fk−ℓDX , and there is the notion of a G-filtration of a grF
[ℓ]DX -

module (these filtrations should be finite). Moreover, grGgrF
[ℓ]DX ≃ grFDX [u]/uℓ

by suitably defining the grading on the left-hand term. Given a coherent grF
[ℓ]DX -

module, the graded module with respect to any G-filtration is grFDX [u]/uℓ-coherent,
hence grFDX -coherent, and its support as such does not depend on the choice of such
a filtration (same proof as that for the characteristic variety, in a simpler way).

Since the filtration G• is finite, there is a finite spectral sequence having E2
term equal to H j(f†grGgrF

[ℓ]M ) = H j(f†grFM [u]/uℓ) ≃ H j(f†grFM )ℓ abutting
to grGH j(f†grF

[ℓ]M ) for a suitable G-filtration on H j(f†grF
[ℓ]M ). It follows that the

support of grGH j(f†grF
[ℓ]M ) is contained in f̃

(
(T ∗f)−1(Char M )

)
.

The filtration G•H j(f†grF
[ℓ]M ) induces in a natural way a G-filtration on any

submodule and any quotient of it, and therefore on grF
[ℓ]H

j(f†M ). The sup-
port of grGgrF

[ℓ]H
j(f†M ) as a grF DX -module is therefore included in that of

grGH j(f†grF
[ℓ]M ), hence in f̃

(
(T ∗f)−1(Char M )

)
. Now, as already remarked, as

grF DX -modules we have grGgrF
[ℓ]H

j(f†M ) ≃
(
grF H j(f†M )

)ℓ, which has the same
support as grF H j(f†M ), that is, Char H j(f†M ).



LECTURE 5

HOLONOMIC DX-MODULES

5.1. Motivation: division of distributions

Let f ∈ C[x1, . . . , xn] be a non-zero polynomial. In general the function 1/f is not
locally integrable, hence does not define a distribution on Cn.

Question. Does there exist a distribution T on Cn (or, better, a temperate distribu-
tion) such that f · T = 1? (More generally, given any distribution (resp. temperate
distribution) S on Cn, does there exists a distribution (resp. temperate distribution) T
such that fT = S.)

The solution given by J. Bernstein [Ber72] proceeds along the following steps.
(1) For s ∈ C such that Re s ⩾ 0, the function |f |2s is continuous, hence defines
a distribution Ts on Cn: for each test (n, n)-form φ ∈ C∞c (Cn)dx ∧ dx, set

Ts(φ) =
∫
|f |2sφ.

One reduces the question to prove that, for each φ, the holomorphic function
s 7→ Ts(φ) on the half plane Re s > 0 extends as a meromorphic function on C.
One also shows that, denoting by S(φ) the constant term in the Laurent expan-
sion of Ts(φ) at s = −1, the correspondence φ 7→ S(φ) defines a distribution
(i.e., a continuous linear form on test (n, n)-forms). Lastly, |f |2S(φ) = S(|f |2φ)
is seen to be equal to the constant term of the Laurent expansion of Ts(φ) at
s = 0. This is nothing but

∫
φ. In other words, |f |2S = 1, hence T := fS is a

solution to fT = 1.
(2) In order to obtain the meromorphic extension of s 7→ Ts(φ), one looks
for a pair of differential operators P ∈ C[s][x]⟨∂x⟩ and Q ∈ C[s][x]⟨∂x⟩ and
polynomials b′(s), b′′(s) ∈ C[s] such that

b′(s)|f |2s = P · |f |2sf,

b′′(s)|f |2s = Q · |f |2sf.
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Assume P,Q, b′, b′′ are found. Then, for Re s > 0,

b′(s)
∫
|f |2sφ =

∫
(P |f |2sf)φ =

∫
|f |2sfP ∗φ,

where P ∗ denotes the adjoint differential operator (the previous formula corre-
sponds to an iteration of integrations by parts). Therefore,

b′′(s)b′(s)
∫
|f |2sφ = b′′(s)

∫
|f |2sfP ∗φ =

∫
(Q|f |2sf)fP ∗φ =

∫
|f |2(s+1)ψ,

where ψ = Q∗P ∗φ. The right-hand term is holomorphic on Re s > −1, and
thus the expression

1
b′(s)b′′(s)

∫
|f |2(s+1)ψ

is a meromorphic function on Re s > −1 which coincides with
∫
|f |2sφ on

Re s > 0. Iterating this process gives the desired meromorphic extension.
(3) It remains to find P,Q, b′, b′′. Let us try to find P and b′. Then Q and b′′

are obtained similarly, by working with x and ∂x. Consider the ring of dif-
ferential operators C(s)[x]⟨∂x⟩. We wish to find P̃ ∈ C(s)[x]⟨∂x⟩ such that
P̃ |f |2sf = |f |2s (we then get P, b′ by eliminating denominators in P̃ ). Note
that C(s)[x, 1/f ] · |f |2s is naturally a left C(s)[x]⟨∂x⟩-module.

The main observation of Bernstein is that this C(s)[x]⟨∂x⟩-module has finite
length. This means that any decreasing sequence of submodules is stationary.

Consider the decreasing sequence consisting of C(s)[x]⟨∂x⟩-submodules Mj

of C(s)[x, 1/f ] · |f |2s generated by f j |f |2s (j ⩾ 0). There exists therefore
k ⩾ 1 such that fk|f |2s ∈Mk+1, hence there exists P̃k ∈ C(s)[x]⟨∂x⟩ such that
fk|f |2s = P̃kf

k+1|f |2s. Multiplying by fk and using that P̃k is holomorphic,
we get |f |2(s+k) = P̃kf |f |2(s+k). We can change the variable s to s − k to get
the desired relation.

The property that C(s)[x, 1/f ] · |f |2s has finite length as a C(s)[x]⟨∂x⟩-module is
the main property used, which follows from a finer property called holonomy, con-
cerning dimension. In the next sections, we make explicit this notion in the analytic
framework. We come back to the algebraic framework at the end of §5.4.

Exercise 5.1.1. Let f(x1, . . . , xn) = xm1
1 · · ·xmn

n , mj ∈ N. Show that[ n∏
i=1

mi∏
k=1

(mis+ k)
]
· |f |2s =

[
∂m1

x1
· · · ∂mn

xn

]
(f |f |2s).

Exercise 5.1.2. Consider the quadratic form

f(x1, . . . , xn) = a1x
2
1 + · · ·+ anx

2
n

with ai ̸= 0 for each i. By using

∂2
xi

(f |f |2s) = 2ai(s+ 1)
(
|f |2s + 2s(aix

2
i )|f |2(s−1)f

)
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show that

4(s+ 1)(s+ n/2)|f |2s =
( ∑

i

∂2
xi

ai

)
(f |f |2s).

Exercise 5.1.3. Consider the semi-cubic parabola

f(x1, x2) = x2
1 + x3

2.

Show the following relations

∂2
x1

(f |f |2s) = 2(s+ 1)
(
|f |2s + 2sx2

1|f |2(s−1)f
)

∂2
x2

(f |f |2s) = 3(s+ 1)x2
(
2|f |2s + 3sx3

2|f |2(s−1)f
)
.

Deduce that
(9x2∂

2
x1

+ 4∂2
x2

)(f |f |2s) = 6(s+ 1)(6s+ 7)x2|f |2s

and then(
∂x2(9x2∂

2
x1

+ 4∂2
x2

)
)
(f |f |2s) = 6(s+ 1)(6s+ 7)

(
|f |2s + 3sx3

2|f |2(s−1)f
)
.

As in the previous exercise, show that

(6s+ 5)(6s+ 6)(6s+ 7)|f |2s =
(
9(6s+ 7)∂2

x1
+ 2∂x2(9x2∂

2
x1

+ 4∂2
x2

)
)
(f |f |2s).

Notice that the operator P (s,x, ∂x) depends on s.

5.2. First properties of holonomic DX-modules

We consider a complex analytic manifold X of pure dimension n and we introduce
in this general setting the notion of holonomic DX -module.

Definition 5.2.1. A coherent DX -module is said to be holonomic if its characteristic
variety Char M has dimension dimX.

It follows from the involutiveness theorem 2.5.3 that, if M is holonomic, Char M

is a Lagrangean conical subspace of T ∗X.
Let us recall a result on conical Lagrangean subspaces of T ∗X. Denote by π :

T ∗X → X the canonical projection. Let Y be a closed analytic subset of X and Yo

the smooth part of Y . The conormal bundle T ∗Yo
X ⊂ T ∗X is the following vector

subbundle of T ∗X:

T ∗Yo
X = {v ∈ T ∗X | p = π(v) ∈ Yo and v annihilates TpY }.

The conormal space of Y , denoted by T ∗Y X, is by definition the closure in T ∗X of
T ∗Yo

X. We say that a subspace V of T ∗X is conical if (x, ξ) ∈ V ⇒ (x, λξ) ∈ V , for
any λ ∈ C.
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Lemma 5.2.2. If V ⊂ T ∗X is an analytic conical and Lagrangean subset of T ∗X, then
there exists a locally finite set (Yα)α∈A of closed irreducible analytic subsets of Y such
that V =

⋃
α T
∗
Yα
X. Moreover, the Yα ⊂ X are the projections of the irreducible

components of V .

As a consequence, if M is holonomic, there exists a locally finite family (Yα) of
irreducible closed analytic subset of X such that Char M =

⋃
α T
∗
Yα
X, and if we know

Char M , we can recover the sets Yα as the projections of the irreducible components
of Char M .

Examples 5.2.3

(1) OX is a holonomic DX -module and Char OX = T ∗XX.

(2) For any smooth hypersurfaceH ofX, OX(∗H) is holonomic, Char OX(∗H)=
T ∗XX ∪ T ∗Y X.

(3) If n = 1, a DX -module is holonomic if and only if each local section of m is
annihilated by a non-zero differential operator.

(4) For n ⩾ 2, if P is a section of DX , the quotient DX/DXP is never holonomic.
Its characteristic variety is a hypersurface of T ∗X.

From Exercise 2.4.5 we get:

Corollary 5.2.4. In an exact sequence 0 → M ′ → M → M ′′ → 0 of coherent DX-
modules, M is holonomic if and only if M ′ and M ′′ are so.

Remark 5.2.5. It is possible to make this result more precise. One can attach to each
irreducible component of Char M a multiplicity, which is a strictly positive number.
This produces a cycle in T ∗X, that is, a linear combination of irreducible analytic
subsets of T ∗X with multiplicities. Then one can prove that the characteristic cycle
behaves in an additive way in exact sequences.

Corollary 5.2.6. A decreasing sequence M1 ⊃M2 ⊃ · · · of holonomic DX-modules is
locally stationary.

Proof. By considering the exact sequences 0 →Mj+1 →Mj →Mj/Mj+1 → 0, one
checks that the family of characteristic cycles is decreasing. In the neighbourhood of
a given compact set, we have a decreasing family of cycles with a finite number of
components and integral coefficients. It is therefore stationary. Now for j ≫ 0, the
characteristic cycle of Mj/Mj+1 is zero, hence this module is zero, so the sequence Mj

is stationary.

Corollary 5.2.7. Each holonomic DX-module has a Jordan-Hölder sequence which is
locally finite.
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Corollary 5.2.8 (of Th. 2.5.5). Let M be a coherent DX-module. Then M is holonomic
if and only if Ext i

DX
(M ,DX) = 0 for i ̸= n. In this case the natural right DX-module

Ext n
DX

(M ,DX) is a holonomic DX-module. The associated left DX-module is called
the dual of M .

5.3. Vector bundles with integrable connections

Let E be a locally free OX -module of finite rank r, equipped with an integrable
connection ∇ : E → Ω1

X ⊗OX
E .

Lemma 5.3.1 (Cauchy-Kowalevski’s theorem). In the neighbourhood of each point of X
there exist a local frame of E consisting of horizontal sections, i.e., annihilated by ∇.

This classical theorem is equivalent to the property that, as a vector bundle with
connection, (E ,∇) is locally isomorphic to (OX , d)r. As an immediate consequence,
the corresponding DX -module (see Proposition 1.1.11) has characteristic variety equal
to T ∗XX (see Example 5.2.3(1)), and is therefore holonomic. In fact the converse is
true (see Exercise 2.4.6).

What happens now if the connection has a pole along a hypersurface D ⊂ X? In
such a case, E (∗D) := OX(∗D) ⊗OX

E has an integrable connection, hence is a left
DX -module. Is it coherent, or holonomic, as such?

Theorem 5.3.2 (Kashiwara [Kas78]). Let M be a coherent DX-module. Assume that
M|X∖D is holonomic. Then M (∗D) is a holonomic (hence coherent) DX-module.

Note that the coherence property of M (∗D) is already not obvious. This theorem
extends the algebraic result of Bernstein used in §5.1 to the analytic setting.

