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HODGE THEORY, SINGULARITIES AND D-MODULES
LECTURE NOTES (CIRM, LUMINY, MARCH 2007)

Claude Sabbah

Abstract. These notes, which consist of five lectures, intend to explain the notion of
a polarized Hodge D-module, after the work of M. Saito, and give some applications.

– In the first lecture, we recall classical results of Hodge theory on smooth
complex projective varieties and we introduce the notion of a (polarized) Hodge
structure.
– In the second lecture, we introduce the notion of a variation of Hodge structure
parametrized by a Riemann surface. Analyzing the problems which arise when
the Riemann surface is a punctured disc, we introduce the notion of a Hodge
D-module on a disc.
– In the third lecture, we consider global questions on a compact Riemann
surface, and show how L2-cohomology enters in the story.
– In the fourth lecture, we introduce the notion a a Hodge D-module in any
dimension and explain the Hodge theorem in this context.
– In the last lecture, we give examples of applications of the theory, and we try
to show how these tools can be used in some explicit problems.
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INTRODUCTION

Hodge theory decomposes the cohomology of any smooth complex projective vari-
ety X (more generally, any compact Kähler complex manifold):

∀ k ∈ N, Hk(X,C) =
⊕

p+q=k

Hp,q(X),

where Hp,q(X) stands for Hq(X,ΩpX) or, equivalently, for the Dolbeault cohomology
space Hp,q

d′′ (X). This result is classically (1) proved by methods of analysis (Hodge
theory for the Laplace operator) and is of a global nature: the cohomology of a non-
compact Kähler manifold, or of a non-projective smooth quasi-projective variety, does
not usually satisfy this decomposition property.

Singularities of the variety also prevent from such a decomposition. As we will
mainly work with projective varieties, the singularities can be introduced by consid-
ering other coefficients than the constant sheaf CX on a smooth variety X. Therefore,
in the following, X will denote a smooth complex projective variety (for instance the
projective space). A system of coefficients will be a complex F • of sheaves on X

of C-vector spaces (for instance the constant sheaf CX). We will be interested in
the hypercohomology H∗(X,F •) of X with coefficients in F •. Let us note that the
support Z of the complex F • is possibly smaller than X and could have singularities.

The first reasonable assumption to be made on F •, in order that the hyperco-
homology is finite dimensional, is that F • is a bounded complex with constructible
cohomology. Its support Z is then a projective subvariety of X. A classical result
(Verdier) then gives the finiteness of the hypercohomology spaces.

The second reasonable assumption to be made on F •, in order that the hypercoho-
mology satisfies Poincaré duality is that F • is a self-dual perverse complex (Goresky-
MacPherson). Typically, F • is the intersection complex with coefficients in a local
system defined on the smooth part of an irreducible projective variety, and the local
system is assumed to be isomorphic to its dual local system.

1. See, however, Remark 1.2.6.
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Thirdly, in order that the hypercohomology spaces to be defined over R, so that
it is meaningful to write Hq,p = Hp,q, the complex itself should be defined over R
or, better, over Q: there should exist a complex of Q-vector spaces F •

Q such that
F • = C ⊗Q F •

Q. In the example above, the local system should be defined over Q,
i.e., should be a local system of Q-vector spaces (so that the all monodromy matrices
can simultaneously be chosen with entries in Q).

Let us remark that the first two assumptions above are of a local nature: they
can be defined and checked locally on X (for constructibility, this is not completely
trivial). However, the third one is global (checking locally the existence of such an F •

Q
is not enough, we need to glue the local Q-perverse sheaves into a global one).

It is therefore natural to ask: what kind of local assumptions on F • are sufficient
in order to get a Hodge decomposition of the hypercohomology with coefficients in F •

(assuming the existence of a Q-structure)?
The most general answer to this question has been given by M. Saito [24]: if we

assume that F • underlies a polarizable Hodge DX-module, then we get the desired
Hodge properties on the hypercohomology of F •. As we will see, in the definition
of a polarizable Hodge DX -module, there are assumptions of a local nature, but the
existence of a Q-structure remains global. A Hodge D-module will then consist of
a triple (M ,F •

Q, α) consisting of a (filtered) D-module, a bounded complex with Q-
constructible cohomology and an isomorphism α : DR M

∼−→ F •
Q ⊗Q C. This set of

data has a local definition, but the existence of such an object on a complex projective
variety will lead to a Hodge structure on the hypercohomology of DR M . Finding a
sufficient set of conditions on such a set of data in order to imply the previous global
result is one of the main achievements of M. Saito. On the other hand, knowing that
such a set of data satisfies the local conditions implies strong properties of Hodge-
theoretic nature for singularities. Gathering these properties in a global situation
leads to rigidity properties: on a given projective variety, the number and position
of singularities is constrained by the necessity that the local Hodge properties are
compatible with the global ones.

