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INTRODUCTION

In his introductory text to [DMR07], Deligne explains his understanding of some

analogies between the `-adic theory in characteristic p and the irregular singularities

of holonomic D-modules. Some of these analogies will be our guides for these lectures.

Much work has been realized in order to prove analogues in the theory of holonomic

D-modules to the fundamental results proved by Katz and Laumon in [KL85] and

by Laumon in [Lau87], as well as subsequent work of Katz [Kat90a, Kat96], all in

the `-adic theory. Let us mention in particular [Kat90b], and [BE04, GL04] for the

product formula of [Lau87].

Although our point of view in these notes is mainly from the D-module theory, we

will keep the link with the `-adic theory.

The Fourier transformation from the D-module theoretic point of view has been

considered with details in [Mal91]. Here, we will also focus on questions firstly raised

in the `-adic setting, like the question of purity.





LECTURE 1

FOURIER TRANSFORMATION:

SOME ANALOGIES BETWEEN ARITHMETIC AND

COMPLEX ALGEBRAIC GEOMETRY

1.1. Exponential sums and exponential integrals

1.1.a. Exponential sums (see [Kat90b]). Given a polynomial f ∈ Z[x1, . . . , xn]

with integral coefficients and a prime number p, we regard the reduction of f mod p

as a morphism AnFp → A1
Fp and we consider the counting function

Sol(f, p, •) : A1
Fp −→ Z

t 7−→ #f−1(t).

Let ψp : Z/pZ → C× be the additive character defined by ψp(t) = exp(2πit/p), so

that any additive character ψ : Z/pZ→ C× takes the form ψ(t) = ψp(τt) for a unique

τ ∈ Z/pZ.

Giving the function Sol(f, p, •) is equivalent to giving its Fourier transform

ψ 7−→
∑
t∈A1Fp

ψ(t) Sol(f, p, t) =
∑

x∈AnFp

ψ(f(x)),

and if we regard ψ as corresponding to τ ∈ Â1
Fp , this is the function

Ŝol(f, p, •) : Â1
Fp −→ C×

τ 7−→
∑

x∈AnFp

exp(2πiτf(x)/p).

1.1.b. Exponential integrals. In order to avoid convergence questions, I will use

a slightly different setting. Let Y be a smooth complex projective variety of dimen-

sion n. Assume that Y is Calabi-Yau, e.g. Y is the quintic Fermat hypersurface in P4.

Then there exists a global holomorphic volume form ω. Let f : X → P1 be a rational

function defined on some blow-up of X of Y . I will also denote by ω the pull-back of ω

to X. I will consider the integration along the fibres of f of the form ω∧ω, which has

degree (n, n). This is the push-forward f∗(ω ∧ ω) regarded as a (1, 1)-current on P1:

C∞(P1) 3 ϕ 7−→
∫
X

ϕ ◦ f · ω ∧ ω.
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Let us fix an affine chart A1 of P1 with coordinate t. Then this current defines a

temperate distribution on A1, i.e., belongs to the Schwartz space S ′(A1) (by fixing

the (1, 1)-form i
2π dt∧dt). It is then completely determined by its Fourier transform.

In order to keep clear the holomorphic aspect, I will write the Fourier kernel as

exp(tτ − tτ) = exp 2i Im(tτ) = exp 2i(xη + yξ), t = x+ iy, τ = ξ + iη.

The Fourier transform Ft(f∗(ω ∧ ω)) is a temperate distribution on the affine line Â1

with coordinate τ . In the present setting, it is the continuous function defined as

τ 7−→
∫
X0

eτf−τf · ω ∧ ω, X0 = f−1(A1).

The following relations hods in the sense of temperate distributions:

∂τFt(f∗(ω ∧ ω)) = Ft(t · f∗(ω ∧ ω)), τ · Ft(f∗(ω ∧ ω)) = −Ft(∂tf∗(ω ∧ ω)).

1.2. Q` sheaves and holonomic DX-modules

1.2.a. Constructible Q` sheaves. Let ` be a prime number 6= p. We now work

with Q`-valued functions instead of Z-valued or C×-valued functions. We have a

push-forward morphism f! (see [Lau87, (1.1.1)]) for such functions. The function

Sol(f, p, t) is now replaced by f!(1AnFp ).

Given a Q`-sheaf K on AnFp , the function tK (trace of Frobenius on the germs of K

at geometric points of AnFp) satisfies

f!tK = tRf!K .

Therefore, f!(1AnFp ) can be regarded as the Frobenius trace function of Rf!Q`.
Now, the Q`-analogue of the Fourier transform of f!(1AnFp ), that is, of Ŝol(f, p, •),

is, up to sign (see [Lau87, Th. 1.2.1.2]) the Frobenius trace function of the Fourier-

Deligne transform of Rf!Q` with respect to the character ψp.

For this reason, one focuses on the properties of Q`-sheaves on the affine line A1
Fp ,

and their Fourier-Deligne transform.

1.2.b. Holonomic D-modules. Let us come back to the setting of §1.1.b. We

denote by C[t]〈∂t〉 the Weyl algebra in one variable, consisting of linear differential

operators in one variable t with polynomial coefficients.

Proposition 1. The distribution f∗(ω ∧ ω) satisfies a differential equation (in the dis-

tributional sense) P (t, ∂t)f∗(ω ∧ ω) = 0 for some nonzero P ∈ C[t]〈∂t〉.

Proof. Let us recall the definition of Gauss-Manin system of f : X0 → A1 and the

Picard-Fuchs differential equation for ω. Let τ be a new variable. Consider the twisted

de Rham complex (Ω•X0
[τ ],d− τdf), where ΩkX0

[τ ] is the sheaf of polynomials in the
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new variable τ with coefficients in ΩkX0
. The differential d : ΩkX0

→ Ωk+1
X0

gives rise to

a twisted differential

∇ = d− τdf∧ : ΩkX0
[τ ] −→ Ωk+1

X0
[τ ],

and it is easily checked that (d− τdf∧)2 = 0, that is, (Ω•[τ ],d− τdf∧) is a complex.

Lemma 2. The following operations

∂t · (
∑
ηiτ

i) =
∑
ηiτ

i+1

t · (
∑
ηiτ

i) =
∑

(fηi − (i+ 1)ηi+1)τ i

define an action of the Weyl algebra C[t]〈∂t〉 on each ΩkX0
[τ ] which commutes with ∇.

As a consequence, the cohomology modules H k
(
Rf∗(Ω

•
X0

[τ ],d − τdf∧)
)

are

equipped with the structure of a C[t]〈∂t〉-module. We denote them GMk(f). The

following is well-known (see [Bor87]).

Bernstein’s theorem. Each non-zero element of GMk(f) is annihilated by a non-zero

element of C[t]〈∂t〉, i.e., each GMk(f) is a holonomic C[t]〈∂t〉-module.

Lemma 3. The algebraic form ω ∈ Ωn(X0) defines a class [ω] in GMn(f).

Proof. Let us choose an affine covering (Ui)i∈I ofX0 and realize Rf∗(Ω
•
X0

[τ ],d−τdf∧)

as the simple complex attached to the double complex (Ω•X0
[τ ](UJ⊂I),d − τdf∧, δ),

where δ is the Čech differential and UJ =
⋂
i∈J Ui. Then ω has type (n, 0) in this

double complex, and both differentials vanish on ω.

Let P (t, ∂t) the Picard-Fuchs operator of ω, i.e., the nonzero operator of minimal

degree in ∂t annihilating [ω], which exists according to Bernstein’s theorem. The asser-

tion of the proposition follows from the following claim: we have P (t, ∂t)f∗(ω ∧ ω) = 0.

We write P =
∑d
i=0 ∂

i
tai(t) with ai ∈ C[t]. We will now work with the analytic

Gauss-Manin system GMn
an(f) = H n

(
Rf∗(Ω

•
Xan

0
[τ ],d − τdf∧)

)
. It is computed by

using the soft resolution (A •
Xan

0
[τ ],d− τdf) of (Ω•Xan

0
[τ ],d− τdf), where A •

X0
denote

the C∞ differential forms on Xan
0 . We have GMn

an(f) = Oan
A1 ⊗OA1

GMn(f). Hence ω

also defines a class in GMn
an(f) and this class satisfies P · [ω] = 0.

Firstly, given (n− 1, 0)-form η and a (0, n)-form ψ (both C∞), Stokes formula∫
X0

d(ϕ ◦ f · η ∧ ψ) = 0, ∀ϕ ∈ C∞c (A1)

reads

−
∫

(∂tϕ ◦ f) df ∧ η ∧ ψ =

∫
(ϕ ◦ f) dη ∧ ψ, ∀ϕ ∈ C∞c (A1),

that is,

(4) ∂tf∗(df ∧ η ∧ ψ) = f∗(dη ∧ ψ).
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The relation P · [ω] = 0 means that
∑d
i=0 ai ◦ f ωτ i ∈ (d − τdf)A n−1

Xan
0

[τ ], i.e., there

exists k > 0 and η0, . . . , ηd+k ∈ A n−1
Xan

0
such that

(5)



a0 ◦ f · ω = dη0

...

ad ◦ f · ω = dηd − df ∧ ηd−1

0 = dηd+1 − df ∧ ηd
...

0 = dηd+k − df ∧ ηd+k−1

0 = − df ∧ ηd+k.

Then, by using (4), the equations d+ 1, . . . , d+ k+ 1 in (5) give f∗(dηd ∧ω) = 0, and

the dth one gives ad(t)f∗(ω ∧ω) + f∗(df ∧ ηd−1 ∧ω) = 0. Applying ∂t on the left and

using the (d−1)st equation gives (∂tad(t)+ad−1(t))f∗(ω∧ω)+f∗(df ∧ηd−2∧ω) = 0.

Continuing the use of (5) actually gives P (t, ∂t)f∗(ω ∧ ω) = 0.

The Fourier transform Ft(f∗(ω ∧ ω)) satisfies therefore the differential equation

FP (τ, ∂τ )Ft(f∗(ω ∧ ω)) = 0,

with FP (τ, ∂τ ) =
∑
i(−τ)iai(∂τ ). In other words, f∗(ω∧ω) is a distribution solution of

the holonomic C[t]〈∂t〉-module C[t]〈∂t〉/(P ) and Ftf∗(ω∧ω) is a distribution solution

of the holonomic C[τ ]〈∂τ 〉-module C[τ ]〈∂τ 〉/(FP ).

We will now focus on the properties of holonomic C[t]〈∂t〉-modules.

1.3. Fourier-Deligne transformation of Q`-sheaves and Fourier-Laplace

transformation of holonomic DX-modules

1.3.a. Fourier-Deligne transformation of Q`-sheaves. In his introduction to

[DMR07], Deligne writes (approximate translation from the French):

Around 1970, I was considering vector bundles with irregular singularity

as being “pathological”. I changed my mind only after having assimilated

the analogy between the bundle (O,d + dx) on the line, with horizontal

section exp(−x), and the `-adic sheaves L (ψ) deduced from the Artin-

Schreier coverings, on the line in characteristic p. The natural question

became: What does the `-adic theory suggests for holonomic D-modules

with possibly irregular singularities – or some of them.

The Fourier-Deligne transformation follows this analogy between exp and Artin-

Schreier coverings. The Artin-Schreier covering xp − x = t of the affine line A1
Fp

with coordinate t produces a lisse Q`-sheaf Lψ for each non-trivial additive character
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ψ : Fp → Q`. On A1
Fp × Â1

Fp consider the morphism µ(t, τ) = tτ and the pull-back

Q`-sheaf µ∗Lψ. Consider then the diagram

A1
Fp × Â1

Fp
π

zz

π̂

$$

A1
Fp Â1

Fp

The ψ-Fourier-Deligne transform of a Q`-sheaf F on A1
Fp is

F!,ψ(F ) = Rπ̂!(Lπ
∗F ⊗ µ∗Lψ)[1].