Corollary 5.3.3. Let E be a locally free OX-module equipped with an integrable mero-
morphic connection, having poles along a hypersurface D ⊂ X. Then (E (∗D),∇)
defines a holonomic (hence coherent) DX-module.

Proof. We have E ⊂ E (∗D). Let us consider the DX -submodule M = DX ·E ⊂ E (∗D)
generated by E . Consider the filtration FkM = FkDX · E . The criterion of Exer-
cise 2.2.3(2) shows that it is a good filtration, hence M is DX -coherent. Moreover,
M|X∖D is the left DX -module associated with the holomorphic bundle E|X∖D with
holomorphic connection ∇|X∖D. From Kashiwara’s theorem 5.3.2 we conclude that
M (∗D) is DX -holonomic. But from the inclusions E ⊂M ⊂ E (∗D) we deduce that
M (∗D) = E (∗D).

The following converse holds.
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Theorem 5.3.4 (Malgrange [Mal94a, Mal94b, Mal96]). Let M be a holonomic DX-
module.

(1) If M|X∖D is a vector bundle with integrable connection, there exists a coher-
ent OX-module E equipped with an integrable meromorphic connection ∇ such
that M (∗D) = (E (∗D),∇).

(2) In general, M has a globally defined good filtration.

5.4. Direct images of holonomic DX-modules

Theorem 5.4.1 (Kashiwara [Kas76]). Let f : X → Y be a holomorphic map between
complex manifolds and let M be a holonomic DX-module. Assume that f| Supp M is
proper. Then the cohomology sheaves H j(f+M ) are holonomic.

Proof. Since M has a globally defined good filtration (Theorem 5.3.4), it is f -good,
and H j(f+M ) are coherent DY -module whose characteristic variety is controlled by
the estimate of Kashiwara (Theorem 4.8.1). The result is then a consequence of the
following geometric lemma.

Lemma 5.4.2. Let Λ = T ∗ZX be a Lagrangean closed analytic subvariety in T ∗X (i.e.,
Z is a closed analytic set in X). Then each irreducible component of f̃

(
(T ∗f)−1Λ

)
is isotropic in T ∗Y .

Assume that the lemma is proved. It follows that each irreducible component of
f̃

(
(T ∗f)−1 Char M

)
is isotropic. As a consequence, according to Kashiwara’s esti-

mate, each irreducible component of Char H j(f+M ) is isotropic. Since such a com-
ponent is also involutive (Theorem 2.5.3), it is therefore Lagrangean, so H j(f+M )
is holonomic.

Proof of Lemma 5.4.2. It is convenient to decompose f in the following way:

f : X
x
↪
if−−−→ X × Y

(x,f(x))

p2−−−→ Y
f(x)

and we are reduced to showing the lemma when f is an inclusion (like if ) and when f is
a submersion (like p2). The first case is easy, and we will only consider the second one.
We will use the following property, which follows from a theorem due to H. Whitney:
let Λ′ ⊂ Λ be to closed analytic subsets of T ∗X; if Λ is isotropic (i.e., ωX vanishes
when restricted to pairs of vectors tangent to the smooth part Λo), then Λ′ is also
isotropic.

Recall the basic diagram:

T ∗X
T ∗f =: ρ←−−−−−−−−↩ f∗T ∗Y

f̃−−→ T ∗Y

ωX ρ∗ωX = f̃∗ωY ωY
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Then ωX vanishes on any Λ′o ⊂ (Λ ∩ f∗T ∗Y ) (i.e., on any pair of vectors tangent
to Λ′o), hence so does ρ∗ωX , that is, f̃∗ωY . Argue now by contradiction: assume
there is an irreducible component ΛY of f̃((T ∗f)−1Λ) such that ωY ̸≡ 0 on Λo

Y ;
let Λ′ be an irreducible component of Λ ∩ f∗TY whose image by f̃ is ΛY ; then
f̃ : Λ′ → ΛY is generically a submersion; therefore, f̃∗ωY cannot vanish identically
on Λ′o, a contradiction.

Application to the proof of Theorem 4.1.5. The algebraic analogues of the previous
results are due to J. Bernstein (note however that the algebraic analogue of Mal-
grange’s theorem is much easier than the analytic one). We explain now how they
can be combined to obtain a proof of Theorem 4.1.5.

Firstly, GMk(f) is identified with the algebraic direct image H k−n(f+O(C∗)n).
Since f is not proper, one cannot apply the coherence and holonomy theorem.
However, choose a smooth quasi-projective variety X and a projective morphism
g : X → C such that (C∗)n is a dense Zariski open set of X whose complement is
a hypersurface D, and g|(C∗)n = f . Let i : (C∗)n ↪→ X denote the inclusion. Since
g ◦ i = f , we have

H k−n(f+O(C∗)n) = H k−n
(
g+(OX(∗D))

)
.

Since OX(∗D) is DX -holonomic, these DC-modules are holonomic, that is, GMk(f)
are holonomic. In particular (Exercise 5.2.3(3)), any section of GMk(f) is annihilated
by a non-zero differential operator.

5.5. The de Rham complex of a holonomic DX-module

Theorem 5.5.1. Let M be a holonomic DX-module. Then pDR M has constructible
cohomology. More precisely, pDR M is a perverse sheaf on X.

Proposition 5.5.2 (Behaviour with respect to external product, see [Meb89, Prop. 10.19])
Let X1, X2 be complex manifolds and let Mi ((i = 1, 2) be a DXi

-module (or an
object of Db(DXi). There is a natural and functorial morphism in Db(CX1×X2):
pDRX1(M1) ⊠C

pDRX2(M2) = pDRX1×X2(M1 ⊠C M2) −→ pDRX1×X2(M1 ⊠D M2),

which is an isomorphism if M1 has holonomic cohomology and M2 has DX2-coherent
cohomology.

5.6. Recent advances

5.6.a. Local normal form of a meromorphic connection near a pole. Classi-
cal asymptotic analysis in one complex variable produces a normal form for a mero-
morphic connection in one variable near one of its pole. It is now standard to present
this result in three steps:
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(1) existence of a local formal normal form for the matrix of the connection,

(2) asymptotic – or multisummable – liftings of this normal form in sectors
around the pole,

(3) comparison between the various liftings, which gives rise to the Stokes phe-
nomenon.

In higher dimension, such results have only been obtained recently. More precisely,
work of Majima [Maj84] and C.S. [Sab93, Sab00] answer the second point, if the
first one is assumed to be solved.

A precise conjecture for a statement analogous to the first point is given in [Sab00].
It has been solved recently in two different ways:

• T. Mochizuki has solved the conjecture as stated in [Sab00], that is, in di-
mension two, by using a reduction to characteristic p and the notion of p-
curvature [Moc09]. He then solved the analogue of the conjecture in arbitrary
dimension by using techniques of differential geometry (Higgs bundles and har-
monic metrics) [Moc11a].

• K. Kedlaya used techniques inspired from p-adic differential equations (in
particular, a systematic use of Berkovich spaces) to solve the conjecture in any
dimension [Ked10, Ked11].

The third point has been generalized by T. Mochizuki [Moc11a, Moc11b] and
C.S. [Sab13] by developing the notion of Stokes filtration, following a previous ap-
proach in dimension one by P. Deligne [Del07] and B. Malgrange [Mal91]. This leads
to a Riemann-Hilbert correspondence in arbitrary dimension, and in the setting of
possibly irregular singularities.

5.6.b. A conjecture of Kashiwara. One of the consequences of the previous re-
sults is the following theorem, proved by M. Kashiwara [Kas86] under the assumption
of regular singularity, and in general (a conjecture of Kashiwara) by T. Mochizuki
T. Mochizuki [Moc11b] and C.S. [Sab00, Sab13].

Theorem 5.6.1. Let M be a holonomic DX-module. Then Hom DX
(M ,DbX), equipped

with its left DX-module structure coming from that on DbX , see §1.3.e, is a holonomic
(hence coherent) DX-module. Moreover, for each i > 0, Ext i

DX
(M ,DbX) = 0.

This statement has many consequences, already noted by M. Kashiwara [Kas86]
(see also [Bjö93]). One of them says that any holonomic DX -module is locally a
DX -submodule of DbX .

5.6.c. Wild Hodge theory. The theory of Hodge D-modules developed by M. Saito
[Sai88, Sai90] allows one to consider Hodge theory for singular spaces. The basic
objects are holonomic DX -modules equipped with a specific good filtration (the Hodge
filtration). Following Deligne, Beilinson and Bernstein [BBDG82], this makes an
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analogy with the theory of pure perverse ℓ-adic sheaves with tame ramification on an
algebraic variety in characteristic p.

In order to extend such an analogy in the case of wild ramification, a generalization
of Hodge theory (and thus of Hodge D-modules) is needed. This has been developed
by T. Mochizuki and C.S. in the tame case first [Moc07, Sab05] and then in the
wild case [Moc11a], see also [Sab09].





LECTURE 6

COMPUTATIONAL ASPECTS IN D-MODULE THEORY

6.1. Review on the Gröbner basis of an ideal in a polynomial ring

Let k a commutative field. We choose on Nright a well-ordering. By definition, for
such an ordering, all nonempty subset in Nright has a smallest element. We assume
that this relation is compatible with addition in the semi group Nright:

∀α, β, γ ∈ Nright, α ⩾ β =⇒ α+ β ⩾ β + γ.

Exercise 6.1.1. Show that an ordering on Nright is a well-ordering if and only if every
strictly decreasing sequence in Nright is finite.

The first example is the lexicographic ordering, which is defined by induction:

α = (α1, . . . , αr) > β = (β1, . . . , βr)

when α1 > β1 or when α1 = β1 and (α2, . . . , αr) > (β2, . . . , βr) (the natural ordering
of N for r = 1).

The second example is the graded lexicographic ordering, defined by induction:

α = (α1, . . . , αr) > β = (β1, . . . , βr)

if |α| > |β|, or if |α| = |β| and α > β for the lexicographic ordering define before
(|α| =

∑right
i=1 αi denotes the length of the multi-index α ∈ Nright).

Exercise 6.1.2. Show that the lexicographic ordering (resp. the graded lexicographic
ordering) is a well-ordering compatible with addition in the semi group Nright.

Given a well-ordering on Nright, we will use the following terminology:

Definition 6.1.3. Let P =
∑

α aαX
α be a nonzero polynomial in k[X1, . . . , Xr].

• The multidegree of P is d(P ) = max{α ∈ Nright | aα ̸= 0}.
• The leading coefficient of P is LC(P ) = ad(P ) ∈ k.
• The leading monomial of P is LM(P ) = Xd(P ) ∈ k[X1, . . . , Xr].

Proposition 6.1.4. Let P,Q ∈ k[X1, . . . , Xn] be two nonzero polynomials. We have:
• if d(P ) > d(Q), then d(P +Q) = d(P ) and LT(P +Q) = LT(P ),
• if d(Q) > d(P ), then d(P +Q) = d(Q) and LT(P +Q) = LT(Q),
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• if d(P ) = d(Q) and LC(P ) + LC(Q) ̸= 0, then{
d(P +Q) = d(P ) = d(Q),
LT(P +Q) = LT(P ) + LT(Q),

• if d(P ) = d(Q) and LC(P ) + LC(Q) = 0, then d(P +Q) < d(P ).

Proof. Write the polynomials P and Q as

P = LC(P )Xd(P ) +
∑

d(P )>α

aαX
α, Q = LC(Q)Xd(Q) +

∑
d(Q)>β

bβX
β

If d(P ) > d(Q), we obtain:

P +Q = LC(P )Xd(P ) +
∑

d(P )>γ

(aγ + bγ)Xγ

If d(P ) = d(Q), we obtain:

P +Q = (LC(P ) + LC(Q))Xd(P ) +
∑

d(P )>γ

(aγ + bγ)Xγ

The proposition follows from these equalities.

We can now give a division algorithm for polynomials in k[X1, . . . , Xr] that extends
the Euclidean algorithm for one variable polynomials. The goal is to divide F ∈
k[X1, . . . , Xr] by nonzero polynomials F1, . . . , Fs ∈ k[X1, . . . , Xr].