This result was obtained as at the end of a long way. Let us sketch it briefly, as it
will serve us as the guide for these notes.

– Deligne introduced the abstract notion of polarized Hodge structure, and re-
marked that if F • underlies a variation of polarized Hodge structure (in partic-
ular, F • is a locally constant sheaf), then Hodge theory applies to the hyperco-
homology with coefficients in F •.
– Griffiths and Schmid developed a detailed analysis of such variations on a
punctured disc and Schmid introduced the notion of limit mixed Hodge structure.
– Zucker has combined the global result of Deligne and the local results of
Schmid to obtain Hodge decomposition of the cohomology of a local system
on a quasi-projective curve (compact Riemann surface with a finite number of
points removed), when this local system underlies a variation of polarized Hodge
structure (see § 1.1 for a precise statement).
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– Some years before, Steenbrink had revisited the result of Schmid when the
variation of Hodge structures is defined by a one-parameter family of smooth
projective varieties (Gauss-Manin connection). He was able to reprove one of
the theorems of Schmid by a local analysis of the singularities of the special fibre
of the family. This analysis was done on the resolution of singularities of this
special fibre.
– Later, Varchenko gave, in the case of a family given by a germ of a complex
function on Cn having an isolated singularity, a interpretation of the mixed
Hodge structure on the vanishing cycles purely in terms of local properties of
the singularity. At this point, there is no more need to descend to the parameter
space (the disc). This construction was revisited by Scherk and Steenbrink.
– M. Saito extracted from the previous construction a general method to define
Hodge D-modules (pure and mixed) and proved the Hodge decomposition by
reducing, with the help of a Lefschetz pencil, to the case of curves, a case treated
by Zucker.

In the classical Hodge theory, three kinds of cohomologies are related: the singular
cohomology (also called Betti cohomology), the holomorphic de Rham cohomology
(through the hypercohomology of the holomorphic de Rham complex) and the Dol-
beault cohomology. The first two can be generalized in the framework of Hodge
D-modules. However, the third one, of a more C∞ nature, is not easily defined in
this framework. This is the reason why we will insist on the Hodge filtration instead
of the Hodge decomposition. Indeed, the Hodge filtration can be defined at the level
of de Rham cohomology.

Good general references are [10], [33], [21]. Details on the analysis in Hodge theory
can be found in [7].





LECTURE 1

HODGE THEORY: REVIEW OF CLASSICAL RESULTS

1.1. Hodge theory on compact Riemann surfaces

Let X be a compact Riemann surface of genus g > 0. Let us assume for simplicity
that it is connected. Then H0(X,Z) and H2(X,Z) are both isomorphic to Z (as X is
orientable). The only interesting cohomology group is H1(X,Z), isomorphic to Z2g.

Poincaré duality induces a skewsymmetric non-degenerate bilinear form

〈•, •〉 : H1(X,Z)⊗Z H
1(X,Z)

• ∪ •−−−−→ H2(X,Z)

∫
[X]−−−−→ Z.

One of the main analytic results asserts that the space H1(X,OX) is finite di-
mensional and has dimension equal to the genus g (see e.g., [22, Chap. IX] for
a direct approach). Then, Serre’s duality H1(X,OX)

∼−→ H0(X,Ω1
X)∨ also gives

dimH0(X,Ω1
X) = g. A dimension count implies then the Hodge decomposition

H1(X,C) = H0,1(X)⊕H1,0(X), H0,1(X) = H1(X,OX), H1,0(X) = H0(X,Ω1
X).

If we regard Serre’s duality as the pairing

H1,0 ⊗C H
0,1 • ∧ •−−−−→ H1,1

∫
−−→ C,

then Serre’s duality is equivalent to the complexified Poincaré duality pairing

〈•, •〉C : H1(X,C)⊗C H
1(X,C) −→ C,

as 〈H1,0, H1,0〉 = 0 and 〈H0,1, H0,1〉 = 0.
With respect to the real structure H1(X,C) = C ⊗R H

1(X,R), H1,0 is conjugate
to H0,1, and using Serre’s duality (or Poincaré duality) we get a sesquilinear pairing

k : H1,0 ⊗C H1,0 −→ C.