There is also a variant F∗,ψ. Various properties are proved in [Lau87], in particular

F∗,ψ = F!,ψ, a Fourier inversion formula and a formula for the commutation with

duality.

1.3.b. Fourier-Laplace transformation of holonomic DX-modules. Let M be

a holonomic C[t]〈∂t〉-module (i.e., M is a left C[t]〈∂t〉-module such that each element

is annihilated by some nonzero operator in C[t]〈∂t〉), that we also regard as a sheaf

of holonomic modules over the sheaf DA1 of algebraic differential operators on the

affine line A1 (with its Zariski topology). Its Laplace transform FM (also called the

Fourier transform) is a holonomic C[τ ]〈∂τ 〉-module, where τ is a new variable. Recall

that FM can be defined in various equivalent ways. We consider below the Laplace

transform with kernel etτ , and a similar description can be made for the inverse

Laplace transform, which has kernel e−tτ .

(1) The simplest way to define FM is to set FM = M as a C-vector space and

to define the action of C[τ ]〈∂τ 〉 in such a way that τ acts as −∂t and ∂τ as t (this

is modeled on the behaviour of the action of differential operators under Fourier

transform of temperate distributions). As already remarked, if M = C[t]〈∂t〉/(P ),

then FM = C[τ ]〈∂τ 〉/(FP ).

(2) One can mimic the Laplace integral formula, replacing the integral by the direct

image of D-modules. We consider the diagram

A1 × Â1

π
{{

π̂
##

A1 Â1

where t is the coordinate on A1 and τ that on Â1. Then FM = π̂+(π+M⊗Etτ ), where

Etτ is C[t, τ ] equipped with the connection d+d(tτ), and π+M is C[τ ]⊗CM equipped

with its natural connection. Recall also that π̂+ is the direct image of D-modules,

which is defined here in a simple way: π̂+(π+M ⊗ Etτ ) is the complex

0 −→ (π+M ⊗ Etτ )
∂t−−−→ (π+M ⊗ Etτ ) −→ 0
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where the source of ∂t is in degree −1 and the target in degree 0. More concretely,

this complex is written

0 −→ C[τ ]⊗C M
1⊗ ∂t + τ ⊗ 1−−−−−−−−−−−−→ C[τ ]⊗C M −→ 0

and one checks that the differential is injective, so that the complex is quasi-isomorphic

to its cokernel. This complex is in the category of C[τ ]-modules, and is equipped with

an action of C[τ ]〈∂τ 〉, if ∂τ acts as ∂τ ⊗ 1 + 1⊗ t. The map C[τ ]⊗CM →M sending

τk ⊗m to (−∂t)km identifies the cokernel with FM as defined in (1).

(3) It may be useful to work with proper maps. In order to do so, one has to

consider the projective completion P1 of A1 (resp. P̂1 of Â1) obtained by adding the

point ∞ to A1 (resp. the point ∞̂ to Â1). In the following, we shall denote by t′

(resp. τ ′) the coordinate centered at ∞ (resp. ∞̂), so that t′ = 1/t (resp. τ ′ = 1/τ)

on A1 r {0} (resp. on Â1 r {0̂}). We consider the diagram

(6)

P1 × P̂1

π
{{

π̂
##

P1 P̂1

Let M (resp. FM ) be the algebraic DP1 -module (resp. DP̂1 -module) determined

by M (resp. FM): it satisfies by definition M = OP1(∗∞)⊗OP1
M and M = Γ(P1,M )

(and similarly for FM). It is known that M (resp. FM ) is still holonomic. Applying a

similar construction to Etτ we get E tτ on P1×P̂1, which is a free OP1×P̂1(∗(D∞∪D∞̂))-

module of rank one, with D∞ ∪D∞̂ = P1 × P̂1 r (A1 × Â1). Then we have

(7) FM = H 0π̂+(π+M ⊗ E tτ ).

Remark 8. The identification F!,ψ = F∗,ψ for Q`-sheaves is translated here by replac-

ing π̂+ with the direct image of D-modules with proper support π†, or equivalently,

the conjugate of π+ by duality. The identification comes then from the observation

that, if N is any holonomic DP1-module supported at ∞, then FN = 0. This is

because already π+N ⊗ E tτ = 0, since π+N ⊗ OP1×P̂1(∗D∞) = 0.



LECTURE 2

MICROLOCAL ASPECTS OF

THE FOURIER TRANSFORMATION

2.1. Introduction

2.1.a. The stationary phase formula. Let us consider the setting of §1.1.b. The

Fourier transform Ftf∗(ω∧ω) is a continuous function on Â1, which is at the same time

a temperate distribution, hence has moderate growth as well as all its derivatives when

|τ | → ∞. However, it is rapidly oscillating and the stationary phase formula gives

information on the speed of oscillation. It expresses this function as a superposition of

functions e2i Im(cτ) with coefficients having non-oscillating phases, where c ∈ C varies

among the critical values of f . In other words, the stationary points of the phase f ,

i.e., the critical points of f , in the Fourier integral
∫
eτf−τfω ∧ ω give the speed of

oscillation of the integral.

This stationary phase formula can be obtained by analyzing the differential equa-

tion satisfied by the Fourier integral when |τ | → ∞. Our point of view will be to

describe the formal structure at τ = ∞ of the Fourier transform FM of the Gauss-

Manin system M attached to f . For P as in Proposition 1, the C[t]〈∂t〉-module

M = C[t]〈∂t〉/C[t]〈∂t〉 · P is regular, by the regularity theorem of Griffiths. Assume

more generally that M is any regular holonomic C[t]〈∂t〉-module, i.e., regular at finite

distance and at infinity.

Under this assumption, the following is well-known (see e.g. [Mal91] for the results

and the definition of the vanishing cycle functor):

(a) The Laplace transform FM is holonomic, has a regular singularity at the origin

τ = 0, no other singularity at finite distance, and possibly irregular at infinity.

(b) The formal structure of FM at infinity can be described exactly from the van-

ishing cycles of M (or of DRanM) at its critical points at finite distance. More

precisely, denoting by F̂M the formalized connection at ∞̂, we have a decomposition
F̂M '

⊕
c(Rc,∇ + d(c/τ ′)), where the sum is taken over the singular points c ∈ A1

of M , and (Rc,∇) is a regular formal meromorphic connection corresponding in a

one-to-one way to the data of the vanishing cycles of the perverse sheaf DRanM at c.
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The purpose of this lecture is to generalize this stationary phase formula to

arbitrary singularities of C[t]〈∂t〉-modules. This is justified by the following observa-

tion. Although the Gauss-Manin system M as above has regular singularities only, so

that the only rapidly oscillating phenomena are created by |τ | → ∞, other examples

may produce such rapid oscillation for finite values of τ . For example, if g is another

meromorphic function on X, one can consider integrals like∫
X1

e(τf+g)−(τf+g)ω ∧ ω, X1 = f−1(A1) ∩ g−1(A1).

2.1.b. Local Fourier transformation. In [Lau87], Laumon defines the local

Fourier transform of Q`-sheaves by using the vanishing cycle functor for the purpose

of proving a product formula for the determinant of the cohomology of such a sheaf

in terms of local data.

The questions considered in [Lau87] can also be considered in the frame of holo-

nomic C[t]〈∂t〉-modules as follows. Let M be a holonomic C[t]〈∂t〉-module with ar-

bitrary singularities. Let FM be its Laplace transform. For each ĉ ∈ Â1 ∪ {∞̂}, set

τĉ = τ − ĉ (ĉ 6= ∞̂) and τ∞̂ = 1/τ . We ask the following questions:

(1) To determine the singular points ĉ ∈ Â1 ∪ {∞̂} of FM .

(2) To show that C[[τĉ]]⊗C[τĉ]
FM as a C[[τĉ]]〈∂τĉ〉-module only depends on the vari-

ous C[[tc]]⊗C[tc]M , when c varies in the finite set of singular points of M (including∞).

A natural question is then to make precise (2) above:

(3) To compute C((τĉ))⊗ FM as a C((τĉ))-vector space with a connection, or equiv-

alently as a C[[τĉ]]〈∂τĉ〉-module, in terms of the various C[[tc]]⊗C[tc] M .

2.2. Local Fourier transformation and microlocalization

2.2.a. Definition of the Local Fourier transformation. Let M be a holonomic

C[t]〈∂t〉-module. It defines a DP1-module j+M (j : A1
t ↪→ P1). For each c ∈ P1, we

denote by M̂c the formalization C[[tc]]⊗OP1 ,c
j+M (with the above convention for t∞).

The ring E (c,∞) of formal microdifferential operators at c. Let c ∈ A1. The ring

E (c,∞) is the vector space of formal sums∑
i6r

ai(tc)η
i, ai(tc) ∈ C[[tc]], r ∈ Z.

For P,Q ∈ E (c,∞), the product is defined by the formula

P ·Q =
∑
α>0

1

α!
∂αη P ∂

α
tcQ ∈ E (c,∞).

It makes E (c,∞) a ring, filtered with respect to the degree in η. One has morphism of

C-algebras given by

C[t]〈∂t〉 −→ E (c,∞), t 7−→ tc + c, ∂t 7−→ η,
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which endows E (c,∞) with a structure of left-right C[t]〈∂t〉-bimodule. Note that ∂t
acts in an invertible way on both sides on E (c,∞) and thus E (c,∞) is a left-right

C[tc]〈∂t, ∂−1
t 〉-module. It is also a left-right C[[tc]]〈∂t, ∂−1

t 〉-module

Let M be a holonomic C[t]〈∂t〉-module. Its formal microlocalization at c ∈ A1 is

E (c,∞)⊗C[t]〈∂t〉M . It comes equipped with an action of C((τ∞̂)): this is the left action

by C((η−1)). As such, it is known that it is a finite dimensional C((τ∞̂))-vector space,

the dimension of which is the dimension of the moderate vanishing cycles of M at c

(see [Mal91] and Lecture 4). On the other hand, it also has an action of ∂τ∞̂ defined

so that

(1) ∂τ∞̂(P ⊗m) = ∂η−1P ⊗m+ η2P ⊗ tm.

This makes E (c,∞) ⊗C[t]〈∂t〉 M a finite dimensional C((τ∞̂))-vector space with con-

nection. Note that E (c,∞) ⊗C[t]〈∂t〉 M = E (c,∞) ⊗C[[tc]]〈∂tc 〉 M̂c only depends on the

formalized module M̂c := C[[tc]]〈∂tc〉 ⊗C[t]〈∂t〉M . This is F (c,∞)(M̂c).

The ring E (∞,∞). We denote by E (∞,∞) the set of formal sums∑
i6r

ai(t∞)ηi, ai(t∞) ∈ C[[t∞]], r ∈ Z.

If P,Q ∈ E (∞,∞), the product is given by

P ∗Q =
∑
α>0

1

α!
∂αη P · ∂αt Q,

where ∂t acts on C[[t∞]] as −t2∞∂t∞ . Similarly, E (∞,∞) is a filtered ring. One has a

morphism of C-algebras

C[t∞]〈∂t〉 −→ E (∞,∞) t∞ 7−→ t∞ ∂t 7−→ η

(notice that on the ring C[t∞]〈∂t〉, one has the relation [∂t, t∞] = −t2∞). This mor-

phism endows E (∞,∞) with a structure of left-right C[t∞]〈∂t〉-module and of left-right

C[[t∞]]〈∂t〉-module. The ring E (∞,∞) is a subring of the ring of formal microdifferential

operators on P1 at ∞.

Given a holonomic C[t]〈∂t〉-module M , the module E (∞,∞) ⊗C[t]〈∂t〉 j+M =

E (∞,∞)⊗C[[t∞]]〈∂t〉 M̂∞ is a left E (∞,∞)-module. It has an action of C((τ∞̂)) defined as

above, and is a finite dimensional C((τ∞̂))-vector space as such. It has a connection

defined by Formula (1). This is F (∞,∞)(M̂∞).