Proposition 6.1.5 (Division of a polynomial by a family). Let F1, . . . , Fs ∈ k[X1, . . . , Xr]
be nonzero polynomials and let F ∈ k[X1, . . . , Xr]. Associate to F a sequence
(A(l)

1 , . . . , A
(l)
s , P (l), R(l))l∈N in k[X1, . . . , Xr]s+2 defined inductively by:

(1) (A(0)
1 , . . . , A

(0)
s , P (0), R(0)) = (0, . . . , 0, F, 0),

(2) (2.1) if P (k) = 0, then for ℓ ⩾ k,

(A(ℓ)
1 , . . . , A(ℓ)

s , P (ℓ), R(ℓ)) = (A(k)
1 , . . . , A(k)

s , P (k), R(k)),

(2.2) if for every i, 1 ⩽ i ⩽ s, LM(Fi) does not divide LM(P (k)), then

A
(k+1)
i = A

(k)
i 1 ⩽ i ⩽ s

P (k+1) = P (k) − LT(P (k))

R(k+1) = R(k) + LT(P (k)),

(2.3) or else, let j = inf{i | 1 ⩽ i ⩽ s, LM(Fi) divides LM(P (k))}; then,

A
(k+1)
i = A

(k)
i for i ̸= j

A
(k+1)
j = A

(k)
j + (LC(P (k))/LC(Fj))Xd(P (k))−d(Fj)

P (k+1) = P (k) − (LC(P (k))/LC(Fj))Xd(P (k))−d(Fj) Fj

R(k+1) = R(k).
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Then, for every integer k, we have:

F = A
(k)
1 F1 + · · ·+A(k)

s Fs + P (k) +R(k).

Moreover, d(P (k)) ⩾ d(P (k+1)), d(A(k)
i ) ⩽ d(F )− d(Fi) and P (k) are zero for k large

enough. We set k0 = inf{k | P (k) = 0} and call the ordered family

(A(k0)
1 , . . . , A(k0)

s , R(k0))

the result of the division of F by F1, . . . , Fs and R(k0) the remainder of F in the
division by F1, . . . , Fs. We obtain:

F = A
(k0)
1 F1 + · · ·A(k0)

s Fs +R(k0)

with d(Ak0
i ) + d(Fi) ⩽ d(F ) for 1 ⩽ i ⩽ s and none of the terms of R(k0) is divisible

by any of the LM(Fi) for 1 ⩽ i ⩽ s.

Proof. By induction, it is easy to check that for every integer k, we have:

F = A
(k)
1 F1 + · · ·A(k)

s Fs + P (k) +R(k).

By construction, if P (k) ̸= 0, the polynomial P (k+1) is zero or has a strictly smaller
multidegree. This proves the existence of the integer k0. By induction, it is obvious
that no term of R(k) is divisible by the leading monomial of any Fi. Moreover, for
every k, we have d(F ) = d(P (0)) ⩾ d(P (k)). By induction, we deduce that, for
1 ⩽ i ⩽ s, d(Ak

i ) + d(Fi) ⩽ d(F ). We take k = k0 to finish of the proof.

Example 6.1.6. Let us consider the lexicographic ordering on N2. The result of the
division of F = X3 −XY 2 +X2 − Y 2 by (F1 = X2 + Y, F2 = XY +X) is:

F = (X + 1)F1 − Y F2 − Y 2 − Y.

We remark that the remainder is not zero. But, as Y 2 + Y = (1 + Y )F1 −XF2, we
have:

F = (X − Y )F1 + (X − Y )F2

and F is nevertheless in the ideal generated by F1, F2.

Exercise 6.1.7. Give a example where the remainder of a polynomial on division by a
family does depend on the order of this family.

Definition 6.1.8. An ideal of k[X1, . . . , Xr] is a monomial ideal if it is generated by a
family of monomials

Proposition 6.1.9. Let I be a monomial ideal generated and (Xβ)β∈A a generating set.
Let P =∈

∑
α aαX

α be a polynomial. Then, P belongs to I if and only if every term
of P is multiple of some Xβ for β ∈ A.

Definition 6.1.10. Let I be an ideal of k[X1, . . . , Xr]. We denote by in(I) the monomial
ideal of k[X1, . . . , Xn] generated by the leading monomials of the nonzero elements
of I.
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Definition 6.1.11. Let I be an ideal of k[X1, . . . , Xr]. We call Gröbner basis of I a
finite set F1 . . . , Fs of I such that LM(F1), . . . ,LM(Fs) generate in(I).

If we lift a finite generating set of in(I), we obtain a Gröbner basis of I. Therefore,
Gröbner bases exist.

Proposition 6.1.12. Let I be a nonzero ideal of k[X1, . . . , Xr] and let G1, . . . , Gs be a
Gröbner basis of I. Then, for every F ∈ k[X1, . . . , Xr], there exists A1, . . . , As ∈
k[X1, . . . , Xr] and a unique R ∈ k[X1, . . . , Xr] such that:

F =
s∑

i=1
AiGi +R,

where R = 0 or none of the terms of R is in in(I).

The polynomial R is called the remainder of F in the division by the Gröbner basis
G1, . . . , Gs.

Proof. We consider the division of F by the family G1, . . . , Gs. None of the terms of
the remainder is divisible by LM(G1), . . . ,LM(Gs). If follows from Proposition 6.1.9
that none of these terms is in in(I). Then, the result of the division of F by the
family G1, . . . , Gs gives a decomposition satisfying conditions of the proposition. If
we assume that there are two distinct remainders R and R′, we obtain R − R′ ∈ I;
it follows that LM(R−R′) ∈ in(I); this is impossible because, after the condition on
the remainder, none of the monomials of R−R′ is in in(I).

Proposition 6.1.13. Let I be a nonzero ideal of k[X1, . . . , Xs]. Then, every Gröbner
basis G1, . . . , Gs of I is a generating set of I. And for every F ∈ k[X1, . . . , Xn], we
have F ∈ I if and only if the remainder of F in the division by G1, . . . , Gs is zero.

Proof. The key is the last assertion. Let us show it. Let R be the remainder of F in
division by the Gröbner basis G1, . . . , Gs. As G1, . . . , Gs ∈ I, the polynomial R is in
I. So, R = 0 or LM(R) ∈ in(I). From the assumption on R, this implies R = 0.

Definition 6.1.14. Let F,G ∈ k[X1, . . . , Xs] be two nonzero polynomials, Xα = LM(F )
and Xβ = LM(G). Let γ be the least common multiple of Xα and Xβ . The S-
polynomial of F and G is the combination:

S(F,G) := Xγ−α

LC(F )F −
Xγ−β

LC(G)G = Xγ

LT(F )F −
Xγ

LT(G)G.

Remark 6.1.15. We have d(S(F,G)) < γ.

Proposition 6.1.16. Let I be a nonzero ideal of k[X1, . . . , Xs] and G1, . . . , Gs a gener-
ating set of I. Then, G1, . . . , Gs is a Gröbner basis of I if and only if the remainders
of S(Gi, Gj), 1 ⩽ i < j ⩽ s in the division by G1, . . . , Gs are zero.
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Proof. Let G1, . . . , Gs be a Gröbner basis of I. As S(Gi, Gj) ∈ I it follows from
Proposition 6.1.13 that the remainder of S(Gi, Gj), 1 ⩽ i < j ⩽ s in the division by
G1, . . . , Gs is zero.

Conversely, assume that these remainders are zero. We have to show that, if P ∈ I
is not zero, we have LM(P ) ∈ (LM(G1), . . . ,LM(Gs)). As G1, . . . , Gs is a generating
set of I, there exists P1, . . . , Ps ∈ k[X1, . . . , Xs] such that

(∗) P =
s∑

i=1
PiGi

Let d = max{d(Pi) + d(Gi)}. Choose (∗) with d minimum. Then, set

Γ = {i | d = d(Pi) + d(Gi)}.

If d(P ) = d, we have

LT(P ) =
∑
i∈I

LT(Pi)LT(Gi) and LM(P ) ∈ (LM(G1), . . . ,LM(Gs))

If d(P ) < d, we have∑
i∈Γ

LT(Pi)LT(Gi) = Xd
∑
i∈Γ

LC(Pi)LC(Gi) = 0.

Then, choose i0 ∈ Γ and let γ(i, i0) ∈ Nn be such that

Xγ(i,i0) = lcm(LM(Gi),LM(Gi0))

For every i ∈ Γ, Xd is a multiple of Xγ(i,i0). Therefore, we obtain

LT(Pi)Gi = LM(Pi)LC(Pi)Gi = Xd−γ(i,i0)LC(Pi)LC(Gi)
(Xγ(i,i0)

LT(Gi)
Gi

)
.

But the remainder of S(Gi, Gi0) in the division by G1, . . . , Gs is zero. Hence, we have

S(Gi, Gi0) = Xγ(i,i0)

LT(Gi)
Gi −

Xγ(i,i0)

LT(Gi0)Gi0 =
s∑

j=1
Ui,i0,jGj ,

with d(Ui,i0,j) + d(Gj) < γ(i, i0). It follows that∑
i∈Γ

LT(Pi)Gi =
∑
i∈Γ

Xd−γ(i,i0)LT(Pi)LC(Gi)
( Xγ(i,i0)

LC(Gi0)Gi0 +
s∑

j=1
Ui,i0,jGj

)
=

∑
i∈Γ

Xd−γ(i,i0)LT(Pi)LC(Gi)
( s∑

j=1
Ui,i0,jGj

)
As P =

∑
i∈Γ LT(Pi)Gi +

∑
i∈Γ(Pi − LT(Pi))Gi +

∑
i/∈Γ PiGi, we deduce a new way

of writing P . This shows that d is not minimum.

We now explain an algorithm that computes a Gröbner basis of an ideal I of
k[X1, . . . , Xs] from a given finite generating set.
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Proposition 6.1.17 (Algorithm for a Gröbner basis). Let I be an ideal of k[X1, . . . , Xs]
generated by a finite set F1, . . . , Fs. Define by induction a sequence (F (k)

1 , . . . , F
(k)
nk )

of polynomials
n0 = s, F

(0)
1 = F1, . . . , F

(0)
n0

= Fs.

If R(k)
1 , . . . R

(k)
lk

are the nonzero remainders of S(F (k)
i , F

(k)
j ), 1 ⩽ i < j ⩽ nk in the

division by F (k)
1 , . . . , F

(k)
nk , set

nk+1 = nk + lk, F
(k+1)
i =

{
F

(k)
i if i ⩽ nk,

R
(k)
i−nk

if i > nk.

Then, for k0 large enough, (F (k0)
1 , . . . , F

(k0)
nk0

) is a Gröbner basis of I.

Proof. At each step, F (k)
1 , . . . , F

(k)
nk is a generating set of I. If a remainder R of

S(F (k)
i , F

(k)
j ) in the division by (F (k)

1 , . . . , F
(k)
nk ) is not zero, LM(R) is not in the

monomial ideal Jk =
(
LM(F (k)

1 ), . . . ,LM(F (k)
nk )

)
and F

(k)
1 , . . . , F

(k)
nk is not Gröbner

basis of I. The sequence Jk is an ascending chain of ideals in k[X1, . . . , Xs]. As
k[X1, . . . , Xs] is a Noetherian ring, this chain stabilizes. Therefore, there exists k0

such that every remainder of S(F (k0)
i , F

(k0)
j ) in the division by F (k0)

1 , . . . , F
(k0)
nk0

is zero.
By Proposition 6.1.16, we deduce that F (k0)

1 , . . . , F
(k0)
nk0

is Gröbner basis of I.

We end this section with an algorithm computing the intersection I∩k[Xℓ, . . . , Xs]
of an ideal I in k[X1, . . . , Xs] given by a finite generating set with the subring
k[Xℓ, . . . , Xs] for 1 ⩽ ℓ ⩽ s. We have seen there exists an algorithm computing
a Gröbner basis of I, hence an algorithm computing the ideal I ∩ k[Xℓ, . . . , Xs] in
k[Xℓ, . . . , Xs] is a consequence from the following proposition:

Proposition 6.1.18. Let I an ideal in k[X1, . . . , Xs] and let ℓ ∈ N, with 1 ⩽ ℓ ⩽ s.
Choose a well-ordering compatible with the addition such that, for 1 ⩽ i, j ⩽ ℓ−1, the
multidegree of Xi is larger than the multidegree of any monomial which is independent
of X1, . . . , Xℓ−1 (for instance, a lexicographic ordering). Let G be a Gröbner basis of
I, then the set G ∩ k[Xℓ, . . . , Xs] is a Gröbner basis of I ∩ k[Xℓ, . . . , Xs]

Proof. It is enough to use the criterion of Proposition 6.1.16 to get the result.

6.2. Gröbner basis of a noncommutative algebra

We choose on Nright a well-ordering compatible with the addition. In this subsec-
tion, we consider a commutative unitary ring A and we assume that A is an integral
domain. We denote by K the quotient field of A. And we consider a commutative,
unitary, associative A-algebra B. We will make some assumptions on B in order to
develop a theory of Gröbner basis similar to that of the previous section.
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Assumption 1. There exist elements z1, . . . , zr ∈ B so that the set of monomials
(zα1

1 . . . zαr
r )α∈Nright is a basis of B as a A-module.

We will set zα = zα1
1 . . . zαr

r (be careful however: in this way of writing, the ordering
of the zi is fixed).

Thus, we can define the multidegree of a nonzero element P =
∑
aαz

α of B as an
element in Nright:

d(P ) = max{α | aα ̸= 0}
Then c(P ), the leading coefficient of P , is defined as the coefficient of the the highest
degree term in P .