Then, the Hodge-Riemann bilinear relations assert that h = ik is a positive definite
Hermitian form.
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1.2. Hodge theory of smooth projective varieties

Let X be a smooth complex projective variety of pure complex dimension n (i.e.,
each of its connected component has dimension n). It will be endowed with the usual
topology, which makes it a complex analytic manifold. The classical Hodge theory
asserts that each cohomology space Hk(X,C) decomposes as the direct sum

(1.2.1) Hk(X,C) =
⊕

p+q=k

Hp,q(X),

where Hp,q(X) stands for Hq(X,ΩpX) or, equivalently, for the Dolbeault cohomology
space Hp,q

d′′ (X). Although this result is classically proved by methods of analysis
(Hodge theory for the Laplace operator), it can be expressed in a purely algebraic
way, by means of the de Rham complex.

The holomorphic de Rham complex is the complex of sheaves (Ω•X , d), where d
is the differential, sending a k-form to a k + 1-form. Recall (holomorphic Poincaré
Lemma) that (Ω•X , d) is a resolution of the constant sheaf. Therefore, the cohomology
Hk(X,C) is canonically identified with the hypercohomology Hk

(
X, (Ω•X , d)

)
of the

de Rham complex.

Exercise 1.2.2 (Algebraic de Rham complex). Using the Zariski topology on X, we get
an algebraic variety denoted by Xalg. In the algebraic category, it is also possible to
define a de Rham complex, called the algebraic de Rham complex.

(1) Is the algebraic de Rham complex a resolution of the constant sheaf CXalg?

(2) Do we have H∗(Xalg,C) = H∗
(
Xalg, (Ω•Xalg , d)

)
?

The de Rham complex can be filtered in a natural way by subcomplexes (“filtration
bête” in [4]).

Remark 1.2.3. In general, we denote by an upper index a decreasing filtration and by
a lower index an increasing filtration. Filtrations are indexed by Z.

We define the “stupid” (increasing) filtration on OX by setting

FpOX =

{
OX if p > 0,

0 if p 6 −1.

Observe that, trivially, d(FpOX ⊗OX
ΩkX) ⊂ Fp+1OX ⊗OX

Ωk+1
X . Therefore, the

de Rham complex can be filtered by

(1.2.4) F p(Ω
•
X , d) = {0 −→ F−pOX

d−−→ F−p+1OX ⊗OX
Ω1
X

d−−→ · · · }.

If p 6 0, F p(Ω•X , d) = (Ω•X , d), although if p > 1,

F p(Ω
•
X , d) = {0 −→ · · · −→ 0 −→ ΩpX

p

−→ · · · −→ ΩdimX
X −→ 0}.

Therefore, the p-th graded complex is 0 if p 6 −1 and, if p > 0, it is given by

grpF (Ω
•
X , d) = {0 −→ · · · −→ 0 −→ ΩpX

p

−→ 0 −→ · · · −→ 0}.
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In other words, the graded complex grF (Ω•X , d) =
⊕

p grpF (Ω•X , d), is the complex
(Ω•X , 0) (i.e., the same terms as for the de Rham complex, but with differential equal
to 0).

From general results on filtered complexes, the filtration of the de Rham complex in-
duces a (decreasing) filtration on the hypercohomology spaces (that is, on the de Rham
cohomology of X) and there is a spectral sequence starting from H∗

(
X, grF (Ω•X , d)

)
and abutting to grFH

∗(X,C). Let us note that H∗
(
X, grF (Ω•X , d)

)
is nothing but⊕

p,qH
q(X,ΩpX).

Theorem 1.2.5. The spectral sequence of the filtered de Rham complex on a smooth
projective variety degenerates at E1, that is,

H∗(X,C) ' H∗DR(X,C) =
⊕
p,q
Hq(X,ΩpX).

Remark 1.2.6. Although the classical proof uses Hodge theory for the Laplace operator
which is valid in the general case of compact Kähler manifolds, there is a purely
algebraic/arithmetic proof in the projective case, due to Deligne and Illusie [6].

For any k, Poincaré duality is a non-degenerate bilinear pairing

〈•, •〉n−k : Hn−k(X,Z)⊗Z H
n+k(X,Z)

• ∪ •−−−−→ H2n(X,Z)

∫
[X]−−−−→ Z.