Theorem 2 (R. Garcı́a López [GL04]). Let M be a holonomic C[t]〈∂t〉-module, and

let FM be its Laplace transform, with associated formalized module F̂M ∞̂ at τ = ∞̂.

Then the natural morphism

F̂M ∞̂ = C((τ∞̂))⊗C[τ ]
FM −→

⊕
c∈P1

E (c,∞) ⊗C[t]〈∂t〉 j+M =
⊕
c∈P1

F (c,∞)(M̂c)

ϕ(τ∞̂)⊗m 7−→
⊕
c
ϕ(η−1)⊗m

is an isomorphism of C((τ∞̂))-vector spaces with connection.
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2.2.b. Local formal structure of a holonomic C[t]〈∂t〉-module. We will apply

the next result to M̂c for each c ∈ P1. Ten the coordinate is tc. It can also be applied

to F̂M ĉ for ĉ ∈ P̂1, and then x = τĉ.

Theorem 3 (Levelt-Turrittin). Let M̂ be a holonomic C[[x]]〈∂x〉-module. Then:

(1) M̂ decomposes as the direct sum M̂ =
⊕

λ∈Q+
M̂ (λ), where M̂ (λ) has pure

slope λ (pure slope 0 means regular singularity).

(2) This decomposition can be refined, for λ = q/p 6= 0, as

M̂ (λ) =
⊕

ρ∈uC[[u]], valu(ρ)=p
ϕ∈C((u))/C[[u]], valu(ϕ)=−q

(R,∇) reg. sing.

El(ρ, ϕ, (R,∇)),

where El(ρ, ϕ, (R,∇)) = ρ+(R,∇+ dϕ).

2.2.c. Slope correspondence.

F−

��

M̂0

F
(0,∞)
−

��

⊕c6=0M̂c

⊕F
(c,∞)
−

��

M̂>1
∞

F
(∞,∞)
−

��

M̂ =1
∞

⊕F
(∞,ĉ)
−

��

M̂<1
∞

F
(∞,0)
−

��

F̂M
<1

∞̂

F
(∞,0)
+

XX

F̂M
=1

∞̂

⊕F
(∞,c)
+

XX

F̂M
>1

∞̂

F
(∞,∞)
+

XX

⊕ĉ 6=0
F̂M ĉ

⊕F
(ĉ,∞)
+

XX

F̂M 0̂

F
(0,∞)
+

XX

F+

ZZ

2.2.d. Stationary phase formula.

Theorem 4 (Fang [Fan09], C.S. [Sab08], Graham-Squire ). For any elementary C((x))-

vector space El(ρ, ϕ, (R,∇)) with irregular connection (i.e., such that ϕ 6= 0), the

local Fourier transform F
(0,∞)
± El(ρ, ϕ, (R,∇)) is isomorphic to the elementary finite

dimensional C((x))-vector space with connection El(ρ̂±, ϕ̂, (R̂, ∇̂)) with (setting Lq =

(C((u)), d− q
2
du
u ))

ρ̂±(u) = ∓ ρ
′(u)

ϕ′(u)
, ϕ̂(u) = ϕ(u)− ρ(u)

ρ′(u)
ϕ′(u), R̂ ' R⊗ Lq.

Remark 5. There are similar formulas for F (c,∞), c ∈ P1.

2.3. Slopes and characteristic varieties (Abbes-Saito)

The theorem of Levelt-Turrittin does not have an analogue in the `-adic setting.

Nevertheless, for a Q`-sheaf on the affine line A1
Fp (for example), Abbes and Saito

propose a construction to produce the analogues of the principal parts of the polar

parts ϕ occurring in the Levelt-Turrittin decomposition at x = 0 (say).

In a work in progress, J.-B. Teyssier (École polytechnique) intends to produce a

similar construction for holonomic D-modules and to prove that it produces exactly

the principal parts of the polar parts ϕ occurring in the Levelt-Turrittin decomposi-

tion. In this simplified setting, the information given is that of the micro-characteristic

varieties at the origin, as defined by Y. Laurent (see [Lau04]).



LECTURE 3

PURITY (1):

PUNCTUAL PURITY

3.1. Punctual purity in arithmetic

Recall ([Del80]) that an number in Q` is pure of weight w relative to q = pk if it

is algebraic and all its complex conjugates have absolute value equal to qw/2.

Given a Q`-sheaf F on A1
Fp , one says that it is punctually pure of weight w if the

eigenvalues of the Frobenius automorphism acting on the geometric fibre of F at each

x ∈ A1
Fp are pure of weight w relative to q = pdeg x.

There is a similar notion of purity for complexes and for perverse sheaves. The

fundamental theorem which will serve us as a guide is stated and proved in [KL85]

(Th. 2.2.1 and Scholie 2.3.1), that we only consider in the present simple setting.

Theorem 1 (Katz-Laumon). Let K be a perverse object of Db
c(Q`) and let Û ⊂ Â1

Fp be

an open set over which the cohomology sheaves of FψK are lisses. Then H jFψK = 0

for j 6= −1 and, if K is pure of weight w, then H −1(FψK)|Û is pure of weight w.

In loc. cit., (7.3.3.3), Katz and Laumon add the following:

We would like to be able to formulate and to prove a similar statement for

D-modules, the notion of purity being understood in the sense of Hodge

theory.

3.2. Purity in the sense of Hodge theory

In complex algebraic geometry, the standard analogue of the notion of pure lisse

sheaf is that of a variation of polarized Q-Hodge structure. Below, we will only

consider variations of complex Hodge structures, due to the lack of time.

3.2.a. Variations of Hodge structures and their limits. Let V be a holomor-

phic vector bundle on a complex manifold X, equipped with a flat holomorphic con-

nection ∇ : V → Ω1
X ⊗ V . Let V = ker∇ the associated locally constant sheaf of

C-vector spaces, so that V ' OX⊗C V , and let (H,∇+∂) the associated C∞-bundle,
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so that V = ker ∂ : H → A
(0,1)
X ⊗ H. A variation of complex Hodge structure of

weight w consists of a grading H =
⊕

pH
p,w−p by C∞ sub-bundles such that, for

each p,

(1) F pH :=
⊕

p′>pH
p,w−p is stable by ∂ and defines a holomorphic sub-bundle

F pV ⊂ V ,

(2) (Griffiths transversality) ∇F pV ⊂ Ω1
X ⊗ F p−1V .

Giving the decomposition is equivalent to giving the semi-simple operator Q on H

with constant half integral eigenvalues, whose eigenspace corresponding to p−w/2 is

Hp,w−p.
A polarization of a variation of complex Hodge structure is a (∇ + ∂)-horizontal

non-degenerate (−1)w-Hermitian pairing k on H, or equivalently a non-degenerate

(−1)w-Hermitian pairing k on V , so that h(u, v) := k(eπiQu, v) is a polarization at

each x ∈ X, that is, h is a Hermitian metric on H.

Example 2. Let f : X → Y be a smooth projective morphism between complex

varieties equipped with a relative ample line bundle. Then the primitive cohomology

Hk
prim(f−1(y),C) (k 6 dimX/Y ) defines a variation of complex Hodge structure for

which the polarization is defined from the Poincaré duality pairing made Hermitian

and the cup product by the Chern class of the ample line bundle.

Assume that X is a disc, X∗ is the punctured disc, and set j : X∗ ↪→ X. Let

(V,∇, F •V, k) be a variation of polarized complex Hodge structure of weight w on X∗.

Theorem 3 (Regularity theorem, Griffiths-Schmid). Under these assumptions, the sub-

sheaf (j∗V )lb of j∗V , consisting of local sections whose h-norm is locally bounded

near the origin, is a locally free sheaf on which the connection ∇ has at most a simple

pole. Moreover, for each p, j∗F pV ∩ (j∗V )lb (intersection taken in j∗V ) is a locally

free sheaf.

3.2.b. Construction of a family of vector bundles on P1. Let (V,∇, F •V, k)

be a variation of polarized Hodge structure of weight w on X = A1an r {c1, . . . , cr}.
In order to have simple formulas, we will assume that the weight w is equal to 0.

To (V, F •V ) we associate a holomorphic vector bundle on X × C, where C comes

equipped with a fixed variable z. This is the holomorphic bundle associate to the

Rees module RFV :=
⊕

p F
pV · z−p, which is a locally free OX [z]-module.

We will regard P1 as the union of the chart Cz with coordinate z and the chart Cz′
with coordinate z′, with z′ = 1/z on C∗. Let σ : P1 → P1

be the anti-holomorphic

involution defined by z 7→ −1/z. It sends the firs chart to the conjugate of the second

chart.

Given a holomorphic vector bundle H on X×Cz, we obtain a holomorphic vector

bundle σ∗H on X × Cz′ (where X is the conjugate complex manifold).
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The ∇-horizontal pairing k induces a pairing

RF k
(∑

p vpz
−p,
∑
q σ
∗vqz−q

)
=
∑
p,q

(−1)qk(vp, vq)z
q−p,

that we restrict to S = {|z| = 1} and we regard as taking values in the sheaf-theoretic

restriction to X × S of C∞,an
X×C∗ . We will set H = OX×C ⊗OX [z] RFV .

Lemma 4. The pairing C : H|S ⊗ σ∗H |S → C∞,an
X×S induces a gluing H ∨

|S ' σ∗H |S.

The corresponding C∞ family of holomorphic vector bundles on P1 parametrized by X

is a family of trivializable vector bundles.

Proof. This follows from the opposedness condition for the Hodge filtration and its

conjugate, and the k-orthogonality of the Hodge decomposition.

3.2.c. Extension of the Hodge data. Let (V,∇) be a holomorphic bundle with

connection on A1an r {c1, . . . , cr}. Setting D = {c1, . . . , cr,∞}, it extends in a unique

way (Deligne’s meromorphic extension) as a locally free OP1(∗D)-module with a con-

nection having a regular singularity at each point of D. It defines therefore an alge-

braic holonomic DP1-module M̃ and thus a holonomic C[t]〈∂t〉-module M̃ with regular

singularities. We will mainly consider the submodule M of M̃ which has no quotient

module supported on {c1, . . . , cr} and which coincides with M̃ when restricted to

A1 r {c1, . . . , cr} (M is called the minimal or intermediate extension of M̃).

The theorem of Griffiths-Schmid allows one to extend F •V as a good filtration

F •M of M (taken in a decreasing way). Moreover, the analysis mad by Schmid

(see [Sch73]) of the behaviour of the metric h in the neighbourhood of each singular

point implies that the sesquilinear pairing k extends as a DP1 ⊗C DP1-linear pairing

on M̃ with values in moderate distributions on P1rD, and then as a C[t]〈∂t〉⊗C[t]〈∂t〉-
linear pairing k : M ⊗C M → S ′(A1an).

3.3. Purity of the Fourier-Laplace transform of a variation of polarizable

Hodge structure

3.3.a. The need for an extension of the notion of Hodge structure. Assume

that (V,∇) as in §3.2.c underlies a variation of polarized Hodge structure and let M

be its minimal extension. Its Laplace transform FM is a vector bundle with connection

once restricted to Û = Â1 r {0̂}. However, the connection has an irregular singularity

at ∞̂, in general (as shown by the stationary phase formula). The regularity theorem

of Griffiths and Schmid prevents then FM|Û to underlie in a natural way a variation

of polarized Hodge structure, because the connection has an irregular singularity at

∞̂. What kind of a structure does FM|Û , or its fibre at τ = 1, say, underlie?
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We will use the twistor approach of §3.2.b in order to define purity. More precisely,

we will define, from the extended data (M,F •M) a holomorphic bundle on Û × Cz,
and from the extended k : M ⊗C M → S ′(A1) a family of gluings.