By convention, d(0) = −∞. We then have

∀P,Q ∈ B, d(P +Q) ⩽ sup(d(P ), d(Q))

with equality when d(P ) ̸= d(Q) or when d(P ) = d(Q) and c(P ) + c(Q) is nonzero.
For every α ∈ Nright, we set

Bα = {P ∈ B | d(P ) ⩽ α}
B<α = {P ∈ B | d(P ) < α}
grB = ⊕

α∈Nright
Bα/B<α

Assumption 2. For all α, β ∈ Nright, BαBβ ⊂ Bα+β.

The graded ring grB is then naturally a A-algebra.

Assumption 3. The A-algebra grB is commutative.

We can now define a natural map grB → A[Z1, . . . , Zr] that associates to [P ] ∈
Bα/B<α the monomial in(P ) = c(P )Zd(P ). This monomial is called the initial part
of P .

Assumptions 2 and 3 on B are in fact equivalent to the condition that, for all
i > j ∈ {1, . . . , r}, one has d(zizj − zjzi) < d(zjzi).

They also imply that, for all P,Q ∈ B, one has d(PQ) = d(P )+d(Q) and in(PQ) =
c(P )c(Q)Zd(P )+d(Q).

We can now define a division of P ∈ B by a family (P1, . . . , Pm) of elements in
B. Let a be the product of the c(Pi). If d(P ) ⩾ max{d(Pi) | 1 ⩽ i ⩽ r}, let
j = inf{i | d(P ) = d(Pi)}. We consider

P (1) = aP − a c(P )
c(Pj) Pj .

This element P (1) of B satisfies d(P (1)) < d(P ). By iterating the process, we obtain
an algorithm that provides, for every P ∈ B, an integer ℓ and a family Q1, . . . , Qm, R

of elements in B such that

aℓP =
m∑

i=1
QiPi +R,



98 LECTURE 6. COMPUTATIONAL ASPECTS IN D-MODULE THEORY

and, for every i ∈ {1, 2, . . . , r}, d(Qi) + d(Pi) ⩽ d(P ), d(R) < d(Pi). As in the
commutative case, the family (Q1, . . . , Qm, R) depends on the ordering in the family
(P1, . . . , Pm). We call R the remainder of P in the division by P1, . . . , Pm.

Remark that, if B satisfies Assumptions 1, 2, 3 and if B is a A-algebra and an
integral domain, the B-algebra B ⊗A B also satisfies Assumptions 1, 2, 3. In partic-
ular, we will consider the case where B = K is the quotient field of A, or B = Ap is
the localization of A along the multiplicative system A − p, or also B = κ(p) is the
residual field of Ap.

Definition 6.2.1. Let I a left ideal of B, Denote by inK(I) the ideal of k[Z1, . . . , Zr]
generated by the initial part of the elements of I. A finite family G1, . . . , Gs of I is
called a Gröbner basis of I if (in(G1), . . . , in(Gs)) is a generating set of inK(I).

The existence of a Gröbner basis of I follows from a choice, for every α ∈ F , of one
element Pα in I such that in(Pα) = c(P )Zα. The family (Pα)α∈F is then a Gröbner
basis of I.

As inK(I) = inK(K ⊗A I), a Gröbner basis of I is also a Gröbner basis of the left
ideal K ⊗A I of K ⊗A B. By means of the division algorithm, we obtain:

Proposition 6.2.2. The remainder (by the previous division algorithm) of P ∈ B in the
division by a Gröbner basis of I belongs to

∑
zα /∈inK (I) Az

α. It does not depends of
the Gröbner basis up to a multiplicative constant.

Proposition 6.2.3. Let P1, . . . , Pm ∈ B be a Gröbner basis of a left ideal I in B,
a =

∏m
k=1 c(Pk) and P ∈ B. The following properties are equivalent:
• there exists an integer ℓ such that aℓP ∈ I,
• the remainder of P in the division by P1, . . . , Pm is zero,
• P ∈ K ⊗A I.

It follows from this proposition that a Gröbner of I is a generating set of K ⊗A I.

Definition 6.2.4. Let P,Q ∈ B ∖ {0}, α = d(P ), β = d(Q). For i ∈ {1, . . . , r}, set
γi = max(αi, βi) and γ = (γ1, . . . , γr). We call

S(P,Q) = c(Q)zγ−αP − c(P )zγ−βQ

the S-polynomial of P and Q.

Proposition 6.2.5. Let I be a left ideal in B and let P1, . . . , Pm ∈ I be a generating set
of K ⊗A I. Then, P1, . . . , Pm is a Gröbner basis of I if and only if, for 1 ⩽ i, j ⩽ m,
the remainders of S(Pi, Pj) in the division by P1, . . . , Pm are zero.

Proof. It is the same proof as in the commutative case.

Remark 6.2.6. As in commutative case, this proposition allows one to give a natural
algorithm for computing a Gröbner basis of I from a family P1, . . . , Ps ∈ I generating
K ⊗A I.
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Let p be a prime ideal of A, κ(p) = Ap/pAp the residual field of Ap. Denote by ε
the natural evaluation map A→ κ(p) and the naturel map

B −→ κ(p)⊗A B, P =
∑
aαz

α 7−→ ε(P ) =
∑
ε(aα)zα.

If I is a left ideal of B, we denote by I · (κ(p)⊗A B) the ideal κ(p)⊗A B generated
by ε(I).

Proposition 6.2.7. Let I be a left ideal of B, P1, . . . , Pm ∈ B a Gröbner basis of I, a the
product of c(Pi) and p a prime ideal of A such that a /∈ p. Then, (ε(P1), . . . , ε(Pm))
is a Gröbner basis of I · (κ(p)⊗A B).

Proof. Let be P ∈ B. Remark that, if R is the remainder of P in the division by
P1, . . . , Pm, then ε(R) is, modulo the product by a power of ε(a), the remainder
of ε(P ) in the division by ε(P1), . . . , ε(Pm). On the other hand, the ε(Pi) generate
I · (κ(p) ⊗A B) and ε(S(Pi, Pj)) = S(ε(Pi), ε(Pj)). Proposition 6.2.5 allows one to
conclude.

Let q be an integer smaller than r. We identify Nq with Nq × {0} ⊂ Nright.

Assumption 4. C =
∑

β∈Nq Azβ is a subalgebra of B.

The restriction to Nq of our well-ordering is a well-ordering and thus C satisfies
Assumptions 1, 2 and 3. In order to eliminate the (zj)j>q, we make the following
assumption on our well-ordering:

Assumption 5. The well-ordering of Nright satisfies d(zj) > d(zβ) for every j > q and
β ∈ Nq.

Proposition 6.2.8. Let I be a left ideal in B and P1, . . . , Pm ∈ B a Gröbner basis of I.
The subfamily C ∩ {P1, . . . , Pm} is a Gröbner basis of the left ideal I ∩ C of C .

Proof. Same as in the commutative case.

We deduce from Proposition 6.2.5 and 6.2.8 that specializing at a generic point of
the scheme of the coefficient ring commutes with the intersection:

Corollary 6.2.9. Let I be a left ideal of B et P1, . . . , Pm ∈ B a Gröbner basis of I. If
p is a prime ideal in A that does not contain the product of c(Pk), then we have

(I ∩ C ) · (κ(p)⊗A C ) = (I · (κ(p)⊗A B)) ∩ (κ(p)⊗A C ).

Example 6.2.10 (Polynomial ring). The ring A[Z1, . . . , Zr] of polynomials with coeffi-
cients in A satisfies Assumptions 1, 2 et 3 for any total well-ordering compatible with
addition.
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Example 6.2.11 (Differential operators). Let A⟨Z1, . . . , Zr, ∂/∂Z1, . . . , ∂Zr⟩ be the sub-
ring of

HomA(A[Z1, . . . , Zr], A[Z1, . . . , Zr])
generated by DerA(A[Z1, . . . , Zr]) (derivations of the A-module A[Z1, . . . , Zr]) and
by the products by elements of A[Z1, . . . , Zr]. This ring can be called the ring of
differential operators with coefficients in A[Z1, . . . , Zr]. It satisfies Assumptions 1, 2
and 3 for every well-ordering compatible with addition.

Example 6.2.12 (Enveloping algebra of a free finite type Lie A-algebra)
Let g be a Lie A-algebra. That is, a A-algebra where the product, denoted by

(x, y) 7→ [x, y], satisfies, for every x, y, z ∈ g,
(1) [x, x] = 0
(2) [x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 (Jacobi identity)

We assume that g is free and of finite type as a A-module. Let z1, . . . , zr be a basis
of g. The enveloping algebra U (g) of g is the quotient of the tensor algebra of the
A-module g:

T = A⊕ g⊕ (g⊗A g)⊕ (g⊗A g⊗A g)⊕ · · ·
by the two-sided ideal generated by the tensors x⊗ y − y ⊗ x− [x, y], where x, y ∈ g.
It follows from the Poincaré-Birkhoff-Witt theorem that the enveloping algebra U (g)
is a free A-module with basis (zα)α∈Nright and that g is naturally identified with
a submodule of U (g) [Bou71, Th. 1 p. 30 and Cor. 2 p. 33]. As for every i, j, the
commutator zizj−zjzi is in g, then, using on Nright the graded lexicographic ordering,
one has d(zizj − zjzi) < d(zizj). Therefore, g satisfies Assumptions 1, 2 and 3.

Another ordering can also be suitable. It depends on the expression of the com-
mutators [zi, zj ]. Let ai,j,ℓ ∈ A such that

[zi, zj ] =
right∑
ℓ=1

ai,j,lzℓ.

The algebra U (g) is the solution to a universal problem. It is naturally isomorphic
to a quotient of the associative free algebra built on the alphabet {Z1, . . . , Zr} by
the two-sided ideal generated by the elements ZiZj − ZjZi −

∑right
l=1 ai,j,lZℓ where

1 ⩽ i < j ⩽ r.

Example 6.2.13 (Quotient of a words algebra). Let {Z1, . . . , Zr} be a set of cardi-
nal r. Denote by A the associative free A-algebra built on the words of the alphabet
{Z1, . . . , Zr}. For every 1 ⩽ i < j ⩽ r and 0 ⩽ ℓ ⩽ r, let us give elements ai,j,ℓ of A

and set Ri,j =
∑right

ℓ=1 ai,j,ℓZℓ + ai,j,0, and Ri,i = 0 and Rj,i = −Ri,j (for j < i).
We assume that Ri,j satisfy the so-called Jacobi relations: for every 1 ⩽ i ⩽ j ⩽

k ⩽ r,
right∑
ℓ=1

aj,k,ℓRi,ℓ +
right∑
ℓ=1

ak,i,ℓRj,ℓ +
right∑
ℓ=1

ai,j,ℓRk,ℓ = 0.
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Let R be the two-sided ideal of A generated by the elements

ρi,j = ZiZj − ZjZi −Ri,j .

It is easy to deduce from the previous example that the A-quotient algebra A /R

satisfies Assumptions 1,2,3.

6.3. Some applications

6.3.a. Computation of the characteristic variety. Let An(k) be the Weyl alge-
bra with n variables k⟨Z1, . . . , Zn, ∂/∂Z1, . . . , ∂/∂Zn⟩. Let us consider the following
ordering of Nn × Nn: (α, β) < (α′, β′) if |β| < |β′| or |β| = |β′| and (α, β) smaller
than (α′, β′) for the lexicographic ordering.

Let us consider a left ideal J of An(k). If P1, . . . , Pr is a Gröbner basis of J , then
the principal symbols σ(P1), . . . , σ(Pr) generate the ideal of k[x1, . . . , xn, ξ1, . . . , ξn]
generated by the principal symbols of the elements of J .

If k = C, the zero set of σ(P1), . . . , σ(Pr) is the characteristic variety of An(C)/J .

6.3.b. Algorithmic computation of the Bernstein-Sato polynomial, [BM02]
Let m be a section of a left An(k)-module M and let F ∈ k[X1, . . . , Xn] be a

polynomial. We set An(k)[s] = k[s] ⊗k An(k), which has a natural structure of k-
algebra. We denote by M [1/F, s]F s the k[X, s, 1/F ]-module naturally isomorphic to
M [1/F, s], with the action of An(k)[s]-module shifted from the natural one by F s:

∀m ∈M [1/F, s], ∀ i = 1, . . . , n, ∂

∂Xi
(mF s) =

( ∂

∂Xi
m

)
F s + s

F

∂F

∂Xi
mF s.

We then consider the following ideal of k[s]:

I(m,F ) = {b(s) ∈ k[s] | b(s)mF s ∈ An(k)[s]mF s+1},

where F s+1 = F · F s.
We want to describe an algorithm to compute the ideal I(m,F ). We will make the

following assumptions.

(A1) We assume that we know a system of generators (P1, . . . , Pr) of the left
ideal

annAn(k)An(k)m := {P ∈ An(k) | Pm = 0}.