In particular (taking k = 0), we get a non-degenerate bilinear form on Hn(X,Z).
For any k ∈ Z, we set (1) ε(k) = (−1)k(k−1)/2. Let us set Qn(•, •) = ε(n)〈•, •〉0. Then
Qn is (−1)n-symmetric and

Qn(Hp,n−p, Hp′,n−p′) = 0 if p+ p′ 6= n.

As Hn−p,p = Hp,n−p, we regard Qn as a sesquilinear pairing on Hp,n−p, that we
denote kp,n−p. In order to obtain a Hermitian form, one has to be careful by choosing
the right power of i:

hp,n−p := (−1)pi−nkp,n−p is a non-degenerate Hermitian form on Hp,n−p.

In order to obtain similar results on the spacesHn−k(X,C) for k 6= 0, it is necessary
to choose an isomorphism between the vector spaces Hn−k(X,C) and Hn+k(X,C)

(we know that they have the same dimension, as Poincaré duality is non-degenerate).
A class of good morphisms is given by the Lefschetz operators that we define now.

Fix an ample line bundle L on X (for instance, any embedding of X in a projective
space defines a very ample bundle, by restricting the canonical line bundle O(1) of the
projective space to X). The first Chern class c1(L ) ∈ H2(X,Z) defines a Lefschetz
operator

LL := c1(L ) ∪ • : Hk(X,Z) −→ Hk+2(X,Z).

1. The presence of ε(n) and of powers of i basically comes from the following relation on Cn:
if we take complex coordinates z1, . . . , zn and set zj = xj + yj , then the volume form (giving the
orientation) is 2ndx1 ∧dy1 ∧ · · · ∧dxn ∧dyn, and can also be written as (−1)n(n−1)/2in(dz1 ∧dz1)∧
· · · ∧ (dzn ∧ dzn).



8 LECTURE 1. HODGE THEORY: REVIEW OF CLASSICAL RESULTS

(Note that, wedging on the left or on the right amounts to the same, as c1 has
degree 2.)

The Hard Lefschetz theorem, usually proved together with the previous results of
Hodge theory, asserts that, for any smooth complex projective variety X, any ample
line bundle L , and any k > 1, the k-th power LkL : Hn−k(X,Q) → Hn+k(X,Q) is
an isomorphism. (2)

If we fix such a Lefschetz operator, we can identify Hn+k(X,Q) to Hn−k(X,Q)

with LkL and get a bilinear form Qn−k on Hn−k(X,Q) by setting

Qn−k(u, v) := ε(n− k)〈u,LkL v〉k
In such a way, one obtains a (−1)n−k-symmetric non-degenerate bilinear form which
satisfies, for any p, q and p′, q′ with p+ q = p′ + q′ = n− k:

Qn−k(Hp,q, Hp′,q′) = 0 if p+ p′ 6= n− k.

Therefore, for any p, q with p+ q = n−k, one is left with a Hermitian form as above:

hp,q := ip−qkp,q = (−1)pi−(n−k)kp,q on Hp,q.

Let us note however that this Hermitian form is possibly not positive definite (in
general). In order to get positivity, we have to restrict it to the primitive part defined
as follows. One note that the Lefschetz operator has type (1, 1) with respect to the
Hodge decomposition, hence sends Hp,q to Hp+1,q+1. Therefore, for any k > 0, LkL
induces and isomorphism Hp,q → Hp+k,q+k for any p, q with p + q = n − k. The
primitive part P p,q is by definition the kernel of Lk+1

L : Hp,q → Hp+k+1,q+k+1.
For instance, when k = 0, we get positivity on Ker LL : Hp,n−p → Hp+1,n−p+1. In

the case of curves (n = 1), such a restriction is empty as, whatever the choice of L

is, we have LL = 0 on H1(X,Q) (as it takes values in H3 = 0).

1.3. Polarized Hodge structures

The previous properties of the cohomology of a projective variety can be put in an
axiomatic form. This will happen to be useful as a first step to Hodge D-modules.