3.3.b. Construction of a family of vector bundles on P1. We wish to construct

a holomorphic bundle H on Cz and a pairing C : H|S ⊗ σ∗H |S → OS, giving rise

to a gluing H ∨
|S ' σ∗H |S. In the general construction, the variation parameter

is τ , and the construction we give being understood at τ = 1. However, in the

construction below, the variable τ−1 will be identified with z, and one should think

of this construction as an analogue with filtration and sesquilinear pairing of the

Laplace transform with kernel et/z, while the family construction would correspond

to the kernel etτ/z.

The holomorphic bundle H on Cz. We say that po is a generating index for F •M if,

for each ` > 0, F po−`M = F poM + · · ·+ ∂`tF
poM .

Let l̂oc : M → G := C[t]〈∂t, ∂−1
t 〉 ⊗C[t]〈∂t〉 M be the localization morphism with

respect to ∂t. For each C[t]-submodule L of M , we set G
(L)
0 =

∑
j>0 ∂

−j
t l̂oc(L) and

G
(L)
p = ∂ptG

(L)
0 .

Because of the regular singularity of M at ∞, we have a finiteness result.

Lemma 5.

(1) For any L and any p, G
(L)
p is a free C[∂−1

t ]-module of finite rank.

(2) For a good filtration F •M , the free C[∂−1
t ]-module G

(FpoM)
po does not depend

on the generating index po and generates G, that is, G = C[∂t, ∂
−1
t ]⊗C[∂−1

t ] G
(FpoM)
po .

We will regard G
(FpoM)
po as a free C[z]-module by setting z = ∂−1

t . We will denote

by H the corresponding holomorphic bundle.

The pairing C . The pairing k : M ⊗M → S ′(A1) can be composed with the Fourier

transformation Ft : S ′(A1) → S ′(Â1). Then Ftk defines a C[τ ]〈∂τ 〉 ⊗ C[τ ]〈∂τ 〉-
linear morphism FM ⊗C ι+FM → S ′(Â1), where ι is the involution τ 7→ −τ . That

we need the involution ι is seen on the kernel etτ−tτ . Restricted to Û , Ftk takes

values in C∞
Û

: indeed, FM|Û is a free O(Û)-module, and if one fixes a O(Û)-basis mj

of FM|Û , then the matrix Ftk(mi,mj) is horizontal with respect to a flat connection

(in the C∞ sense, i.e., with respect to the derivations ∂τ and ∂τ ). We set z = τ−1

and restrict to S. Let L denote the local system defined by FM on Ûan, that we

restrict to S. Since Ftk is C[τ ]〈∂τ 〉⊗C[τ ]〈∂τ 〉-linear, it defines a pairing, still denoted

by Ftk : L ⊗C ι
−1L → CS.

We now remark that, on S, we have ι = σ so that, tensoring by OS we regard Ftk

as defining a pairing

C : H|S ⊗OS
σ∗H |S −→ OS.
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From the non-degeneracy of k one deduces the non-degeneracy of C , hence a gluing

H ∨
|S ' σ

∗H |S.

3.3.c. The purity theorem.

Theorem 6. Assume that (V, F •V,∇, k) is a variation of complex Hodge structure of

weight 0. In particular, it defines a C∞ family, parametrized by A1an r {c1, . . . , cr},
of trivial holomorphic bundles on P1 (Lemma 4). Then the holomorphic bundle H̃

obtained by gluing H ∨ with σ∗H through C , as defined in §3.3.b, is trivial.

If we had defined the family instead of the fibre at τ = 1 only, we would have

obtained a family of trivial bundles, as in Lemma 4, but which do not come from a

filtered holomorphic bundle in general.

Sketch of proof.

3.3.d. Integrability and the “new supersymmetric index”. In the construc-

tion of §3.3.b, the connection played an essential role in order to define C , as we

had to first restrict Ftk to the local system L in order to replace ι with σ and C∞S
with OS.

By construction, H comes equipped with a connection having a pole of order at

most two at the origin, and the gluing induced by C is compatible with the connection

on H ∨ and on σ∗H , defining therefore a connection on the trivial bundle Ĥ , with

a pole of order at most two at z = 0 and at z =∞.

Let us set H = Γ(P1,H ), so that H ' OP1 ⊗C H. Then the connection on H

can be written as

∇ = d +
(
z−1U −Q − zU †

)dz

z
for some endomorphisms U ,U †,Q of H. In the case considered in §3.2.a, we have

U = U † = 0 and Q is as defined there.

In the case provided by Theorem 6, Q is a semi-simple endomorphism (being self-

adjoint with respect to a metric that we did not make explicit), but its eigenvalues

need not be half-integers. Moreover, in the family construction, the eigenvalues of Q

may vary with the family parameter τ in a real-analytic way.

The operator Q already appeared in [CV91, CFIV92], as noticed by C. Hertling

[Her03], under the name of a “new supersymmetric index”.





LECTURE 4

PURITY (2):

COUPLING THE STATIONARY PHASE FORMULA

WITH HODGE THEORY

4.1. Introduction

4.1.a. Is the vanishing cycle space a “limit object”? In this lecture, we will

mainly consider the Laplace transform of a regular holonomic D-module on the affine

line, i.e., of a regular holonomic C[t]〈∂t〉-module M . In such a case, the Laplace

transform FM is a holonomic C[τ ]〈∂τ 〉-module with a regular singularity at τ = 0, a

possibly irregular singularity at τ =∞ of exponential type, and no other singularity.

At each singular point c of M , the nearby cycle space represents the “limit” in a

precise sense of the fibers of M at neighbouring points t of c. In particular it has

the same dimension as Mt. This limit construction has been extended by W. Schmid

[Sch73] in order to take into account a Hodge filtration, in the case Man
|A1rSingM =

(V,∇) underlies a variation of polarized Hodge structure. Note that the nearby cycle

space does not depend on the fibre of M at c.

The vanishing cycle space, on the other hand, measures the difference between the

nearby cycle space and the fibre of M at c. It is not a “limit” space. However, it

shares a lot of properties of a limit, even from the Hodge point of view. It is therefore

natural to ask whether it can be realized as a limit.

In §2.1.a we have recalled the meaning of the stationary phase formula in the case

of a regular holonomic C[t]〈∂t〉-module, and how the vanishing cycles of M at c enter

in a formal limiting expression for FM at ∞̂.

From the Hodge point of view, the irregular singularity of FM at ∞̂ prevents us to

consider the Hodge structure on the vanishing cycle space as a limit of a variation of

Hodge structure when τ →∞, because of the regularity theorem of Griffiths-Schmid.

The notion of integrable twistor structure and of the variation of such an object

gives a solution to this question and allows one to understand the space of vanishing

cycles, together with its Hodge structure, as a limiting object.
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4.1.b. Moderate nearby and vanishing cycles. Let me quickly recall theses no-

tions. Let M be a holonomic C[t]〈∂t〉-module and let c ∈ C. Let tc denote the local

coordinate at c. Replacing t with tc in what follows allows one to define the moderate

nearby/vanishing cycles at t = c, by using the definition at t = 0.

We consider the increasing filtration V•C[t]〈∂t〉 indexed by Z such that t has order

−1 and ∂t has order 1, and V0C[t]〈∂t〉 = C[t]〈t∂t〉. For any holonomic module M

there exists a unique increasing filtration V•M indexed Z such that

• each VkM is a V0C[t]〈∂t〉-module of finite type,

• there exists a nonzero polynomial b(s) with roots having real part in (−1, 0] such

that b(t∂t + k) acts by 0 on grVkM for each k ∈ Z.

In the following I will assume that M is such that the roots of b are real, and we write

b(s) =
∏
α∈(−1,0](s+ α)να . For each α ∈ [0, 1] one sets

ψmod 0
t,α M :=

{
ker
[
(t∂t)

να : grV0 M → grV0 M
]

for α = 0,

ker
[
(t∂t + α)να : grV1 M → grV1 M

]
for α ∈ (0, 1].

One now defines

ψmod 0
t M :=

⊕
α∈[0,1)

ψmod 0
t,α M (nearby cycles),

φmod 0
t M :=

⊕
α∈(0,1]

ψmod 0
t,α M (vanishing cycles).

These are known to be finite dimensional C-vector spaces equipped with the auto-

morphism T = exp(−2πit∂t). More precisely, if M has a regular singularity at t = 0,

ψmod 0
t M has dimension equal to the generic rank of M .

This construction can also be done at ∞ by using the coordinate t∞. Since t′ acts

in an invertible way on M at∞, there is no distinction between nearby and vanishing

cycles, which are then isomorphic.

This construction can also be applied to FM . If M has only regular singularities,

which will be the case in this lecture, then the only singular points of FM are ĉ = 0̂ and

ĉ = ∞̂. The moderate vanishing cycles of FM at τ = ∞̂ also coincide with the nearby

cycles. However, due to the possible irregular singularity of FM at ∞̂, the dimension

of ψmod ∞̂
τ ′ (FM) may be strictly smaller than the generic rank of FM (it may even be

zero). On the other hand, due to the regularity of FM at τ = 0, the dimension of

ψmod 0̂
τ (FM) is equal to the generic rank of FM .

4.2. Witten’s complex

In the beginning of the eighties, Witten used Hodge theory for a twisted Laplace

operator in order to recover the Morse inequalities. This motivated G. Laumon for

using the Fourier transformation in the `-adic setting and to exploit its purity proper-

ties. Up to recently, the ideas of Witten had not been extended (except some special



4.3. LOCAL FOURIER TRANSFORMATION AND HODGE THEORY 21

cases) in the complex setting because of the non-compactness of the spaces on which

the analogue of a Morse function is defined.

Witten considers a Morse function f : X → R on a compact C∞ manifold

(equipped with some Riemannian metric). He considers the twisted de Rham complex

(A •(X),d + τdf) for some real number τ and analyzes the behaviour of the corre-

sponding Laplace operator ∆τ (with respect to the chosen metric) when |τ | → ∞.

For a fixed τ , this operator is an elliptic self-adjoint (unbounded) operator on the

spaces of L2-forms L •
2 (X) and is positive with discrete spectrum.

When τ → +∞, Witten shows that the eigenvectors of ∆τ concentrate around the

critical points of f in the following sense: for any closed set K ⊂ X containing no

critical point, there exists positive constants C,A such that any eigenvector η with

eigenvalue λ such that |λ| 6 A satisfies

‖η‖L2(K) 6
C

τ
‖η‖L2(X).

In some sense, Witten introduces Hodge theory in the classical stationary phase

method.

4.3. Local Fourier transformation and Hodge theory

We will assume that M is a regular holonomic C[t]〈∂t〉-module and, in §4.3.b

that M is equipped with extended Hodge data as in §3.2.c, so that in particular

M|A1anr{c1,...,cr} = (V,∇) underlies a polarized variation of Hodge structure.

4.3.a. Local Fourier transformation from the point of view of nearby/van-

ishing cycles. We only need to consider the local Fourier transforms F (c,∞)M (c ∈
C) and F (∞,0)M , according to the slope correspondence of §2.2.c, since M has the

only slope 0 at ∞.

Notice that the second one produces a regular holonomic C[[τ ]]〈∂τ 〉-module, an ob-

ject which is completely determined by ψmod 0̂
τ and φmod 0̂

τ together with the “canon-

ical” and the “variation” morphisms between both, according to the classification

theorem of regular holonomic C[[τ ]]〈∂τ 〉-modules.

The idea to express the behaviour of the various local Fourier transformations on

nearby/vanishing cycle is to use the integral formula (7) of Lecture 1 and the good

behaviour of the functors ψmod
τ , φmod

τ with respect to the proper push-forward by π̂.