(A2) We assume (for simplicity) that An(k)m has no F -torsion.

In order to get this algorithm, let us consider the algebra E = An(k)[s]⟨∂/∂T ⟩,
which is the quotient of the free An(k)[s]-algebra generated by ∂/∂T by the only
supplementary non trivial relation

s(∂/∂T )− (∂/∂T )s = (∂/∂T ).
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The formalism of Gröbner basis can be applied to An(k)[s] and to E . We will consider
the lexicographic order such that:

∂

∂T
>

∂

∂X1
> · · · > ∂

∂Xn
> s.

If P (X, s, ∂/∂X) ∈ An(k)[s], we set

P̃ = P
(
X, s,

∂

∂X1
+ ∂F

∂X1

∂

∂T
, . . . ,

∂

∂Xn
+ ∂F

∂Xn

∂

∂T

)
∈ E .

Let us describe now the algorithm. We start with the set of generators σ(P1), . . . , σ(Pr)
of annAn(k)An(k)m. By the algorithm giving a Gröbner basis, we construct a Gröbner
basis G of the left ideal in E generated by

P̃1, . . . , P̃r, s+ F
∂F

∂T
.

Next, we consider G̃ = G ∩An(k)[s]. Still using the algorithm giving a Gröbner basis,
we construct a Gröbner basis L of the left ideal in E generated by G̃ , F .

Assertion. I(m,F ) is generated by L ∩ k[s].

In order to prove this assertion, notice that M [1/F, s]F s has a natural structure
of left E -module which extends the structure of left An(k)[s]-module:

∂

∂T
a(s,X)mF s = −a(s− 1, X)smF s−1.

Notice that (
s
∂

∂T
− ∂

∂T
s
)
a(s,X)mF s = ∂

∂T
a(s,X)mF s.

Lemma 6.3.1. P̃1, . . . , P̃r, s+ F∂F/∂T is a set of generators of annE EmF s

Proof. The proof is left to the reader. Be careful, the assumption “no F torsion” is
used here.

Then, we remark that

annE EmF s ∩An(k)[s] = annAn(k)[s]An(k)[s]mF s.

Lemma 6.3.2. annAn(k)[s]An(k)[s]mF s +An(k)[s]F is the ideal annihilating the class
of mF s in the quotient An(k)[s]mF s/An(k)[s]mF s+1.

Proof. Left to the reader (easy).

Finally, the assertion follows from the lemmas and from Proposition 6.2.8.
If M is a holonomic An(k)-module, Bernstein has proved in 1972 that, for any

section m of M , the ideal I(m,F ) is not reduced to {0}. The generator of I(m,F ) is
called the Bernstein polynomial associated to m,F (see also Lecture 7).



LECTURE 7

SPECIALIZABLE DX-MODULES

In the theory of sheaves of vector spaces over a field, there are standard functors
which allow one to restrict a sheaf on X to a closed subset Y ↪

i−→ X, namely the
inverse image, denoted by i−1, and the extraordinary inverse image, denoted by i!. For
constructible sheaves on complex analytic spaces, other functors (nearby/vanishing
cycles) may be used.

The notion of specialization of sheaves (more precisely the functors called “nearby
cycles” and “vanishing cycles”) has been introduced by P. Deligne. It is a powerful
tool as it generalizes the “cohomology of the Milnor fibre” attached to a function on a
manifold. A “dual” notion, that of microlocalization of sheaves, has been introduced
later by M. Kashiwara and P. Schapira (although some aspects of it were present in
the work of M. Sato). These functors often replace the inverse image functor with
respect to the inclusion of a hypersurface in the ambient manifold. One of their main
advantages is that they preserve the property for a sheaf of being perverse. The reason
for this is essentially that they commute with the duality functor for constructible
sheaves (Poincaré-Verdier duality), a theorem due originally to O. Gabber.

Except in the noncharacteristic situation (see § 2.3), the restriction of a DX -module
to a smooth closed subvariety Y is in general not DY -coherent. Given a submanifold
Y ⊂ X, it is natural to consider the category of DX -modules for which the restriction
to Y is DY -coherent. This is related to complex boundary value problems in the
theory of partial differential equations. However, even if the restriction of M to Y

is DY -coherent, the restriction is usually not a single DY -module but a complex
with many cohomology modules. Introducing the notion of specialization (also called
“moderate nearby cycles” and “moderate vanishing cycles”, in analogy with sheaves)
allows one to understand better each cohomology module of the restricted object.

One is therefore led to give an analytic or algebraic version of the topological
specialization functors (for instance, these functors happen to be one of the main
tools in the theory of polarized Hodge Modules [Sai88]). This is has been done for
D-modules by B. Malgrange in an important special case, and then by M. Kashiwara
in general. Their interest was motivated by a topological theorem of M. Goresky and
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R.D. MacPherson, which says that “the sheaf of nearby cycles of a perverse sheaf is
perverse”. Moreover, the notion of specialization for D-modules is often more useful
than the restriction.

The basic idea in the construction is to replace the notion of monodromy and its
minimal polynomial, which is inherent to vanishing cycles of sheaves, with the notion
of Bernstein polynomial and Malgrange-Kashiwara filtration, denoted by V .

The purpose of this lecture is to introduce the latter notions and to consider their
behaviour under direct images. We will present them with some details. The compu-
tational aspect has yet been considered in § 6.3.b.

Holonomic DX-modules (see Chapter 5) are basic objects, when applying the the-
ory of partial differential equations to algebraic geometry. They may be defined in
various ways. The geometrical definition is by the dimension of the characteristic
variety. The algebraic definition is by the vanishing of Ext k

DX
(M ,DX) for k ̸= n.

One of the main result says that holonomic D-modules are specializable along any
hypersurface. This is Bernstein theory in the algebraic situation, and this is a result
of M. Kashiwara in the analytic setting.

There is a third definition of holonomic D-modules by using the notion of special-
ization. Consider the category Hn of coherent DX -modules M with dim Supp M ⩽ n,
which are specializable along any germ of hypersurface cutting the support in codi-
mension one, and such that their moderate nearby or vanishing cycles are in Hn−1.
This defines inductively the category Hn. One can prove that this category is nothing
but the category of holonomic DX -modules with dim Supp M ⩽ n.

It is not much more difficult to analyze the specialization of D-modules equipped
with a good filtration. This explains the following notation in this lecture: D̃X denotes
the sheaf DX or the Rees sheaf of rings RF DX introduced in § 1.5, from which we
keep notation. In the first case, we set z = 1 in the formulas below, and ð = ∂.
Similarly, we denote by ÕX the sheaf OX or the sheaf RF OX = OX [z].

The reader who wants to forget about good filtrations should replace D̃X with DX

and, in the formulas below, should set z = 1 and ð = ∂. Moreover, the notion of
strictness is then tautological.

The filtered approach may be considered as an introduction to some parts of
[Sai88].

7.1. The V -filtration

Let Y ⊂ X be a smooth hypersurface (1) with ideal IY ⊂ OX . Put ĨY :=
IY · ÕX ⊂ ÕX . Denote by V•D̃X the increasing filtration indexed by Z associated
with Y : for any x ∈ X, one sets

VkD̃X,x := {P ∈ D̃X,x | P · Ĩ j
Y,x ⊂ Ĩ j−k

Y,x ∀ j ∈ Z}

1. The same definition applies to any closed analytic submanifold of X.
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where we set Ĩ ℓ = ÕX if ℓ ⩽ 0. Let P be a germ in D̃X,x. In any local coordinate
system (t, x2, . . . , xn) = (t, x′) of X centered in x for which Y = {t = 0}, one has

P ∈ V0D̃X,x ⇐⇒ P =
∑

(α,j)∈Nn

aα,jðα
x′(tðt)j , aα,j ∈ ÕX,x

and, for any k ∈ N,

P ∈ V−kD̃X,x ⇐⇒ P = tkQ with Q ∈ V0D̃X,x,

P ∈ VkD̃X,x ⇐⇒ P =
∑

0⩽ℓ⩽k

Qjðℓ
t with Qℓ ∈ V0D̃X,x.

For k ∈ Z, set VkÕX = VkD̃X ∩ ÕX . This is nothing but the ĨY -adic filtration on
ÕX viewed as an increasing filtration.

Exercise 7.1.1. Show that
• for any k, VkD̃ is a locally free V0D̃-module.
• D̃X = ∪kVkD̃X (the filtration is exhaustive),
• VkD̃X · VℓD̃X ⊂ Vk+ℓD̃X with equality for k, ℓ ⩽ 0 or k, ℓ ⩾ 0,
• VkD̃X∖Y = D̃X∖Y for any k ∈ Z,
• (∩kVkD̃X)|Y = {0}.

Exercise 7.1.2 (Euler vector field)

(1) Show that the class E of tðt in grV
0 D̃X does not depend on the choice of

the local coordinate system (t, x′) as above.

(2) Show that grV
0 DX is a sheaf of rings and that E belongs to its center.

(3) Show that, locally on X, one has an isomorphism grV
0 DX ≃ DY [E].

Remarks 7.1.3

(1) It is straightforward to develop the theory below in the case of right D̃X -
modules. If U•(M ) is a V -filtration of the left module M , then U•(ωX ⊗ÕX

M ) := ωX⊗ÕX
U•(M ) is the corresponding filtration of the corresponding right

module. This correspondence is compatible with taking the graded object with
respect to U•. The operator −ðtt (acting on the left) corresponds to tðt (acting
on the right).

(2) In the literature, one also finds decreasing V -filtrations, by analogy with
the ĨY -adic filtration. One uses the following rule for going from increasing to
decreasing filtrations: given an increasing filtration U•M (lower indices), the
associated decreasing filtration (upper indices) is defined by Uk = U−k−1.
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7.2. Coherence

Coherence of the Rees sheaf of rings. Introduce the Rees sheaf of rings RV D̃X =
⊕kVkD̃X · τk, where τ is a new variable, and similarly RV ÕX = ⊕kVkÕX · τk, which
is naturally a ÕX -module.

Exercise 7.2.1 (Coherence of RV ÕX )

(1) Let K be a compact polycylinder in X. Show that RV ÕX(K) =
RV (ÕX(K)) is Noetherian. [Hint: it is the Rees ring of the ĨY -adic fil-
tration on the Noetherian ring ÕX(K).]
(2) Show that the ring (RV ÕX)x = RV ÕX(K) ⊗

ÕX (K) ÕXx
is flat over

RV ÕX(K).
(3) Show that RV ÕX is coherent. [Hint: let U be any open set in X and let
φ : (RV ÕX)q

|U → (RV ÕX)p
|U be any morphism; let K be a compact polycylinder

contained in U ; then, Kerφ(K) is finitely generated over RV ÕX(K) by noethe-
rianity and we have Kerφ|K = Kerφ(K) ⊗

RV ÕX (K) (RV ÕX)|K by flatness; so
Kerφ|K is finitely generated.]

Exercise 7.2.2 (Coherence of RV D̃X )
(1) A simple situation. Let A be the ring C[t, θ], on which one considers
the filtration V•A for which t has degree −1 and θ has degree 1. Show
that the Rees ring RV A = ⊕kVkAτ

k is isomorphic to the quotient ring
B = C[t, u, v, w, τ ]/(vw− u, τw− t). Conclude that RV A is Noetherian. [Hint:
decompose B as C[t, u, w]⊕ C[t, u, v, τ ].]
(2) Consider the sheaf ÕX [θ, ξ2, . . . , ξn] equipped with the V -filtration for which
θ has degree 1, ξ2, . . . , ξn have degree 0, and inducing the V -filtration on
ÕX . Show that, if K ⊂ X is any polycylinder, then RV ÕX [θ, ξ2, . . . , ξn](K)
is Noetherian.
(3) Show that, if K is any sufficiently small polycylinder, then RV D̃X(K) is
Noetherian. [Hint: RV D̃X can be filtered (by the degree of the operators) in
such a way that, locally on X, grRV D̃X is isomorphic to RV (ÕX [θ, ξ2, . . . , ξn]).]
(4) Conclude that RV D̃X is coherent. [Hint: apply the same arguments as in
Theorem 2.1.3.]

Good V -filtrations. Let (M , U•M ) be a V -filtered D̃X -module. The filtration
U•M is said to be good if any UℓM is V0D̃X -coherent and, for any compact set
K ⊂ X, there exists k0 ⩾ 0 such that, in some neighbourhood of K we have, for all
k ⩾ k0,

U−kM = tk−k0U−k0M and UkM =
∑

0⩽j⩽k−k0

ðj
tUk0M .
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Exercise 7.2.3. Let U•(M ) and U ′•(M ) be two good V -filtrations of a coherent D̃X -
module M . Show that, locally, there exist two integers k1, k2 ∈ Z such that:

∀ k ∈ Z Uk1+k(M ) ⊂ U ′k(M ) ⊂ Uk2+k(M ).