1.3.a. Hodge structures. This is, in some sense, a category looking like that of
finite dimensional complex vector spaces. In particular, it is abelian, that is, the
kernel and cokernel of a morphism exist in this category. This category is very useful
as an intermediate category for building that of mixed Hodge structures, but the
main results in Hodge theory use a supplementary property, namely the existence of
a polarization (cf. § 1.3.b)

Definition 1.3.1 (Hodge structures). Given a finite dimensional C-vector space H and
an integer w ∈ Z, a pure Hodge structure of weight w on H consists of

2. It is known that the same statement is not true in general if one replaces the coefficients Q
with Z.
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(1) a decomposition H =
⊕

p∈ZH
p, that it will be more convenient to denote as

H =
⊕

p+q=wH
p,q in order to keep in mind the weight w,

(2) a Q-structure, that is, a Q-vector subspace HQ ⊂ H such that H = C⊗Q HQ,
giving therefore also a real structure on H and a conjugation operator.

These data are subject to the relation

∀ p, q with p+ q = w, Hq,p = Hp,q in H.

It will be useful, when considering families, to introduce the Hodge filtration, which
is the decreasing filtration of H defined by

F pH =
⊕
p′>p

Hp′,w−p′ .

Exercise 1.3.2 (Properties of the Hodge filtration). Given any decreasing filtration F •H
of H by vector subspaces, show that the following are equivalent:

(1) the filtration F •H and its complex conjugate F •H are w-opposite, that is, for
any p, F pH ∩ Fw−p+1H = 0;

(2) settingHp,w−p = F pH∩Fw−pH, thenHw−p,p = Hp,w−p andH =
⊕

pH
p,w−p.

Let us introduce a new variable z and let us consider in the free C[z, z−1]-module
H := C[z, z−1]⊗CH the object F :=

⊕
p F

pHz−p; show that F is a C[z]-submodule
of H which generates H , that is, H = C[z, z−1]⊗C[z]F . Similarly, denote by F the
object (3)

⊕
q F

qHzq; show that F is a C[z−1]-submodule of H which generates H ,
that is, H = C[z, z−1]⊗C[z−1] F . Using the gluing

C[z, z−1]⊗C[z] F
∼ //

∼
��

H C[z, z−1]⊗C[z−1] F
∼oo

the pair (F ,F ) defines an algebraic vector bundle on P1 of rank dimH. Show that
the properties (1) and (2) are also equivalent to

(3) The vector bundle determined by (F ,F ) is isomorphic to OP1(w)dimH .

Exercise 1.3.3 (The category of Hodge structures). The category of Hodge structures
is defined as follows:

(a) the objects are Hodge structures of some weight, as defined above,

(b) the morphisms are the Q-linear morphisms between the underlying Q-vector
spaces which are compatible with the Hodge filtration, i.e., sends F p into F p for
any p.

Prove the following properties:

3. Notice that the effect of the conjugation on F is not restricted to F qH, but it also transforms
z into z−1; in fact the right conjugation should transform z to −z−1, but this will not matter here.
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(1) If one defines the filtration on the tensor product as

F p(H1 ⊗H2) =
∑

p1+p2=p

F p1H1 ⊗ F p2H2,

the tensor product of Hodge structures of weight w1, w2 is a Hodge structure of
weight w1 + w2.

(2) If one defines the filtration on the space of linear morphisms as

F p Hom(H1, H2) = {f ∈ Hom(H1, H2) | ∀ k ∈ Z, f(F kH1) ⊂ F p+kH2},

the Hom of Hodge structures of weight w1, w2 is a Hodge structure of weight w2−w1.
Conclude that the dual of a Hodge structure of weight w is a Hodge structure of
weight −w.

(3) Show that a morphism of Hodge structures of the same weight preserves the
Hodge decomposition as well. Deduce that, if (F •H ′, H ′Q) is a Hodge sub-structure
of weight w of (F •H,HQ), that is, if H ′Q ⊂ HQ and F •H ′ = H ′∩F •H define a Hodge
structure of weight w, then H ′p,q ⊂ Hp,q.

(4) Show that a morphism between Hodge structures of weights w1, w2 induces a
morphism between the associated vector bundles on P1 (cf. 1.3.2(3)). Conclude that
there is no non-zero morphism if w1 > w2.

(5) Show that any morphism f : H1 → H2 between Hodge structures of
weights w1, w2 is strictly compatible with the Hodge filtration, that is, f(F •H1) =

f(H1) ∩ F •H2.

(6) Let f : H1 → H2 be a morphism of Hodge structures (i.e., an element of
F 0 Hom(H1, H2) ∩ HomQ(H1,Q, H2,Q)). Show that the kernel of f , equipped with
the filtration induced by F •H1, is a Hodge structure of weight w1 (use 1.3.2(1)). By
duality, prove that Coker f (equipped with the filtration induced by F •H2) is a Hodge
structure of weight w2. Conclude that the category of Hodge structures is abelian.