Let us set FM = π+M ⊗ E tτ . Then

ψmod 0̂
τ (FM) = RΓ(P1, pDRψmod 0̂

τ (FM )),

φmod 0̂
τ (FM) = RΓ(P1, pDRφmod 0̂

τ (FM )),

ψmod ∞̂
τ ′ (FM) = RΓ(P1, pDRψmod ∞̂

τ ′ (FM )),

where here pDR(•) means DR(•)[1].
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4.3.b. The local Fourier transformation F (∞,0). The V -filtration of FM along

τ = 0 can be computed explicitly and we will not explain the computation here which

can be found in [Sab06, proof of Prop. 4.1]. A priori, ψmod 0̂
τ (FM ), φmod 0̂

τ (FM ) are

holonomic DP1 -modules equipped with an automorphism Tτ .

Proposition 1. The DP1-module φmod 0̂
τ (FM ) is supported at ∞ and the corresponding

vector space with automorphism Tτ is isomorphic (canonically and functorially) to

the nearby cycle space (ψmod∞
t′ M ,Tt′).

It remains to understand ψmod 0̂
τ,0 (FM ), which does not have punctual support, and is

a global object on P1. In order to state the result, let us denote by Mmin the minimal

(also called intermediate) extension of M at∞. It is the unique submodule N of M

with no quotient supported at ∞ and such that OP1(∗∞)⊗N = M . We then have

the following complement to Proposition 1

Proposition 2. The holonomic DP1×A1-module FM is a minimal extension of its lo-

calization along P1 × {0̂}, so that the holonomic DP1-module with automorphism

(ψmod 0̂
τ (FM ),Tτ ) is completely determined from (ψmod 0̂

τ (FM ),Tτ ) and the primitive

part P0ψ
mod 0̂
τ,0 (FM ) = ker Nτ ∩ Im Nτ in ψmod 0̂

τ,0 (FM ).

There is a canonical and functorial isomorphism

P0ψ
mod 0̂
τ,0 (FM ) 'Mmin.

Let us now go back to FM . As a consequence of the compatibility of taking proper

direct images by π̂ and nearby/vanishing cycles we obtain

Corollary 3 (of Proposition 1). For any regular holonomic C[t]〈∂t〉-module M , we have

a canonical and functorial isomorphism

(φmod 0̂
τ (FM),Tτ ) ' (ψmod∞

t′ M ,Tt′).

On the other hand, although ψmod 0̂
τ,0 is compatible with taking direct image by π̂,

the operation of taking P0 need not be so. In the present setting the assumption

that M is a semi-simple regular holonomic C[t]〈∂t〉-module is enough to ensure this

compatibility. In particular, with such an assumption, FM is also (obviously) semi-

simple as a C[τ ]〈∂τ 〉-module, and this implies that FM is the minimal extension of its

localization at τ = 0. As a consequence, (ψmod 0̂
τ (FM),Tτ ) is completely determined

from (ψmod 0̂
τ (FM),Tτ ) and the primitive part P0ψ

mod 0̂
τ,0 (FM) = ker Nτ ∩ Im Nτ in

ψmod 0̂
τ,0 (FM).

Corollary 4 (of Proposition 2). If M is a semi-simple regular holonomic C[t]〈∂t〉-
module, then we have a canonical and functorial isomorphism

P0ψ
mod 0̂
τ,0 (FM) 'H1(P1,DR Mmin).
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Let us now consider the case where (M,F •M) is a filtered Hodge mod-

ule, as obtained from a variation of polarized Hodge structure in §3.2.c. In

order to mimick the previous results, it is convenient to introduce the ring

RFC[t]〈∂t〉 =
⊕

k∈Z F
kC[t]〈∂t〉z−k, where F kC[t]〈∂t〉 ⊂ C[t]〈∂t〉 consists of

operators of degree 6 −k with respect to ∂t. It is identified with the ring

C[t, z]〈z∂t〉. The filtered C[t]〈∂t〉-module (M,F •M) gives rise to a RFC[t]〈∂t〉-
module RFM =

⊕
k F

kMz−k, which has finite type because F •M is a good

filtration. One can define the filtered Laplace transform by using the kernel e−tτ/z,
that is, by replacing t with −z∂τ and z∂t with τ . This produces a RFC[τ ]〈∂τ 〉-module
FRFM , which is not graded however, and therefore does cannot be realized as RF

FM

for some filtration on FM , in general.

Nevertheless, the formalism of the V -filtration can be adapted to the ring

RFC[τ ]〈∂τ 〉.

4.3.c. The local Fourier transformations F (c,∞).

4.4. Limits of the new supersymmetric index





LECTURE 5

APPLICATION TO ef

5.1. The twisted de Rham complex

Let U be a smooth complex quasi-projective variety and let f : U → A1 be a

regular function on U . What kind of a structure do we have on the twisted de Rham

cohomology H∗(U, f ;C) := H∗
(
U, (Ω•U ,d− df)

)
? This is related to the properties of

exponential periods, i.e., integrals
∫

Γ
efω, ω an algebraic form on U , Γ a locally closed

cycle. The Q-structure is understood: H∗(Uan, f ;Q) = H∗(Uan,Re(f)� 0;Q).

Deligne remarked in 1984 that the classical formula∫
R
e−x

2

dx =
√
π

suggests that for f(x) = −x2 : A1 → A1, H∗(U, f ;C) has a Hodge structure of type

(1/2, 1/2). In the case where U is a curve, Deligne defines a filtration of the complex

(Ω•U ,d − df) indexed by rational numbers, and shows a E1-degeneracy property,

looking like the standard Hodge⇒ de Rham degeneracy.

5.1.a. Reduction to dimension one. Let us introduce a parameter τ and consider

the complex (Ω•U [τ ],d − τdf). Its hypercohomology modules, regarded as C[t]〈∂t〉-
modules as in §1.2.b, are nothing but the Gauss-Manin systems GMi(f) := H if+OU
of f . According to Bernstein’s theorem (see §1.2.b), they are holonomic C[t]〈∂t〉-
modules. When regarded as C[τ ]〈∂τ 〉-modules, they are the Laplace transforms
FGMi(f), with respect to the Laplace transformation with kernel e−tτ .

We can regard (Ω•U ,d− df) as the cone of the morphism

(Ω
•
U [τ ],d− τdf)

τ − 1−−−−−→ (Ω
•
U [τ ],d− τdf).

Let us consider the associated long exact sequence

· · · −→ FGMi(f)
τ − 1−−−−−→ FGMi(f) −→Hi

(
U, (Ω

•
U ,d− df)

)
−→ · · ·

We note that, since GMi(f) has regular singularities, C[τ, τ−1] ⊗C[τ ]
FGMi(f) is

C[τ, τ−1]-free, hence τ − 1 is injective on each FGMi(f). It follows that, for each i,

Hi
(
U, (Ω

•
U ,d− df)

)
= FGMi(f)/(τ − 1)FGMi(f).
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In other words, for each i, one can compute Hi
(
U, (Ω•U ,d − df)

)
as the hypercoho-

mology H1(A1,DR(GMi(f),∇− dt)) of the de Rham complex of GMi(f) twisted by

the function Id : A1 → A1 (and all other Hj , j 6= 1, are zero).

5.1.b. Topological computation of the twisted de Rham cohomology. Let

F : X → A1 be a projective completion of f : U → A1 and let us denote by j : U ↪→ X

the open inclusion. For each complex number c ∈ C, let φF−c(Rj∗CUan) denote the

vanishing cycle complex along f = c of the complex Rj∗CUan .

Proposition 1. Assume that X is smooth and XrU is a divisor in X. Then for each i,

we have

dimHi
(
U, (Ω

•
U ,d− df)

)
=
∑
c∈C

dimHi−1
(
F−1(c), φF−c(Rj∗CUan)

)
.

Sketch or proof. Since X is smooth and XrU is a divisor, Rj∗CUan is perverse on X

(up to a shift, depending on the convention). Then φF−c(Rj∗CUan) is perverse up to

a shift. On the other hand, using the commutation of φF−c with proper direct images

and taking perverse cohomology of direct images reduces the result to an analogous

result for any regular holonomic C[t]〈∂t〉-module M (proved e.g. in [Mal91]):

(2) dim FM/(τ − 1)FM (= rkC[τ, τ−1]⊗C[τ ]
FM) =

∑
c∈C

dimφt−c DRanM.

5.2. The stationary phase formula for a function

A particular case of the stationary phase formula proved in Lecture 2 reads as

follows for a holonomic C[t]〈∂t〉-module M with only regular singularities. Let FM

be the Laplace transform of M . Then G := C[τ, τ−1] ⊗C[τ ]
FM is a free C[τ, τ−1]-

module whose rank is equal to µ :=
∑
c∈C dimφt−c DRanM . Set z = τ−1 and Ĝ =

C((z)) ⊗C[z,z−1] G. This is a C((z))-vector space of dimension µ equipped with a

connection ∇∂z (induced by by the action of −τ2∂τ on G).

On the other hand, for each c ∈ C, the C-vector space φt−c DRanM comes equipped

with a monodromy operator T. In general, let E be a finite dimensional C-vector space

equipped with an automorphism T. Given a choice of a logarithm of T, that is, writing

T = exp(−2πiM) for some M : E → E, we denote by R̂H−1(E,T) the C((z))-vector

space E((z)) equipped with the connection d + Mdz/z. Then Formula (2) above can

be refined as

(Ĝ,∇∂z ) '
⊕
c∈C

(
R̂H−1(φt−c DRanM,T),∇− d(c/z)

)
.

If we set for short

Gi(f) = C[τ, τ−1]⊗C[τ ]
FGMi(f) = Hi(Ω

•
U [τ, τ−1],d− τdf)

= Hi(Ω
•
U [z, z−1],d− df/z),
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we obtain, by an argument similar to that of Proposition 1,

(Ĝi(f),∇∂z ) '
⊕
c∈C

(
R̂H−1

(
Hi−1

(
f−1(c), φf−c(Rj∗CUan)

)
,T
)
,∇− d(c/z)

)
.

This formula can be refined in order to only use φf−c(CUan), i.e., the vanishing

cycles at finite distance only. For a sheaf F on U , F ((z)) denotes the sheaf associated

to the presheaf V 7→ F (V )((z)). The sheaf OU ((z)) is OU -flat.

Theorem 3 (conjectured by M. Kontsevich). We have, for each i,(
Hi
(
U, (Ω

•
U ((z)),d− df/z)

)
,∇∂z

)
'
⊕
c∈C

(
R̂H−1

[
Hi−1

(
f−1(c), φf−cCUan

)
,T
]
,∇− d(c/z)

)
.

Sketch of proof.

5.3. The Barannikov-Kontsevich theorem

It may be instructive to recall here the Barannikov-Kontsevich theorem. It applies

if f is projective, that is, so that F = f .

Theorem 4 (see [Sab99, OV07]). Assume that f is projective. Then, for each i, the

C[z]-module Hi
(
U, (Ω•U [z], zd− df) is free.

As a consequence, setting z = 0, z = 1 and using Proposition 1, we obtain (under

our assumption, F = f and j = Id, and U = X):

dimHi
(
X, (Ω

•
X ,df)

)
=
∑
c∈C

dimHi−1
(
f−1(c), φf−c(CXan)

)
.

5.4. The Deligne filtration





LECTURE 6

STOKES STRUCTURES IN DIMENSION ONE

Let X be a Riemann surface. The functor which associates to any holomorphic

vector bundle with connection (V,∇) the locally constant sheaf of its local sections

is an equivalence of categories. The Riemann-Hilbert correspondence extends as a

correspondence between regular holonomic DX -modules and perverse sheaves of C-

vector spaces on X. In 1978 and later (see [DMR07]), Deligne proposed to extend

the previous correspondence, starting from arbitrary holonomic DX -modules, with

values in a category of perverse sheaves with Stokes structure. The notion of a Stokes

filtration is intended to express in a topological way the classical notion of Stokes

data at an irregular singular point.