Exercise 7.2.4. Let M be a coherent D̃X -module. Show that the filtration U•M is
good if and only if one of the following equivalent properties is satisfied:

(1) the Rees module ⊕kUkM · τk is coherent over RV D̃X ,

(2) there exists, locally on X, a surjective morphism D̃a
X →M → 0, inducing

for each k ∈ Z a surjective morphism UkD̃a
X → UkM → 0, where the filtration

on the free module D̃a
X is obtained by suitably shifting V•D̃X on each summand.

In particular, we get:

Lemma 7.2.5. Locally on X, there exists k0 such that, for any k ⩽ k0, t : U−kM →
U−k−1M is bijective.

Proof. Indeed, using a presentation of M as above, it is enough to show the lemma
for D̃a

X with a filtration as above, and we are reduced to consider each summand D̃X

with a shifted standard V -filtration. There, we may choose k0 such that Uk0D̃X =
V0D̃X .

Lemma 7.2.6 (Artin-Rees). If N is a coherent D̃X-submodule of M and U•M is a
good filtration of M , then U•N := N ∩ U•M is also good.

Proof. Analogous to that of Corollary 2.2.13.

Exercise 7.2.7. Let φ : M → N be a surjective morphism of coherent D̃X -modules.
Let U•M be a good V -filtration. Show that U•N := φ(U•M ) is a good V -filtration
of N .

Exercise 7.2.8. Let U be a coherent V0D̃X -module and let T be its t-torsion subsheaf,
i.e., the subsheaf of local sections locally killed by a power of t. Then, locally on X,
there exists ℓ such that T ∩ tℓU = 0. [Hint: Consider the t-adic filtration on V0D̃X ,
i.e., the filtration VjD̃X with j ⩽ 0; remark that the filtration t−jU is good with
respect to it, and locally there is a surjective morphism (V0D̃X)n → U which is strict
with respect to the V -filtration; its kernel K is coherent and comes equipped with
the induced V -filtration, which is good; in particular, locally on X, there exists j0 ⩽ 0
such that Vj+j0K = t−jVj0K for any j ⩽ 0; show that, for any j ⩽ 0, there is locally
an exact sequence

(VjD̃X)m −→ (Vj+j0D̃X)n −→ t−(j+j0)U −→ 0;

as t : VkD̃X → Vk−1D̃X is bijective for k ⩽ 0, conclude that t : t−j0U → t−j0+1U is
so, hence T ∩ t−j0U = 0.]
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7.3. Y -specializable DX-modules

We now consider the non-filtered situation. We will denote by E any local lifting
in V0(DX) of the global section E of grV

0 (DX) (see Exercise 7.1.2).

Definition 7.3.1 (Bernstein polynomial). Let U•M be a good V -filtration of a coherent
DX -module M . We say that this filtration has a Bernstein polynomial if there exists
a nonzero polynomial b(s) ∈ C[s] satisfying b(E + k)Uk(M ) ⊂ Uk−1(M ), for any
k ∈ Z. Any such polynomial is called a Bernstein polynomial for U•M .

Proposition 7.3.2. Let M be a coherent DX-module. The following properties are
equivalent:

(1) in the neighbourhood of any point of X, there exists a good V -filtration
U•(M ) having a Bernstein polynomial,

(2) any good V -filtration U•(M ) has locally a Bernstein polynomial,

(3) for every finite system of local generators (mi)i=1,...,ℓ of M , there exists a
nonzero polynomial b(s) ∈ C[s] such that b(E)mi ∈

∑ℓ
j=1 V−1(DX)mj,

(4) for any local section m of M , there exists a nonzero polynomial b(E) ∈ C[s]
such that b(s)m ∈ V−1(DX)m.

Proof. (1) implies (2). Given two good filtrations U•M and U ′•M , let b(s) be a
Bernstein polynomial for U•M . Use Exercise 7.2.3 to get

b(E + k + k1) · · · b(E + k + k2 − 1)b(E + k + k2)U ′k(M ) ⊂ U ′k−1(M ).

(2) implies (3). After Exercise 7.2.4, Uk(M ) =
∑

i Vk(DX)mi, k ∈ Z, is a good
V -filtration of M .

(3) implies (1). Let us consider the good V -filtration Uk(M ) =
∑

i Vk(DX)mi,
k ∈ Z. It follows from the commutation relations that one has

b(E + k)Vk(DX) ⊂ Vk(DX)b(E) + Vk−1(DX)

for any k ∈ Z, hence (1).
(4) implies (3). Clear.
(1) implies (4). Use Proposition 7.3.9 below.

Definition 7.3.3 (Specializable DX -modules)

(1) A coherent DX -module M is said to be specializable along Y or Y -
specializable if it satisfies one of the equivalent properties of Proposition 7.3.2.

(2) Let f : X → C be a holomorphic function. A coherent DX -module M

is said to be f -specializable if its direct image i+M by the graph inclusion
i : X ↪→ X × C of f is specializable along X × {0}.
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Exercise 7.3.4. Show that both definitions are consistent, namely that, if f is smooth,
then M is f -specializable if and only if it is specializable along f−1(0). [Hint: work
in local coordinates; then, starting from a good V -filtration of M , construct a good
V -filtration of i+M .]

Exercise 7.3.5. Let M be a Y -specializable DX -module and let U•M be any
good V -filtration. Show that, after a local identification of grV

0 DX with DY [E]
(see Exercise 7.1.2), each grU

k M is a coherent DY -module.

Exercise 7.3.6 (Basic examples to keep in mind). We assume here that X is a disc with
coordinate t and that Y is equal to the origin of the disc.

(1) Show that, for any nonzero differential operator P on X, the DX -module
M = DX/DX · P is specializable at 0.
(2) Choose P = t2∂t + 1 (irregular singularity at 0). Show that the constant
filtration VkM = M for all k is a good V -filtration and that the corresponding
Bernstein polynomial is 1. Deduce that, for any good V -filtration U•M , we
have grU

k M = 0 for all k.
(3) What can be the usefulness of the V -filtration in such cases? [Hint: see
Proposition 7.4.4.]

Definition 7.3.7 (Bernstein-Sato polynomial). Assume that M is specializable along Y .
(1) Let U•(M ) be some good V -filtration of M . Let K be a compact set of X
on which this filtration is defined. The unitary polynomial b(s) ∈ C[s] with
smallest degree such that

∀ k ∈ Z, b(E + k)Uk(M )|K ⊂ Uk−1(M )|K
is called the Bernstein-Sato polynomial of the good V -filtration U•(M )|K .

Let m a local section of Y -specializable module M . The unitary polynomial
of smallest degree satisfying:

b(E)m ∈ V−1(DX)m

is called the Bernstein-Sato polynomial of the local section m. We denote by
bm(s) ∈ C[s] this polynomial.

Exercise 7.3.8. Let M be a DX -module which is specializable along Y and let K be a
compact set in X. Show that there exists a finite set A ⊂ C such that, for any x ∈ K,
any germ m ∈Mx and any good V -filtration U•Mx, the roots of the Bernstein-Sato
polynomial of m and of U•Mx belong to A+ Z.

Proposition 7.3.9 (Stability by extension). Let 0 → M1 → M → M2 → 0 be an exact
sequence of coherent DX-modules. The module M is specializable along Y if and only
of the modules M1 and M2 are so.
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Proof. Assume that M is Y -specializable. We denote by b(s) the Bernstein-Sato
polynomial associated to a good V -filtration U•(M ). After Proposition 7.2.6 and
Exercise 7.2.7, the induced filtration and the image filtration are V -good. It is then
clear that b(s) is a Bernstein polynomial associated with these filtrations (in the sense
of Definition 7.3.1). Therefore, M1 and M2 are Y -specializable.

Conversely, let b1(s) (resp. b2(s)) be a Bernstein polynomial of the induced (resp.
image) good V -filtration U•(M ) of M . It is easy to see that product b1(s)b2(s) is a
Bernstein polynomial for the V -filtration U•(M ).

The category of the Y -specializable DX -modules is then an abelian subcategory,
stable by extension, of the category of coherent DX -modules.

Proposition 7.3.10. Let σ : C/Z → C be a section of the natural projection π : C →
C/Z. Let M be a coherent Y -specializable DX-module. Then there exists a unique
good V -filtration, denoted by V σ

• (M ), such that its Bernstein-Sato polynomial bσ(s) ∈
C[s] has roots in the image of σ.

Proof. Let b(s) be the Bernstein-Sato polynomial of a good V -filtration U•(M ). Mod-
ulo a shift of this filtration, we can assume that the real part of all roots α of b(s)
satisfy Reα ⩽ Reσπ(α). Then, let λ ∈ C be a zero of b(s) with multiplicity ℓ ∈ N and
satisfying Reλ < Reσπ(λ). We write b(s) = (s − λ)ℓb1(s). Therefore, the filtration
defined by

∀ k ∈ Z, U ′k(M ) = Uk−1(M ) + (E + k − λ)ℓUk(M )
is a good V -filtration of M . Notice that (s− λ− 1)ℓb1(s) is a Bernstein polynomial
associated to this filtration. In this way, one can construct step by step a good V -
filtration for which the Bernstein-Sato polynomial has its roots in the image of the
section σ.

Consider now two good V -filtrations U•(M ) and V•(M ) such that their Bernstein-
Sato polynomials bU (s) and bV (s) have their roots in the image of the section σ. It is
enough to show that U•(M ) ⊂ V•(M ). After Exercise 7.2.3, there exists an integer
ℓ ∈ Z such that for every k ∈ Z, Uk(M ) ⊂ Vk+ℓ(M ). The inclusion U•(M ) ⊂ V•(M )
being clear when ℓ ⩽ 0, let us treat the case ℓ ∈ N∖{0}. Notice that, the polynomials
bU (s+ k) and bV (s+ k + ℓ) being coprime, there exist two polynomials p and q such
that 1 = p(s)bU (s + k) + q(s)bV (s + k + ℓ). In particular, for any local section m of
Uk(M ), we have

m = p(E)bU (E+k)m+q(E)bV (E+k+ℓ)m ∈ Uk−1(M )+Vk+ℓ−1(M ) ⊂ Vk+ℓ−1(M ).

Iterating this process, we obtain the inclusion U•(M ) ⊂ V•(M ).

Corollary 7.3.11. Let 0→M1 →M →M2 → 0 be an exact sequence of DX-modules
which are specializable along Y . Let σ : C/Z→ C be a section of the natural projection
π : C→ C/Z.
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(1) For every k ∈ Z, the sequences of V0(DX)-modules

0 −→ V σ
k (M1) −→ V σ

k (M ) −→ V σ
k (M2) −→ 0

are exact.
(2) The sequence of graded grV (DX)-modules

0 −→ grV σ

(M1) −→ grV σ

(M ) −→ grV σ

(M2) −→ 0

is exact.

Proof. Remark that the filtration V σ
• (M ) induces on M1 and M2 good filtrations,

the Bernstein-Sato polynomials of which divide bσ(s). After Proposition 7.3.10, these
induced filtrations are the filtrations V σ

• (M1) and V σ
• (M2). This implies the exactness

property of the sequences.

Last, if φ : M → N is a morphism between Y -specializable DX -modules, it follows
from Corollary 7.3.11 that, for any k ∈ Z, we have

φ(V σ
k (M )) = V σ

k (N ) ∩ φ(M ).

In other words, any morphism is strict for the V σ
• filtrations. Hence, for every k ∈ Z,

M → V σ
k (M ) defines a functor from the category of Y -specializable DX -modules to

the category of coherent V0(DX)-modules.

Exercise 7.3.12
(1) Let M be a coherent DX -module supported on Y . Show that M is special-
izable along Y and that the set A of Exercise 7.3.8 may be chosen equal to {0}.
Show that V σ

• M does not depend on σ, provided that σ(0) = 0. We denote it
by V•M . Show that the roots of the Bernstein-Sato polynomial of V•M belong
to N.
(2) If M is a coherent DX -module which is noncharacteristic with respect to Y ,
show that M is specializable along Y and that the set A of Exercise 7.3.8 may
be chosen equal to {0}. Show that V σ

• M does not depend on σ, provided
that σ(0) = 0. We denote it by V•M . Show that VkM = M if k ⩾ −1 and
V−kM = I k−1

Y M if k ⩾ 1. Conclude that the roots of the Bernstein-Sato
polynomial of V•M belong to −N∗.