Exercise 1.3.4 (The Tate twist). It is often useful to change the weight of a Hodge
structure. We proceed as for homogeneous polynomials, were one can change the
degree by multiplying by a monomial. A similar operation can be done on vector
bundles on the Riemann sphere, by tensoring with a line bundle O(k).

The trivial Hodge structure is called Z(0): this is the complex space C equipped
with the usual Q-structure (and even Z-structure) and Hodge decomposition having
only a (0, 0)-component.

The most basic Hodge structure (defined over Z) is called Z(1): the underlying
vector space is C, but the Q-structure is 2πiQ (or 2πiZ) and it is considered as a
Hodge structure of weight −2, i.e., has only a (−1,−1)-component.

Using Exercise 1.3.3, prove that

(1) if one defines, for any k ∈ Z, Z(k) as Z(1)⊗k, then Z(k) has weight −2k;
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(2) If H is a Hodge structure of weight w, then H(k) := Z(k)⊗H has weight w−
2k, it has the decomposition H(k)p,q = Hp+k,q+k and Hodge filtration F p(H(k)) =

F p+kH;

(3) If f : H1 → H2 is a morphism of Hodge structures, then it is also a morphism
of twisted Hodge structures H1(k)→ H2(k).

We say that a morphism H1 → H2 is a morphism of type (k, k) of Hodge structures if
it is a morphism of Hodge structures H1 → H2(k). Prove that a morphism H1 → H2

has type (k, k) if and only if it belongs to F k Hom(H1, H2).

Exercise 1.3.5 (The Hodge polynomial). Let H be a Hodge structure of weight w
with Hodge decomposition H =

⊕
p+q=wH

p,q. The Hodge polynomial Ph(H) ∈
Z[u, v, u−1, v−1] is the two-variable Laurent polynomial defined as

∑
p,q∈Z h

p,qupvq

with hp,q = dimHp,q. This is a homogeneous Laurent polynomial of degree w. Show
the following formulas:

Ph(H1 ⊗H2)(u, v) = Ph(H1)(u, v) · Ph(H2)(u, v),

Ph(Hom(H1, H2))(u, v) = Ph(H1)(u−1, v−1) · Ph(H2)(u, v),

Ph(H∨)(u, v) = Ph(H)(u−1, v−1),

Ph(H(k))(u, v) = Ph(H)(u, v) · (uv)−k.

1.3.b. Polarized Hodge structures. In the same way the category of Hodge struc-
tures looks like that of complex vector spaces, that of polarized Hodge structures looks
like that of vector spaces equipped with a positive definite Hermitian form. It will be
semisimple, that is, any object can be decomposed into a orthogonal direct sum of
irreducible objects. However, although irreducible vector spaces with a positive defi-
nite Hermitian form have dimension one (this follows from the classification of positive
definite Hermitian form) this does not remain true (fortunately) for polarized Hodge
structures. A better analogy would be to consider Q-vector spaces with a positive
definite quadratic form: indeed, this is nothing but polarized Hodge structures of
type (0, 0). The category of polarized Hodge structures will have enough rigidity to
be stable under various operations of algebraic geometry.

Definition 1.3.6 (Polarization). A polarization of a Hodge structure (F •H,HQ) of
weight w consists of a non-degenerate bilinear pairing Q on HQ such that,

(a) Q is (−1)w-symmetric,

(b) Q(Hp,w−p, Hp′,w−p′) = 0 if p′ 6= w − p, and

(c) on each Hp,w−p, the associated Hermitian form hp,w−p := (−1)pi−wkp,w−p is
positive definite, where kp,w−p is the sesquilinear pairing on Hp,w−p induced by Q.

Remark 1.3.7. It may be useful to express Q as a morphism of Hodge structures.
According to (b), it defines a morphism (H,F •H) ⊗ (H,F •H) → C(−w) but, when
restricted to HQ, takes values in Q. In order that it takes values in Q(−w), we
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should multiply it by (2πi)−w. Therefore, (a) and (b) are equivalent to giving a
non-degenerate morphism of Hodge structures

SQ = (2πi)−wQ : (F
•
H,HQ)⊗ (F

•
H,HQ) −→ Q(−w),

whose sesquilinear complex extension S : H⊗CH → C is Hermitian. Then (c) means
that, when restricted to Hp,w−p, S is (−1)p-positive definite.