6.1. The Riemann-Hilbert correspondence for germs of meromorphic con-

nections

Let ∆ be a small disc with coordinate x and let M be a O∆(∗0)-free module of

finite rank with connection ∇. We will only consider its germ at 0, which is a C({x})-
vector space of finite dimension with a connection. It can also be regarded as a germ

at x = 0 of a D∆ = O∆〈∂x〉-module on which left multiplication by t is bijective.

Let (M̂, ∇̂) = (C((x))⊗C({x}) M, induced ∇) be the associated formal meromorphic

connection. A classical theorem called Levelt-Turrittin theorem classifies such objects:

after a ramification x = ym for some m ∈ N, M̂ ′ := C((y)) ⊗C((x)) M̂ , then M̂ ′ is

isomorphic to the direct sum of the elementary objects (C((y))n,d + dϕ Id +Cdy/y),

ϕ ∈ C((y)) (modulo C[[y]]) and C is a constant matrix. One says that M has a regular

singularity if only ϕ = 0 (or ϕ ∈ C[[y]] can occur, and in such a case the ramification

is not needed. Moreover, the isomorphism already exists at the convergent level.

On the other hand, when some nonzero ϕ ∈ C((y))/C[[y]] occur, the isomorphism

may not exist at the convergent level.
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For the sake of simplicity, I will assume below that the ramification is not needed

for the M that I will consider, and I will say in such a case that M has no ramification.

Let ∆̃ = S1 × [0, ε) be the space of polar coordinates x = reiθ. The operator x∂x
lifts as 1

2 (r∂r − i∂θ). Let A mod
∆̃

be the sheaf on ∆̃ of holomorphic functions on ∆∗

which have moderate growth in the neighbourhood of any compact set of S1 × {0}.
For any ϕ ∈ x−1C[x−1], the sheaf ker∇ : eϕA mod

∆̃
⊗M → eϕA mod

∆̃
⊗M is a local

system L of rank dimM on ∆∗ and is a subsheaf L6ϕ ⊂ L on S1 × {0}.

Example 1. If M = (C((x)),d + dϕo), then L6ϕ,θ = C if Re(ϕ− ϕo) < 0 near θ, and

L6ϕ,θ = 0 otherwise, while L = CS1 .

Theorem 2 (Riemann-Hilbert correspondence). The functor M 7→ (L ,L•) is an equiv-

alence between the category of (non-ramified) germs of meromorphic connections and

the category of Stokes-filtered local systems on S1.

6.2. Stokes filtered local systems on S1 (the non-ramified case)

We consider the circle of directions S1 equipped with the constant sheaf I1 with

fibre P = C({x})/C{x} consisting of polar parts of Laurent series. This sheaf is a

sheaf of ordered groups: the order depends on the point eiθ = x/|x| ∈ S1 as follows.

Let η ∈ P and let us set η = un(x)x−n with n > 1 and un(0) 6= 0 if η 6= 0. Then

(3) η 6
θ

0⇐⇒ η = 0 or arg un(0)− nθ ∈ (π/2, 3π/2) mod 2π,

and η <
θ

0 ⇔ (η 6
θ

0 and η 6= 0). The order is supposed to be compatible with

addition, namely, ϕ 6
θ
ψ ⇔ ϕ− ψ 6

θ
0 and similarly for <

θ
. We also have ϕ 6

θ
ψ ⇔

eϕ−ψ has moderate growth in some neighbourhood of (eiθ, 0) in ∆̃.

Definition 4. Let k be a field. A non-ramified pre-Stokes filtration on a local sys-

tem L of finite dimensional k-vector spaces on S1 consists of the data of a family of

subsheaves L6ϕ indexed by P such that, for any θ ∈ S1, ϕ 6
θ
ψ ⇒ L6ϕ,θ ⊂ L6ψ,θ.

Let us set, for any ϕ ∈ P and any θ ∈ S1,

(5) L<ϕ,θ =
∑
ψ<

θ
ϕ

L6ψ,θ.

This defines a subsheaf L<ϕ of L6ϕ, and we set grϕL = L6ϕ/L<ϕ.

Definition 6. A pre-Stokes filtration of L is called a Stokes filtration if

(1) each graded sheaf grϕL is a local system on S1,

(2) rk L =
∑
ϕ rk grϕL .

Note that when 6(1) is satisfied, 6(2) is equivalent to one of the following:

(2′) for any θ ∈ S1 and any ϕ ∈ P, dim L6ϕ,θ =
∑
ψ6

θ
ϕ dim grψLθ.

(2′′) For any θ ∈ S1 and any ϕ ∈ P, dim L<ϕ,θ =
∑
ψ<

θ
ϕ dim grψLθ.



6.4. STOKES-PERVERSE SHEAVES ON A RIEMANN SURFACE 31

The finite subset Φ ⊂ P such that grϕL 6= 0 ⇒ ϕ ∈ Φ is called the set of

exponential factors of the non-ramified Stokes filtration. The following proposition is

easily checked, showing more precisely exhaustivity.

Proposition 7. Let L• be a non-ramified k-Stokes filtration on L . Then, for any

θ ∈ S1, and any ϕ ∈ P,

• if ϕ <
θ

Φ, then L6ϕ,θ = 0,

• if Φ <
θ
ϕ, then L<ϕ,θ = L6ϕ,θ = Lθ.

6.3. Abelianity and strictness (the non-ramified case)

Definition 8. A morphism λ : (L ,L•) → (L ′,L ′•) of non-ramified k-Stokes-filtered

local systems is a morphism of local systems L → L ′ on S1 such that, for any

ϕ ∈ P, λ(L6ϕ) ⊂ L ′6ϕ. According to (5), a morphism also satisfies λ(L<ϕ) ⊂ L ′<ϕ.

A morphism λ is said to be strict if, for any ϕ, λ(L6ϕ) = λ(L ) ∩L ′6ϕ.

Theorem 9. The category of k-Stokes-filtered local systems on S1 is abelian and every

morphism is strict. Moreover, it is stable by extension in the category of pre-Stokes-

filtered sheaves.

Of course, when k ⊂ C, one can obtained this result by using the Riemann-Hilbert

correspondence and the abelianity of the category of germs of meromorphic connec-

tion. It is however instructive to give a proof in the setting of Stokes-filtered local

systems in order to understand better their structure. One proves more precisely:

Theorem 10. Given two non-ramified Stokes-filtered local systems (L ,L•) and

(L ′,L ′•), there exist trivializations of them in the neighbourhood of any point of S1

such that any morphism λ between them is diagonal with respect to these local

trivializations, hence is strict. In particular, such a morphism satisfies (??), and the

natural pre-Stokes filtrations on the local systems kerλ, Imλ and cokerλ are Stokes

filtrations. Their sets of exponential factors satisfy

Φ(kerλ) ⊂ Φ, Φ(cokerλ) ⊂ Φ′, Φ(Imλ) ⊂ Φ ∩ Φ′.

The proof is done by using the notion of level structure, which will not be developed

here.

6.4. Stokes-perverse sheaves on a Riemann surface

Let ∆ be a disc as in §6.1 and let D = D∆,0 be the germ at the origin of the sheaf

of holomorphic differential operators on ∆. We have D = C{x}〈∂x〉. We will also

set O = C{x}, O(∗0) = C({x}), Ô = C[[x]], D̂ = C[[x]]〈∂x〉. Let M be a holonomic

D-module. We will consider the following objects obtained from M
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• M(∗0) is the localization O(∗0)⊗OM = D(∗0)⊗DM ; this is a free O(∗0)-module

of finite rank with connection, as considered in §6.1.

• M̂ is the formalization Ô ⊗O M = D̂ ⊗D M .

• M̂reg is the regular component, i.e., the component corresponding to ϕ = 0 in the

Levelt-Turrittin decomposition of M̂ (a decomposition which also exists for holonomic

D̂-modules).

• µ̂ is the natural isomorphism M̂(∗0)
∼−→ (M̂)(∗0) that we restrict to the regular

parts: M̂(∗0)reg
∼−→ (M̂reg)(∗0).

Lemma 11. The category of holonomic D-modules is equivalent, via this correspon-

dence, to the category of triples (M̃,N, ν̂), where M̃ is a germ of meromorphic

connection, N is a germ of regular holonomic D-module, and ν̂ is an isomorphism

(̂M̃)reg
∼−→ N̂ .

Definition 12. A germ of Stokes-perverse sheaf on ∆ at the origin consists of a triple(
(L ,L•),F , ν̂

)
, where (L ,L•) is a Stokes-filtered local system, F is a germ of

perverse sheaf at the origin and ν̂ is an isomorphism gr0L
∼−→ (ψxF ,T), where the

nearby cycle space ψxF equipped with its monodromy is regarded in a canonical way

as a local system on S1.

Theorem 13 (R-H for holonomic D-modules). The functor (M̃,N, ν̂) 7→
(
(L ,L•),F , ν̂

)
,

whose first component is the R-H functor of Theorem 2, and the second one is the

R-H correspondence for regular holonomic D-modules, is an equivalence of categories.

We can now give the definition of a Stokes-perverse sheaf on a Riemann surface X:

Definition 14. A Stokes-perverse sheaf on a Riemann surface X with singular set

contained in a divisor D consists of the data
(
(L ,L•),F , ν̂

)
, where L is a local

system on XrD (equivalently on the real blown-up space X̃(D), which is a Riemann

surface with boundary), L• consists, for each p ∈ D, of a Stokes filtration of L|S1
p
,

F is a germ of perverse sheaf at each point of D and ν̂ is as in Definition 12.

Theorem 13 extends as an equivalence between the category of holonomic DX -

modules and the category of Stokes-perverse sheaves on X.
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STOKES STRUCTURES IN HIGHER DIMENSIONS

Due to the work of Kashiwara and Mebkhout, it is now well-known that the

de Rham functor induces an equivalence between the category of regular holonomic

D-modules on a complex manifold X and the category of perverse sheaves on X with

complex coefficients. In particular, this allows one to speak of a rational structure on

a holonomic DX -module M , by considering a rational structure on the perverse sheaf

DRM .

Is it possible to extend this correspondence to arbitrary holonomic DX -modules,

and to extend the target category, in order to keep an equivalence? In Lecture 6

have indicated how to solve this question in dimension one. In dimension > 2, the

construction of such a target category (Stokes-perverse sheaves) is not yet achieved.

We will consider a sub-problem, by restricting to the category of meromorphic bundles

with flat connection with poles along a divisor D having normal crossings.

7.1. The structure of meromorphic connections

Let X be a complex manifold equipped with a divisor D and let V be a coherent

OX(∗D)-module equipped with a flat connection ∇ : V → Ω1
X ⊗ V . Given xo ∈ D,

what can be said about the germ Vxo , or the formal germ V̂x̂o := ÔX,xo ⊗OX,xo Vxo?

In dimension one, an essential tool is the Levelt-Turrittin theorem mentioned in §6.1.

The basic result is as follows.

Theorem 1 ([Moc09, Moc11], [Ked10, Ked11]). Let X ′ be a smooth complex algebraic

variety (resp. a germ of complex analytic manifold) and let (V,∇) be a meromorphic

bundle on X ′ with a flat connection, holomorphic on a Zariski open setX ′o in X ′.
Then there exists a projective modification π : X → X ′ with X smooth, which is an

isomorphism above X ′o, such that D := X r X ′o is a normal crossing divisor, and

that, for each point x ∈ D, the formalized bundle (ÔX,x ⊗Ox V, ∇̂) decomposes, after
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a possible ramification around local components of D, as

(ÔX,x ⊗Ox V, ∇̂) =
⊕
ϕ

(V̂ϕ, ∇̂ϕ),

where ϕ runs over a finite set (depending on x) of polar parts of meromorphic func-

tions and, for each ϕ, ∇̂reg
ϕ := ∇̂ϕ − dϕ⊗ IdV̂ϕ has regular singularities ([Del70]).