Exercise 7.3.13 (The canonical V -filtration). Let M be a Y -specializable DX -module.
For any compact set K ⊂ X, show that there exists a finite set A ⊂ C and, for any
a ∈ Re(A) a unique good V -filtration Va+•M indexed by Z such that

• Va+kM ⊂ Va′+ℓM if a+ k ⩽ a′ + ℓ in R,
• for any a ∈ Re(A) + Z, the roots α of the minimal polynomial of −∂tt on

grV
a M := VaM /V<aM satisfy Re(α) = a [by definition, < a = max{a′ ∈

Re(A) + Z | a′ < a}]. [Hint: if such filtrations exist, estimate the roots of the
Bernstein-Sato polynomial of any local sectionm of VaM for any a ∈ Re(A)+Z.]
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Show that the canonical V -filtration satisfies the following properties:

(1) for any a < 0 in Re(A) + Z, t : VaM → Va−1M is an isomorphism of
OX -modules [Hint: use Lemma 7.2.5],

(2) for any a ̸= −1, ∂t : grV
a M → grV

a+1M is bijective.

Exercise 7.3.14 (Invariance by embedding). Let i : X ↪→ X ′ be a closed embedding
of complex manifolds. Let Y ′ be a smooth hypersurface in X ′ which is transverse
to X, i.e., such that the (scheme-theoretical) intersection Y = Y ′ ∩ X is a smooth
hypersurface in X. Let M be a coherent DX -module.

Show that M is specializable along Y if and only if i+M is specializable along Y ′.
Still denoting by i the inclusion Y ↪→ Y ′, show that, with notation of Exercise 7.3.13,
for any a ∈ R we have (after defining the right-hand term) grV

a i+M = i+grV
a M .

7.4. Localization and restriction of specializable DX-modules

If M is a coherent DX -module and Y ↪
i−→ X is a smooth hypersurface, the inverse

image i+M (see Exercise 4.2.2) is not DY -coherent in general (e.g. take M = DX).
Similarly, the localization OX(∗Y )⊗OX

M does not remain DX -coherent in general.
The category of Y -specializable DX -modules is the right subcategory of Mcoh(DX)
where coherence is preserved under these two functors, as we will see below. We will
work locally, and we fix local coordinates (t, x) on X so that Y is defined by t = 0.

If M is an OX -module, we denote by M [1/t] the localized OX -module OX(∗Y )⊗OX

M . As OX(∗Y ) ha a natural structure of a left DX -module, we know from Exer-
cise 1.2.6 that, if M is a left DX -module, then so is M [1/t].

Let s be a new variable. Consider the sheaf DX [s] of differential operators with
coefficients in OX [s] and set M [1/t, s] = DX [s] ⊗DX

M [1/t]. This is a left DX [s]-
module. We will now twist this structure, keeping fixed however the underlying
OX [1/t, s]-structure.

Lemma 7.4.1. The following rule defines a left DX [s]-module structure on the OX [s]-
module M [1/t, s]: for any ℓ ∈ N and any local section m of M [1/t],

∂xjs
ℓm = sℓ∂xjm,

∂ts
ℓm = sℓ[∂tm+ st−1m].

Proof. Use Lemma 1.2.1.

It will be convenient to denote by M [1/t, s]ts the OX [1/t, s]-module M [1/t, s]
equipped with this twisted structure. That is, we formally write the new connection
as t−s ◦∇◦ ts. Be careful however that “ts” is nothing but a symbol which allows one
to remember, through the Leibniz rule, the left DX [s] structure.
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Exercise 7.4.2 (Specialization to s = k). Let k be any integer.
(1) Show that t−k∇tk defines a left DX -structure on the OX [1/t]-module
M [1/t].
(2) Show that (M [1/t], t−k∇tk) ≃M [1/t, s]ts

/
(s− k)M [1/t, s]ts.

Exercise 7.4.3 (Bernstein’s functional equation). Let m be a local section of M [1/t]
and let b(s) ∈ C[s]. Show that the following conditions are equivalent:

(1) b(E)m ∈ V−1(DX)m,
(2) b(−s− 1)mts ∈ DX [s]mts+1.

[Hint: show, for any local section m of M [1/t], the identity (t∂tm)ts = −(s+1)mts +
∂t(mts+1) and then, for any integer k, ((t∂t)km)ts − (−s− 1)kmts ∈ DX [s]mts+1.]

Proposition 7.4.4. Let M be a Y -specializable DX-module. The DX-module M (∗Y ) is
specializable along Y (in particular coherent).

Proof. Let M be a Y -specializable DX -module. Let us first show the coherence
of M (∗Y ). This is a local problem; moreover, by induction on the cardinal of a
generators system of M , we can assume that M is generated by one section m ∈M .
After Exercise 7.4.3, there exists a nonzero polynomial b(s) ∈ C[s] such that b(s)mts ∈
DX [s]mts+1.

Let k0 ∈ N be an integer, such that b(−k) ̸= 0 for any k ⩾ k0 + 1. Then mt−k ∈
DXmt

−k0 , for k ⩾ k0 + 1. From the identity (∂tm)t−k = ∂t(mt−k) + kmt−k−1, we
get M [1/t] = DX ·mt−k0 . The filtration FℓDX ·mt−k0 (ℓ ∈ N) is a good filtration
(see Exercise 2.2.3), hence the DX -module M [1/t] is coherent.

Let m′ be a local section of M (∗Y ). It can be written as m′ = m/tk for some
local section m of M . As M is Y -specializable, there exists a nonzero polynomial
b(s) such that b(E)m ∈ V−1(DX)m. From this, we deduce a Bernstein’s identity for
m′ ∈M (∗Y ):

b(E + k)t−km ∈ V−1(DX)t−km.

Therefore, M (∗Y ) is specializable along Y .

Corollary 7.4.5. Under the same assumptions, the natural morphism of V0(DX)-
modules

V<0(M ) −→ V<0(M (∗Y ))
is an isomorphism.

Proof. Let T (M ) = Γ[Y ]M be the DX -submodule in M of sections supported by Y .
We have the exact sequence:

0 −→ T (M ) −→M −→M (∗Y ) −→ C(M ) −→ 0.

The modules M and M (∗Y ) are specializable along Y . It follows from Proposition
7.3.9 that the DX -modules T (M ) and C(M ) are so. On the other hand, these modules
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are supported by Y ; we have seen that the roots of Bernstein’s polynomials of their
sections are strictly negative integers (see Exercise 7.3.12). Then V<0(T (M )) = 0
and V<0(C(M )) = 0 and we deduce from Corollary 7.3.11 the natural isomorphism:

V<0(M ) −→ V<0(M (∗Y )).

Exercise 7.4.6. Give a proof of the corollary using Lemma 7.2.5.

Proposition 7.4.7. Let M be a Y -specializable DX-module. We denote by i : Y ↪→ X

the inclusion. If the hypersurface Y has a global reduced equation f = 0 (or after
restricting X), the complex Li+M is functorially isomorphic to the complex of DY -
modules

0 −→ grV
0 (M )|Y

f−−−→ grV
−1(M )|Y −→ 0.

In particular, the cohomology sheaves of Li+M are DY -coherent.

Proof. Let us consider the multiplication by f :

V<0(M [1/f ]) ϕ−−−→ V<−1(M [1/f ]), m 7−→ fm.

As the multiplication by f in M [1/f ] is bijective, the map ϕ is injective. Let us
show its surjectivity. Let be m ∈ V<−1(M [1/f ]) and m′ = (m/f) ∈ M [1/f ]. From
a Bernstein-Sato’s equation of m, we get f bm(E + 1)m′ ∈ V−2(DX)m′. After di-
vision by f , we deduce that bm(s + 1) is a multiple of Bernstein-Sato’s polynomial
of m′. Hence, m′ ∈ V<0(M [1/f ]) and ϕ is surjective and then finally bijective. We
deduce from Proposition 7.4.4 that the morphism by f : V<0(M )→V<−1(M ) is an
isomorphism (one can also use Exercise 7.3.13). The complexes

0→ grV
0 (M )|Y

f−−−→ grF
−1(M )|Y → 0 and 0→ V0(M )|Y

f−−−→ V−1(M )|Y → 0

are therefore isomorphic. But, under the assumption of the proposition, the complex
Li+M is represented by the complex of DY -modules

0 −→M|Y
f−−−→M|Y −→ 0.

In order to prove the proposition, it is enough to show that the morphism

M /V0(M ) ϕ′−−−→M /V−1(M ), m 7−→ fm,

is an isomorphism.
Recall that, for any integer k ∈ N, the endomorphism E of Vk(M )/Vk−1(M ) is

bijective. By induction on k, any section of M = ∪k∈NVk(M ) is a section of fM

modulo V0(M ). It follows that, for k ∈ N, any section of Vk(M ) is a section of fM
modulo V0(M ). Hence, ϕ′ is onto.

We have now to prove the injectivity of ϕ′. Let m ∈M be such that fm ∈ V−1(M ).
The polynomial bfm(s) has positive roots and satisfies bfm(E)fm ∈ V−1(DX)fm.
Apply the operator ∂t to this identity to get bfm(E + 1)(E + 1)m ∈ V−1(DX)m.
Hence, m belongs to V0(M ) and ϕ′ is injective.
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Now, the coherence of the cohomology sheaves of Li+M follows from Exer-
cise 7.3.5.

Theorem 7.4.8. Any holonomic DX-module M is specializable along any hypersur-
face Y . Moreover M (∗Y ) and Ljf+M (see § 4.2) are still holonomic, and so are the
graded modules grV

k M , after any local identification of grV
0 DX with DY [E].

Exercise 7.4.9. Consider the monomial function f(x, y) = x2y3 and the DC3-module

M = OC3 [1/(t− f)]
/

OC3 .

Denote by δ(t− f) the class of 1/(t− f) in M .
(1) Show that M is DX -coherent and that δ(t− f) is a generator.
(2) Compute the characteristic variety of M .
(3) Compute a Bernstein polynomial for any local section xkyℓδ(t−f), k, ℓ ∈ N.
(4) Show that M is specializable along {t = 0}.
(5) Determine a set A of Exercise 7.3.8 in ]− 1, 0[ ∩Q.
(6) Compute the various graded pieces grV

k M and the action of E on them.

7.5. V -filtration and direct images

The purpose of this section is to establish the compatibility between taking a direct
image and taking a graded part of a V -filtered D̃X -module. We will give an analogue
of Proposition 3.3.17 of [Sai88] and of its proof. Another proof, which only applies to
holonomic D-modules, is given in [MS89, § 4.8]. Let us first introduce a definition.

Definition 7.5.1. Let Y ⊂ X be a smooth hypersurface, let V•D̃X be the corresponding
V -filtration and let M be a left D̃X -module equipped with an increasing filtration
U•M indexed by Z such that VkD̃X · UℓM ⊂ Uk+ℓM for any k, ℓ ∈ Z. We say
that (M , U•M ) (or also grUM ) is monodromic if, locally on X, there exists a monic
polynomial b(s) = sd +

∑d−1
i=0 ai(z)si ∈ C[z][s] such that

(1) b(−(ðtt+ kz)) · grU
k M = 0 for all k ∈ Z,

(2) gcd(b(s− kz), b(s− ℓz)) ∈ C[z] ∖ {0} for all k ̸= ℓ.

In the non-filtered case, one may forget about z. Then, any Y -specializable DX -
module, when equipped with V σ

• M (for any choice of σ), is monodromic.

Theorem 7.5.2. Let f : X → X ′ be holomorphic map between complex analytic man-
ifolds and let t ∈ C be a new variable. Put F = f × Id : X × C → X ′ × C. Let M

be a right D̃X×C-module equipped with a V -filtration U•M (relative to the hypersur-
face Y = X × {0}). Then U•M defines canonically and functorially a V -filtration
U•H i(F†M ).

Assume that F is proper on the support of M .
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(1) If M is good and U•M is a good V -filtration, then U•H i(F†M ) is a good
V -filtration.
(2) If moreover grUM is monodromic and f†grUM is strict, then one has a
canonical and functorial isomorphism of D̃X′-modules (k ∈ Z)

grU
k

(
H iF†M

)
= H i

(
f†grU

k M
)
,

and grU
(
H iF†M

)
is monodromic and strict.

Remark 7.5.3. In the last assertion, we view grU
k M as a right D̃X -module. By func-

toriality, the action of tðt descends to H i(f†grU
k M ).

Corollary 7.5.4. Let f : X → X ′ be a morphism of complex manifolds and let φ : X ′ →
C be a holomorphic function. Let M be a coherent DX-module which is specializable
along φ ◦ f = 0. Assume that f is proper on Supp M . Then the cohomology modules
H if†M are specializable along φ = 0.

Proof. We will use the isomorphism F† = f† for M (see Remark 4.3.4(3)), i.e., we
take the direct image viewing M as a D̃X×C/C-module equipped with a compatible
action of ðt. Put N • = f†M . This complex is naturally filtered by U•N

• := f†U•M .
Therefore, we define the filtration on its cohomology by

U•H
i(F†M ) = U•H

i(f†M ) := image
[
H i(f†U•M )→H i(f†M )

]
.

Notice that, for any j, f†UjM is the direct image of UjM viewed as a D̃X×C/C-
module, on which we put the natural action of tðt.