Remark 1.3.8. Although we kept a notation very similar to that of the geometric
case of § 1.2, one should be careful, when applying the previous definition to Qn−k,
to give H the interpretation of the primitive part (with respect to a chosen ample
line bundle) of Hn−k(X,C). On the other hand, the previous definition applies to
Hn−k(X,C), but the definition of the corresponding Q is not Qn−k, but is given by
a formula depending on the ample line bundle, that we will not make explicit here.
Let us notice that the dependence with respect to the choice of the ample line bundle
explains the word ‘polarization’. The notion of a Hodge-Lefschetz structure (i.e.,
Hodge structure with a unipotent automorphism, or nilpotent endomorphism) that
we introduce in § 1.4 will give the right analogue for the structure on the cohomology
of a complex projective manifold (cf. Remark 1.4.15).

Proposition 1.3.9. The category of polarized Hodge structures of weight w (the mor-
phisms should be moreover compatible with the bilinear forms) is semisimple, i.e., any
object can be decomposed as the direct sum of simple objects.

Exercise 1.3.10 (Polarization on Hodge sub-structures). Let SQ be a polarization of a
Hodge structure (F •H,HQ) of weight w. Let (F •H ′, H ′Q) be a Hodge sub-structure
of weight w of (F •H,HQ) (cf. Exercise 1.3.3(3)).

(1) Show that the restriction S′Q of SQ to H ′Q is a polarization of (F •H ′, H ′Q).
(Hint : use that the restriction of a positive definite Hermitian form to a subspace
remains positive definite.)

(2) Deduce that (F •H ′, H ′Q) is a direct summand of (F •H,HQ) in the category of
Hodge structures, hence the proof of Proposition 1.3.9

Exercise 1.3.11. Write down the effect of a Tate twist on SQ.

1.4. Polarized Hodge-Lefschetz structures

Let HQ be a Q-vector space equipped with a linear automorphism T . We denote
by Ts and Tu the semi-simple and unipotent part of T . Let F •H be a decreasing
filtration of H = C ⊗Q HQ. We will define the notion of a (quasi) Hodge-Lefschetz
structure of weight w ∈ Z relative to the automorphism.
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1.4.a. Hodge-Lefschetz structures. Let us first assume that Ts = Id. Let N be a
nilpotent endomorphism of HQ (which could be Tu− Id, but this will not be the final
choice).

Lemma 1.4.1 (Jakobson-Morosov). There exists a unique increasing filtration of HQ
indexed by Z, called the monodromy filtration relative to N and denoted by M•(N),
satisfying the following properties:

(a) For any ` ∈ Z, N(M`) ⊂ M`−2,

(b) For any ` > 1, N` induces an isomorphism grM` HQ
∼−→ grM−`HQ.

Example 1.4.2. If N consists only of one lower Jordan block of size k+1, one can write
the basis as ek, ek−2, . . . , e−k, with Nej = ej−2. Then M` is the space generated by
the ej ’s with j 6 `.

Remark 1.4.3. The proof of the lemma is left as an exercise. One can prove the
existence by using the decomposition into Jordan blocks and Example 1.4.2. The
uniqueness is interesting to prove. In fact, there is an explicit formula for this filtration
in terms of the kernel filtration of N and of its image filtration (cf. [31]). The choice of
a splitting of the filtration (which always exists for a filtration on a finite dimensional
vector space) corresponds to the choice of a decomposition of a Jordan block of N.
The decomposition (hence the splitting) is not unique, although the filtration is. The
filtration exists in the larger context of a nilpotent endomorphism of an object in an
abelian category, even though there does not exist a Jordan decomposition. We can
apply it to the category of holonomic D-modules for instance.

Exercise 1.4.4. We denote by grN : grM` H → grM`−2H the morphism induced by N.
Show that, for any ` > 1, grN : grM` H → grM`−2H is injective. Show also that M−2H

is equal to (an not only included in) N(M0H).

As we expect that N will send F k into F k−1 (so is not necessarily compat-
ible with the filtration), we will regard N as a morphism

(
(H,F •H), HQ

)
→(

(H,F •H), HQ
)
(−1), using the Tate twist notation. The right choice for N, starting

from Tu will then be N := (2πi)−1 log Tu.