The following complement is important, and in fact is included in the proof of the

theorem above. Let us fix local coordinates (x1, . . . , xn) centered at xo ∈ D so that

D = {x1 · · ·x` = 0}.

Definition 2. We say that a finite family Φxo ⊂ OX,xo(∗D)/OX,xo of polar parts is

good if #Φxo = 1 or, for any ϕ 6= ψ in Φxo , the Newton polyhedron NP(ϕ− ψ) is an

octant with vertex in −N` × {0n−`}, i.e., ϕ − ψ = x−m` · u(x) with m` ∈ N` r {0}
(or ϕ− ψ ≡ 0) and u ∈ OX,xo with u(0) 6= 0.

Complement to Theorem 1. In Theorem 1, one can moreover achieve that, at each

point of x ∈ D, the family Φx is good.

7.2. Working on the real blow-up space

7.2.a. Real blow-up. Recall that the oriented real blow-up space C̃` of C` along

t1, . . . , t` is the space of polar coordinates in each variable tj , that is, the product

(S1 × R+)` with coordinates (eiθj , ρj)j=1,...,` and tj = ρje
iθj . The oriented real

blowing-up map $ : C̃` → C` induces a diffeomorphism {ρ1 · · · ρ` 6= 0} =: (C̃`)∗ ∼−→
(C`)∗ := {t1 · · · t` 6= 0}. In the following, we just call them real blow-up space or real

blowing-up map.

Let X be a reduced complex analytic space (e.g. a complex manifold) and let

f : X → C be a holomorphic function on X with zero set X0 = X0(f). The oriented

real blow-up space of X along f , denoted by X̃(f), is the closure in X × S1 of the

graph of the map f/|f | : X∗ = XrX0 → S1. The real blowing-up map $ : X̃ → X is

the map induced by the first projection. The inverse image $−1(X0), that we denote

by ∂X̃, is a priori contained in X0 × S1.

Let now D be a locally principal divisor in X and let (Uα)α∈A be a locally finite

covering of X by open sets Uα such that in each Uα, the divisor D is defined by a

holomorphic function f (α). The data [Uα, f
(α)]α∈A allow one to define, by gluing the

real blow-up spaces Ũα(f (α)), a space X̃(D). Set f (α) = u(α,β)f (β) on Uα ∩ Uβ . The

gluing map is induced by

(Uα ∩ Uβ)× (C∗/R∗+) −→ (Uα ∩ Uβ)× (C∗/R∗+)(
x, (eiθ)

)
7−→

(
x, (u(α,β)eiθ mod R∗+)

)
.

One checks that the space X̃(D) does not depend on the choices made (up to a unique

homeomorphism compatible with the projection to X).
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Real blow-up along a family of divisors. Let now (Dj)j∈J be a locally finite family of

locally principal divisors in X and let fj be sections OX → OX(Dj). The fibre product

over X of the X̃(Dj) (each defined with fj), when restricted over X∗J := X r
⋃
j Dj ,

is isomorphic to X∗J . We then define the real blow-up X̃(Dj∈J) as the closure of X∗J
in this fibre product. It is defined up to unique homeomorphism compatible with the

projection to X. We usually regard X∗J as an open analytic submanifold in X̃(Dj∈J).

7.2.b. Sheaves of holomorphic functions on the real blow-up space. We

consider a locally finite family (Dj)j∈J of smooth (and reduced) divisors in a smooth

complex manifold X, and we set D =
⋃
j Dj . We will assume that D has only normal

crossings. We will work on the real blow-ups space on X̃ := X̃(Dj∈J).

The sheaf of holomorphic functions. The space X̃ is a C∞ manifold with corners, and

the operators xj∂xj (j = 1, . . . , `), as well as ∂xk (k > `) act on it, by using the usual

formula in polar coordinates. The kernel AX̃ is a sheaf on X̃ which coincides with

OX∗ on X∗ := X r D. Moreover, let $ : X̃ → X denote the real blowing-up map.

Then AX̃ is naturally a left $−1DX -module (i.e., one can differentiate a function

in AX̃ with respect to all xj).

Given a meromorphic bundle with integrable connection (V,∇), we associate with

it the locally free AX̃(∗D)-module AX̃ ⊗$−1OX V , equipped with the integrable con-

nection (left $−1DX -module structure) ∇̃.

Results in asymptotic analysis (Sibuya, Majima, C.S., T. Mochizuki) allow one

to extend to higher dimensions the classical results in dimension one (see [Was65,

Mal91]).

Theorem 3. Let (V,∇) be a meromorphic flat bundle with integrable connection hav-

ing poles along a normal crossing divisor D. Let xo ∈ D and assume that the for-

mal decomposition (after possibly a ramification) as in Theorem 1 holds at xo, and

that Φxo satisfies the goodness property. Then this decomposition can be lifted locally

on $−1(xo) as a decomposition of AX̃ ⊗$−1OX V .

The sheaf of holomorphic functions with moderate growth. Let OX(∗D) denotes the

sheaf of meromorphic functions on X with poles along D at most. It can also be

defined as the subsheaf of j∗OX∗ (with j : X∗ = X r D ↪→ X the open inclusion)

consisting of holomorphic functions having moderate growth along D.

We define a similar sheaf on X̃ := X̃(Dj∈J), that we denote by A modD
X̃

: Given an

open set Ũ of X̃, a section f of A modD
X̃

on Ũ is a holomorphic function on U∗ := Ũ∩X∗

such that, for any compact set K in Ũ , in the neighbourhood of which D is defined by

gK ∈ OX(K), there exists constants CK > 0 and NK > 0 such that |f | 6 CK |gK |−NK
on K.
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The moderate de Rham complex. The sheaf A modD
X̃

is stable by derivations of X (in

local coordinates) and there is a natural de Rham complex on X̃(Dj∈J):

DRmodD(OX) := {A modD
X̃

d−−→ A modD
X̃

⊗$−1Ω1
X −→ · · · }

When restricted to X∗, this complex is nothing but the usual holomorphic de Rham

complex.

Let (V,∇) be a meromorphic bundle with integrable connection having poles

along D. We associate with (V,∇) the moderate de Rham complex

DRmodD(V,∇) := {A modD
X̃

⊗$−1(V )
∇−−−→ A modD

X̃
⊗$−1(Ω1 ⊗ VX)→ · · · }

which coincides with DR(V,∇) on X∗.
Set V = ker∇ : V|X∗ → Ω1

X∗ ⊗ V|X∗ (this is a locally constant sheaf of finite

dimensional C-vector spaces on X∗) and let ̃ denote the inclusion X∗ ↪→ X̃.

Theorem 4. Assume that (V,∇) is good along D (Definition 2). Then

H j DRmodD(V,∇) =

{
0 if j > 0,

̃∗V if j = 0 (local system on X̃).

7.3. The notion of a Stokes filtration

7.3.a. The sheaf I in the case of normal crossings. Let us consider a family

(Dj∈J) of smooth divisors of X whose union D has only normal crossings, and the

corresponding real blowing-up map $ : X̃(Dj∈J) → X. We will consider multi-

integers d ∈ (N∗)J . The definition of the sheaves Ĩd and Id is similar to that in

dimension one.

Let us set 1 = (1, . . . , 1) (#J terms) and Ĩ1 = $−1OX(∗D) ⊂ ̃∗OX∗ . Let us fix

xo ∈ D, let us denote by D1, . . . , D` the components of D going through xo, and set

x̃o ∈ $−1(xo) ' (S1)`. Then a local section of $−1OX(∗D) near x̃o is locally bounded

in the neighbourhood of x̃o if and only if it is holomorphic in the neighbourhood of xo.

In other words, as in the smooth case, $−1OX(∗D) ∩ (̃∗OX∗)lb = $−1(OX).

We locally define Ĩd near xo, by using a ramified covering ρd of (X,xo) along

(D,xo) of order d = (d1, . . . , d`), by the formula Ĩd := ρ̃d,∗[$d,∗OXd
(∗D)] ∩ ̃∗OX∗ ,

and Id by Id := Ĩd/Ĩd ∩ (̃∗OX∗)lb.

The locally defined subsheaves Ĩd glue together all over D as a subsheaf Ĩd of

̃∗OX∗ . We also set globally Id = Ĩd/Ĩd ∩ (̃∗OX∗)lb.

Definition 5. The subsheaf Ĩ ⊂ ̃∗OX∗ is the union of the subsheaves Ĩd for d ∈ (N∗)J .

The sheaf I is the subsheaf Ĩ/Ĩ ∩ (̃∗OX∗)lb of ̃∗OX∗/(̃∗OX∗)lb.

Definition 6. The order on Ĩ is given by Ĩ60 := Ĩ ∩ log A modD
X̃(Dj∈J )

. It is stable by the

addition of an element of (̃∗OX∗)lb and defines an order on I.
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7.3.b. Stokes-filtered local systems. A Stokes-filtered local system on ∂X̃ is in-

tended to be a local system L on ∂X̃ together with a “filtration by subsheaves

indexed by the sheaf of ordered groups I”. It is useful to consider the étalé space Iét

of the sheaf I, together with the map (local homeomorphism) µ : Iét → X̃, so that by

definition Γ(U, I) is the space of continuous sections s : U → Iét of µ. The topological

space Iét may be quite awful (in particular, not Hausdorff).

A Stokes filtration of L is therefore a subsheaf L6 of µ−1L (i.e., consists of the

data of subsheaves L6ϕ of L|U for any open set U ⊂ ∂X̃ and any section ϕ ∈ Γ(U, I),

in a way compatible with restrictions V ⊂ U and such that, if ψ 6
U
ϕ, then L6ψ ⊂

L6ϕ. In order to get the full strength of a Stokes filtration, one adds a local splitting

property as follows.

For each I ⊂ J , set DI =
⋂
j∈I Di, and let Do

I = DI r
⋃
j /∈I Dj . This is a

smooth locally closed submanifold in X. When restricted above Do
I , I

ét is Hausdorff,

and for each ϕ, L<ϕ,θ :=
∑
ψ<

θ
ϕ,θ L6ψ,θ, for θ ∈ $−1(Do

I ), defines a subsheaf of

L6ϕ|$−1(DoI ). Therefore, above each stratum Do
I one can define a graded sheaf grϕL .

However, the gluing between various strata needs some care.

The splitting property means that, above each stratum Do
I , the local system L is

locally isomorphic to the direct sum of its graded pieces grϕL .

In a more intrinsic way, there exists on each Iét
|DoI

a subsheaf L< of L6 (the latter

exists on the whole Iét) with suitable gluing properties between strata, such that

grL := L6/L< is a local system supported on a finite covering Σ̃oI ⊂ Iét
|DoI

of ∂X̃|DoI .

The union Σ̃ := Σ̃oI is a stratified covering of ∂X̃. The set Σ takes into account

• the non-Hausdorff property of Iét,

• the fact that the exponential factors ϕ may be multivalued since the fibres of $

are homeomorphic to tori (S1)k,

• the fact that the exponential factors ϕ may be multivalued since Do
I may be non

simply connected.

Therefore, the notion of Stokes-filtered local system takes into account the global

(along D) aspects of the local Stokes phenomena.

7.3.c. The Riemann-Hilbert correspondence.

Definition 7. We say that a stratified covering Σ̃ is good if its fibers above each point

of D are good families of polar parts. A Stokes-filtered local system (L ,L•) is said

to be good if the associated stratifed covering Σ̃ is good.

Theorem 8. Let Σ̃ be a good stratified I-covering with respect to the (pull-back to

∂X̃(D) of the) natural stratification of D. The Riemann-Hilbert functor induces an

equivalence between the category of germs of good meromorphic connections along D

with stratified I-covering contained in Σ̃ and the category of good Stokes-filtered C-local

systems on ∂X̃ with stratified I-covering contained in Σ̃.