The relation with the Rees construction is given by the following lemma:

Lemma 7.5.5. Let (N •, U•N
•) be a V -filtered complex of D̃X′×C-modules. Put

UjH
i(N •) := image

[
H i(UjN

•)→H i(N •)
]
.

Then we have
H i(RUN •)

/
τ -torsion = RUH i(N •).

In particular, if RUN • has D̃X′×C-coherent cohomology, then U•H i(N •) is a good
V -filtration.

Proof. By definition, one has a surjective morphism of graded modules H i(RUN •)→
RUH i(N •), and this morphism induces an isomorphism after tensoring with
C[τ, τ−1].

Lemma 7.5.6. If M is good, then any coherent V0D̃X-submodule is good.

Proof. As a coherent V0D̃X -submodule of M induces on any subquotient of M a
coherent V0D̃X -submodule, we may reduce to the case where M has a good filtration.
It is then enough to prove that any coherent V0D̃X -submodule N of M is contained
in such a submodule having a good filtration. If F is a ÕX -coherent submodule
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of M which generates M , then N is contained in VkD̃X ·F for some k, hence the
result.

This lemma allows one to apply Grauert’s coherence theorem to each Uj , in or-
der to get that each f†UjM has V0D̃X -coherent cohomology under the properness
assumption. We conclude that for each i, j, UjH if†M is V0D̃X -coherent.

In order to end the proof of (1), we need to prove that each U•H if†M is a good
V -filtration. We will compute directly the Rees module associated with this filtration,
in order to get its coherence. Let us first consider the analogue of Lemma 7.5.6.

Keep notation of § 7.2. The graded ring RV D̃X is filtered by the degree in the
derivatives τðt,ðxj

and the degree-zero term of the filtration is RV ÕX , with VkÕX =
ÕX for k ⩾ 0 and = t−kÕX for k ⩽ 0.

Let (M , U•M ) be a V -filtered right D̃X -module and let RUM be the associated
Rees module. We therefore have the notion of a good filtration on RUM (by coherent
graded RV ÕX -submodules). If RUM has a good filtration (or if RUM is generated
by a coherent graded RV ÕX -module), it is RV D̃X -coherent and has a left resolution
by coherent “induced” graded RV D̃X -modules, of the form G ⊗

RV ÕX
RV D̃X , where

G is graded RV ÕX -coherent. We may even assume (by killing the τ -torsion) that
each term G⊗

RV ÕX
RV D̃X has no τ -torsion, or in other words that it takes the form

RU (L⊗
ÕX

D̃X), where L is ÕX -coherent, having support contained in Supp M , and
equipped with a good V -filtration (i.e., a good IY -adic filtration) and U•(L⊗

ÕX
D̃X)

is defined in the usual way.
We say that RUM is good if, in the neighbourhood of any compact set K ⊂

X, RUM is a finite successive extension of graded RV D̃X -modules having a good
filtration.

Lemma 7.5.7. Assume that M is a good D̃X-module and let U•M be a good V -filtration
of M . Then RUM is a good graded RV D̃X-module.

Proof. Fix a compact set K ⊂ X. First, it is enough to prove the lemma when M

has a good filtration in some neighbourhood of K, because a good V -filtration U•M

induces naturally on any subquotient M ′ of M a good V -filtration, so that RUM ′ is
a subquotient of RUM .

Therefore, assume that M is generated by a coherent ÕX -module F , i.e., M =
D̃X · F . Consider the V -filtration U ′•M generated by F , i.e., U ′•M = V•D̃X · F .
Then, clearly, RV ÕX ·F = ⊕kVkÕX ·F τk is a coherent graded RV ÕX -module which
generates RU ′M .

If the filtration U ′′• M is obtained from U ′•M by a shift by −ℓ ∈ Z, i.e., if RU ′′M =
τ ℓRU ′M ⊂ M [τ, τ−1], then RU ′′M is generated by the RV ÕX -coherent submodule
τ ℓRV ÕX ·F .
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On the other hand, let U ′′• M be a good V -filtration such that RU ′′M has a good
filtration. Then any good V -filtration U•M such that UkM ⊂ U ′′k M for any k

satisfies the same property, because RUM is thus a coherent graded submodule of
RU ′′M , so a good filtration on the latter induces a good filtration on the former.

As any good V -filtration U•M is contained, in some neighbourhood of K, in the
good V -filtration U ′•M suitably shifted, we get the lemma.

To end the proof of Part (1), it is therefore enough to prove it for induced modules
M = L ⊗

ÕX
D̃X , with L coherent over ÕX and F| Supp L proper. We will indicate

it when f : X = Y × Z → Y is the projection. We then have

Uj(L ⊗
ÕX×C

D̃X×C) = Uj

[
(L ⊗

f−1ÕY ×C
f−1D̃Y×C) ⊗

f−1ÕY ×C

D̃X×C/Y×C

]
= Uj(L ⊗

f−1ÕY ×C
f−1D̃Y×C) ⊗

f−1ÕY ×C

D̃X×C/Y×C,

because the V -filtration on D̃X×C/Y×C is nothing but the t-adic filtration. Now, we
have

f†Uj(L ⊗
ÕX×C

D̃X×C) = Rf∗Uj(L ⊗
f−1ÕY ×C

f−1D̃Y×C)

= Uj(Rf∗L ⊗ÕY ×C
D̃Y×C),

if we filter the complex Rf∗L by subcomplexes Rf∗Uj(L ) and we filter the ten-
sor product as usual. By Grauert’s theorem applied to coherent RV ÕX×C-sheaves,
Rf∗RUL is RV ÕY×C-coherent, hence f†RU (L ⊗

ÕX
D̃X) is RV D̃Y×C-coherent. After

Lemma 7.5.5, we get 7.5.2(1).
In order to get Part (2) of the theorem, we will first prove:

Proposition 7.5.8. Let (N •, U•N
•) be a V -filtered complex of D̃Y×C-modules. Assume

that

(1) the complex grUN • is strict and monodromic,

(2) there exists j0 such that for all j ⩽ j0 and all i, the left multiplication by t
induces an isomorphism t : UjN i ∼−→ Uj−1N i,

(3) There exists i0 ∈ Z such that, for all i ⩾ i0 and any j, one has
H i(UjN

•) = 0.

Then for any i, j the morphism H i(UjN
•) → H i(N •) is injective. Moreover, the

filtration U•H i(N •) defined by

UjH
i(N •) = image

[
H i(UjN

•)→H i(N •)
]

satisfies grUH i(N •) = H i(grUN •).

Proof. It will have three steps.
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First step. This step proves a formal analogue of the conclusion of the proposition.
Put

ÛjN
• = lim←−

ℓ

UjN
•
/UℓN

• and N̂ • = lim−→
j

ÛjN
•.

Under the assumption of Proposition 7.5.8, we will prove the following:

(a) For all k ⩽ j, ÛkN • → ÛjN
• is injective (hence, for all j, ÛjN

• → N̂ •

is injective) and ÛjN
•/ ̂Uj−1N

• = UjN
•/Uj−1N

•.

(b) For any k ⩽ j, H i(UjN
•/UkN •) is strict.

(c) H i(ÛjN
•) = lim←−ℓ

H i(UjN
•/UℓN

•).

(d) H i(ÛjN
•)→H i(N̂ •) is injective.

(e) H i(N̂ •) = lim−→j
H i(ÛjN

•).

Define UjH i(N̂ •) = image
[
H i(ÛjN

•)→H i(N̂ •)
]
. Then the statements (a)

and (d) imply that

grU
j H i(N̂ •) = H i(ÛjN

•/ ̂Uj−1N
•) = H i(grU

j N •).

For ℓ < k < j consider the exact sequence of complexes

0 −→ UkN •
/UℓN

• −→ UjN
•
/UℓN

• −→ UjN
•
/UkN • −→ 0.

As the projective system (UjN
•/UℓN

•)ℓ trivially satisfies the Mittag-Leffler condi-
tion (ML), the sequence remains exact after passing to the projective limit, so we get
an exact sequence of complexes

0 −→ ÛkN • −→ ÛjN
• −→ UjN

•
/UkN • −→ 0,

hence (a).
Let us show by induction on n ⩾ 1 that, for all i and j,

(b)n H i(UjN
•/Uj−nN •) is strict (hence (b));

Indeed, (b)1 follows from Assumption 7.5.8(1). Remark also that, by induction on n ⩾
1, 7.5.8(1) implies that, for any n, ℓ, i, H i(Uℓ/Uℓ−n) is killed by

∏ℓ
k=ℓ−n+1 b(ðtt+kz).

For n ⩾ 2, consider the exact sequence

· · · −→H i(Uj−1/Uj−n) −→H i(Uj/Uj−n) −→H i(Uj/Uj−1)
ψ−−−→H i+1(Uj−1/Uj−n) −→ · · ·

Any local section of Imψ is then killed by b(ðtt + jz) and
∏j−1

k=j−n+1 b(ðtt + kz),
hence by a nonzero holomorphic function of z. By strictness (b)n−1 applied to
H i+1(Uj−1/Uj−n), this implies that ψ = 0, so the previous sequence of H i is exact
and H i(Uj/Uj−n) is also strict, hence (b)n.
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By the same argument, we get an exact sequence, for all ℓ < k < j,
(7.5.9)

0 −→H i(UkN •
/UℓN

•) −→H i(UjN
•
/UℓN

•) −→H i(UjN
•
/UkN •) −→ 0.

Consequently, the projective system (H i(UjN
•/UℓN

•))ℓ satisfies (ML), so we get
(c) (see e.g. [KS90, Prop. 1.12.4]). Moreover, taking the limit on ℓ in the previous
exact sequence gives, according to (ML), an exact sequence

0 −→H i(ÛkN •) −→H i(ÛjN
•) −→H i(UjN

•
/UkN •) −→ 0,

hence (d). Now, (e) is clear.

Second step. For any i, j, denote by T i
j ⊂ H i(UjN

•) the t-torsion subsheaf of
H i(UjN

•). We will now prove that it is enough to show that there exists j0 such
that, for each i and each j ⩽ j0,

(7.5.10) T i
j = 0.

Assume that (7.5.10) is proved (step 3). Let j ⩽ j0 and let ℓ ⩾ j. Then, by
definition of a V -filtration, tℓ−j acts by 0 on UℓN

•/UjN
•, so that the image of

H i−1(UℓN
•/UjN

•) in H i(UjN
•) is contained in T i

j , and thus is zero. We there-
fore have an exact sequence for any i:

0 −→H i(UjN
•) −→H i(UℓN

•) −→H i(UℓN
•
/UjN

•) −→ 0.

Using (7.5.9), we get for any ℓ the exact sequence

0 −→H i(Uℓ−1N
•) −→H i(UℓN

•) −→H i(grU
ℓ N •) −→ 0.

This implies that that H i(UℓN
•)→H i(N •) is injective. Put

UℓH
i(N •) = image

[
H i(UℓN

•)→H i(N •)
]
.

We thus have, for any i, ℓ ∈ Z,

grU
ℓ H i(N •) = H i(grU

ℓ N •).

Third step: proof of (7.5.10). Remark first that, according to 7.5.8(2), the multipli-
cation by t induces an isomorphism t : ÛjN

• → ̂Uj−1N
• for j ⩽ j0, and that (d) in

Step one implies that, for all i and all j ⩽ j0, the multiplication by t on H i(ÛjN
•)

is injective.
The proof of (7.5.10) is done by decreasing induction on i. It clearly hods for i ⩾ i0

(given by 7.5.8(3)). Assume that, for any j ⩽ j0, we have T i+1
j = 0. We have (after

7.5.8(2)) an exact sequence of complexes, for any ℓ ⩾ 0,

0 −→ UjN
• tℓ−−−→ UjN

• −→ UjN
•/
Uj−ℓN

• −→ 0.

As T i+1
j = 0, we have, for any ℓ ⩾ 0 an exact sequence

H i(UjN
•) tℓ−−−→H i(UjN

•) −→H i(UjN
•
/Uj−ℓN

•) −→ 0,
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hence, according to Step one,

H i(ÛjN
•)/H i( ̂Uj−ℓN

•) = H i(UjN
•
/Uj−ℓN

•) = H i(UjN
•)/tℓH i(UjN

•).

According to Exercise 7.2.8, for ℓ big enough (locally on X), the map

T i
j −→H i(UjN

•)/tℓH i(UjN
•)

is injective. It follows that T i
j →H i(ÛjN

•) is injective too. But we know that t is
injective on H i(ÛjN

•) for j ⩽ j0, hence T i
j = 0, thus concluding Step 3.

We apply the proposition to N • = f†M equipped with U•N
• = f†U•M to

get 7.5.2(2). That Assumption (1) in the proposition is satisfied follows from the
assumptions in 7.5.2(2). Assumption (2) is a consequence of the fact that U•M is a
good V -filtration and Lemma 7.2.5. Last, Assumption (3) is satisfied because f has
finite cohomological dimension.
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