LECTURE 8

PUSH-FORWARD OF STOKES-FILTERED LOCAL

SYSTEMS. APPLICATIONS TO THE

FOURIER-LAPLACE TRANSFORMATION

8.1. Push-forward of Stokes-filtered local systems

Let f : X → C be a proper holomorphic function on a complex manifold and

let D be a divisor with normal crossings in X. Let (V,∇) be a flat meromorphic

bundle with poles along D. Assume that (V,∇) is good (i.e., satisfies Theorem 1

of Lecture 7 and its complement). We can regard (V,∇) as a left DX -module, and

consider its direct image (Gauss-Manin system) with respect to f . Each cohomology

module H jf+(V,∇) is a holonomic DC-module, which corresponds therefore to a

Stokes-perverse sheaf on C. The main question we consider in this lecture is: how

to compute this Stokes-perverse sheaf directly from the Stokes-filtered local system

attached to (V,∇)?

We will consider a simpler variant of the previous question, by localizing at some

point in C, the origin say, and by assuming that D = f−1(0). We regard now f as

a proper holomorphic map f : X → ∆, where ∆ is a small disc centered at 0. The

direct image H jf+(V,∇) is then a meromorphic connection on ∆, with poles at 0.

Let V be the local system induced by (V,∇) onX∗ := XrD. Setting n+1 = dimX

and assuming f non constant, the local system on ∆r{0} associated with H jf+(V,∇)

is Rn+jf∗V .

The map f induces a map f̃ : X̃ → ∆̃, where X̃ is the real-blow-up space of X

along the components of D. It also induces a map f̃ : ∂X̃ → ∆̃ = S1. We now denote

by Ṽ the local system on ∂X̃ obtained by pushing-forward V by ̃ : X∗ ↪→ X̃ and

then restricting to ∂X̃. Then Rn+j f̃∗Ṽ is a local system on S1: still denoting by

̃ : ∆∗ ↪→ ∆̃ the inclusion, it is nothing but the restriction to S1 of ̃∗Rn+jf∗V .

Let (Ṽ , Ṽ ) be a good Stokes-filtered local system on ∂X̃ (e.g. (Ṽ , Ṽ ) is the Stokes-

filtered local system associated with the good meromorphic connection (V,∇) by the

Riemann-Hilbert correspondence). Let ϕ ∈ O∆,0(∗0)/O∆,0 be a polar part of one

variable, and let f∗ϕ be its pull-back on X. Then Ṽf∗ϕ is a subsheaf of Ṽ .



40 LECTURE 8. PUSH-FORWARD OF STOKES-FILTERED LOCAL SYSTEMS

Theorem 1. For each such ϕ (and the ramified analogue), the natural morphism

Rn+j f̃∗Ṽ6f∗ϕ → Rn+j f̃∗Ṽ is injective.

This theorem, which is a kind of E1-degeneracy property of the Stokes filtration, is

proved through the Riemann-Hilbert correspondence, by using the following general

result.

Let π : X → X ′ be a holomorphic map between complex manifolds X and X ′. We

assume that X and X ′ are equipped with normal crossing divisors D and D′ with

smooth components Dj∈J and D′j′∈J′ , and that

(1) D = π−1(D′),
(2) π : X rD → X ′ rD′ is smooth.

Let $ : X̃(Dj∈J) → X (resp. $′ : X̃ ′(D′j′∈J′) → X ′) be the real blowing-up of the

components Dj∈J in X (resp. D′j′∈J′ in X ′). There exists a lifting π̃ : X̃ → X̃ ′ of π

(see §7.2.a) such that the following diagram commutes:

X̃

π̃
��

$ // X

π
��

X̃ ′
$′ // X ′

Notice that ∂X̃ = π̃−1(∂X̃ ′).

Theorem 2 (T. Mochizuki). Let π : (X,D) → (X ′, D′) be as above. Let M be a

meromorphic connection with poles along D at most. Let π+M the direct image of

M (as a DX(∗D)-module). Then

DRmodD′(π+M ) ' Rπ̃∗DRmodD(M ).

8.2. Stokes filtration and Fourier-Laplace transformation

Let M be a regular holonomic C[t]〈∂t〉-module. The purpose of this section is to

give an explicit formula for the Stokes filtration of its Laplace transform FM at infinity,

in terms of topological data obtained from M . More precisely, let F = pDRanM

be the analytic de Rham complex of M (shifted according to the usual perverse

convention). The question we address is a formula for the Stokes filtration of FM

at τ = ∞ in terms of F only. In other words, we will define a topological Laplace

transform of F as being a perverse sheaf on Â1 with a Stokes filtration at infinity, in

such a way that the topological Laplace transform of DRanM is DRan FM together

with its Stokes filtration at infinity (i.e., DRan FM as a Stokes-perverse sheaf on P̂1,

see Definition 14 of Lecture 6).

The more general case where M has arbitrary singularities has been considered in

[Mal91] and [Moc10].
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A consequence of this result is that, if the perverse sheaf F is defined over Q (say),

then the Stokes filtration of FM at infinity is also defined over Q.

We note that the formal structure of FM at ∞ is described through the vanishing

cycles of DRM (or the moderate vanishing cycles of M) at each of the singular points

of M in A1. Therefore, according to the Riemann-Hilbert correspondence (Theorem 2

of Lecture 6), the set of exponential factors of FM at ∞̂ are the c/τ ′, where τ ′ is the

coordinate centered at ∞̂ in Â1 and c runs among the singular points of M . Similarly,

the graded sheaf grc/τ ′L is obtained from the vanishing cycle space φmod
t−c M together

with its monodromy.

We will try to recover this Stokes-filtered local system (L ,L•) from the perverse

sheaf F = pDRanM .

8.2.a. The topological Laplace transformation. Since we a priori know

that the set of exponential factors of FM at ∞̂ is non-ramified and of the form

{c/τ ′ | c ∈ C ⊂ C}, it is enough to give the topological description of L6c/τ ′ and

L<c/τ ′ for any c ∈ C (and jumps will only occur for c ∈ C).

Let F be any perverse sheaf (of Q-vector spaces) on A1. We will define a Stokes-

filtered local system (L ,L•) indexed by C/τ ′ on S1
∞̂.

For θ̂′o ∈ S1
∞̂, let us denote by Bθ̂′o

⊂ S1
∞ the closed interval {(∞, eiθ) | Re(eiθ−θ̂

′
o) >

0}, and let Aθ̂′o
⊂ S1

∞ be the complementary open interval. Let us denote by Φθ̂′o
the

family of closed sets S ⊂ A1 such that S ∩Bθ̂′o = ∅. We then define

Lθ̂′o
= H1

Φ
θ̂′o

(A1,F ).

If α : A1 ↪→ (A1 ∪ Aθ̂′o) and β : (A1 ∪ Aθ̂′o) ↪→ (A1 ∪ S1
∞) denote the open inclusions,

we can also write

Lθ̂′o
= H1(P̃1,F ).

In the following pictures, the set Aθ̂′o
is drawn with a full line on the boundary

(it is open) and the set Bθ̂′o
(or the corresponding set for computing Lθ̂′o,<c/τ

′ and

Lθ̂′o,6c/τ
′ is drawn with a dashed line (it is closed).

c

β!α∗j∗L

c1

c2

cn

ciF

c1

c2
c

ci

β!α∗F
c1

c2

ci

c

β!α∗F

Lθ̂′o
Lθ̂′o,<c/τ

′ Lθ̂′o,6c/τ
′
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8.2.b. Compatibility with Riemann-Hilbert.

Theorem 3. The Stokes filtration of FM at ∞̂ is obtained from F := pDRanM by

topological Laplace transformation.



LECTURE 9

SOME EXERCISES

9.1. Twistor construction

We regard P1 as the union of two affine charts Cz and Cz′ , with z′ = 1/z on

the intersection, and we set S1 = {|z = 1} = {|z′ = 1|}. Let σ : P1 → P1
be the

anti-holomorphic involution z 7→ −1/z.

(1) Let H be a holomorphic vector bundle on Cz.
• Show that σ∗H is a holomorphic vector bundle on Cz′ .

(2) Let C : H|S1 ⊗OS1 σ
∗H |S1 → OS1 be OS1 -linear inducing an isomorphism

H ∨
|S1 ' σ∗H |S1 . Then C defines a holomorphic bundle H̃ on P1 by gluing H ∨

and σ∗H along the previous isomorphism. Assume that H is equipped with a

meromorphic connection ∇ having a pole at z = 0 only.

• Show that σ∗H has a meromorphic connection having a pole at z′ = 0

only.

• Show that if C is compatible with the connections, then the connection ∇
on H ∨ and that on σ∗H are compatible and define a meromorphic connec-

tion ∇ on H̃ with pole at 0,∞ only.

• In such a case, show that C is uniquely determined from its restriction to

the local system L = ker∇, which is a non-degenerate pairing C : L|S1 ⊗CS1

ι−1L |S1 → CS1 , where ι is the involution z 7→ −z (note that, for z ∈ S1,

σ(z) = ι(z)).

Remark. Given (H ,∇) and a non-degenerate pairing C : L|S1 ⊗CS1 ι
−1L |S1 → CS1

as above, it is difficult to check whether H̃ is trivial, or to compute the Birkhoff-

Grothendieck decomposition of H̃ , as this reduces to a transcendental question.

(3) Assume that we are given (H ,C ) as above. Show that H̃ ' σ∗H̃ . Conclude

that, if (H ,C ) is a pure twistor of weight 0, that is, if H̃ is the trivial bundle, then

H := Γ(P1, H̃ ) is equipped with a nondegenerate sesquilinear form.
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9.2. Elementary C((z))-vector spaces with connection

Let R be a finite dimensional C((z))-vector space equipped with a connection ∇
having a regular singularity, i.e., there exists a basis of R in which ∇ = d+Adz/z, A

a constant matrix.

(1) Let ϕ ∈ C((z)). Show that ∇ + dϕ Id is a connection which only depends on

ϕ mod C[[z]], that is, if ϕ,ψ ∈ C((z)) are such that ϕ−ψ ∈ C[[z]], then (R,∇+dϕ Id) '
(R,∇+ dψ Id).

(2) Show that if ϕ 6= 0 in C((z))/C[[z]], then ker∇ = 0. Applying this to End, show

the converse to the implication above.

(3) Let u be a new variable, let ρ ∈ uC[[u]] with valuation vu(ρ) = p > 1, and set

z = ρ(u). Show that C((u)) is a C((z))-vector space. Let R be a n-dimensional C((u))-

vector space. Show that R is a finite dimensional C((z))-vector space and compute its

dimension. It is denoted by ρ∗R.

(4) Assume R has a connection ∇ (w.r.t. to u). Show that ∇∂z := ρ′(u)−1∇∂u de-

fines a derivation of R as a C((z))-vector space. Then (R,∇∂z ) is denoted ρ+(R,∇∂u).

(5) Let S be a m-dimensional C((z))-vector space with a connection ∇ (w.r.t. z)

and set ρ∗S = C((u)) ⊗C((z)) S. Show that the formula ∇∂u(1 ⊗ s) = ρ′(u) ⊗ ∇∂zs
defines a connection on ρ∗S (w.r.t. u). It is denoted ρ+(S,∇).

(6) Let λ ∈ uC[[u]] with vu(λ) = 1. Compute λ+(S, d + dψ Id +Adz/z) and

λ+(R,d + dϕ Id +Adu/u), ϕ ∈ C((u)), ψ ∈ C((z)) and A a constant matrix.

(7) Let (R,∇) and (R′,∇′) be two C((u))-vector spaces with regular connection,

and let λ ∈ uC[[u]] with vu(λ) = 1. Show that λ+(R,∇ + dϕ Id) ' (R′,∇′ + dψ Id)

iff ψ ◦ λ ≡ ϕ mod C[[u]] and (R,∇) ' (R′,∇′). (Hint: use the series ρ(u) such that

λ ◦ ρ = 1 and show that λ+ = ρ+.)
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