Definition 1.4.5. We say that
(
(H,F •H), HQ, Tu

)
is a (±)Hodge-Lefschetz structure

of weight w if

(a) N := (2πi)∓1 log Tu induces a morphism (compatible with the filtrations and
the Q-structure)

(
(H,F •H), HQ

)
→
(
(H,F •H), HQ

)
(∓1),

(b) for any ` ∈ Z, the object
(
(grM` H,F

•grM` H), grM` HQ
)
is a Hodge structure of

weight w ± `.

By a Hodge-Lefschetz structure of weight w, we simply mean a (+)Hodge-Lefschetz
structure of weight w.
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The filtration F •grM` H is that naturally induced by F •H on grM` H, that is,

F pgrM` H :=
F pH ∩M`H

F pH ∩M`−1H
.

Let us consider the graded space grMH =
⊕

` grM` H. It is equipped with a (graded)
Q-structure and a (graded) decreasing filtration F •. However, this filtration does not
induce a pure Hodge structure. The Hodge structure is pure on each graded piece,
with a weight depending on the grading index. This graded space is also equipped
with a nilpotent endomorphism, that we denote by grN, from grM` H to grM`−2H, and
which is naturally induced by N. From the definition above, it has the following
property: for any ` ∈ Z,

(1.4.6) grN :
(
(grM` H,F

•
grM` H), grM` HQ

)
−→

(
(grM`−2H,F

•
grM`−2H), grM`−2HQ

)
(∓1)

is a morphism of Hodge structures. In particular, for any ` > 1,

(grN)` :
(
(grM` H,F

•
grM` H), grM` HQ

)
−→

(
(grM−`H,F

•
grM−`H), grM−`HQ

)
(∓`)

is an isomorphism and, for any ` > 0, the primitive subspace Ker(grN)`+1 is a
Hodge substructure of weight ` in

(
(grM` H,F

•grM` H), grM` HQ
)
. It will be denoted

by P
(
(grM` H,F

•grM` H), grM` HQ
)
.

Definition 1.4.7. We say that the (±)Hodge-Lefschetz structure is graded if it is iso-
morphic to its graded structure with respect to the monodromy filtration.

Remark 1.4.8 (Mixed Hodge structures). The symmetry between (+) and (−)

Hodge-Lefschetz structures is only apparent. Although the (+) ones are exam-
ples of mixed Hodge structures, with (increasing) weight filtration W• defined by
WkHQ = Mw+kHQ, the (−) ones are not necessarily mixed Hodge structures.
They are so in the graded case, as an increasing weight filtration can easily been
constructed from the grading in such a case. In fact, we will only encounter
graded (−)Hodge-Lefschetz structures. On the other hand, we will encounter (non
graded) (+)Hodge-Lefschetz structures in the theory of vanishing cycles, cf. § 2.3.

Example 1.4.9. The cohomology H∗(X,Q) of a smooth complex projective variety,
equipped with the nilpotent endomorphism N = (2πi)LL (or the unipotent automor-
phism Tu = exp LL ), is naturally graded. We define the filtration F •H∗(X,C) as
being the direct sum of the Hodge filtration on each term. Then, the graded compo-
nent of degree n+ ` (` ∈ Z) equipped with its filtration is a Hodge structure of weight
n + `. The cohomology H∗(X,Q) is thus a graded (−)Hodge-Lefschetz structure of
weight n.

Exercise 1.4.10 (Tate twist). We define the Tate twist of a set of data ((H,F •H), HQ, Tu)

by Tate-twisting the first to set of data and leaving Tu unchanged. Show that
((H,F •H), HQ, Tu)(k) is a (±)Hodge-Lefschetz structure of weight w ∓ 2k.
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Exercise 1.4.11. The category of Hodge-Lefschetz structures is defined in such a way
that morphisms should be compatible with the filtration, with the Q-structure and
with the automorphism Tu.

(1) Show that this category is abelian and that any morphism is strict with respect
to the filtration F •.

(2) Show that N :
(
(H,F •H), HQ, Tu

)
→
(
(H,F •H), HQ, Tu

)
(−1) is a morphism

in this category.

(3) Compute the filtration M• on Im N in terms of M•(HQ).

(4) Conclude that the image (taken in the category) by N of a Hodge-Lefschetz
structure of weight w is a Hodge-Lefschetz structure of weight w + 2 with unipotent
automorphism Tu| ImN.

Make precise the filtration F • on N(H) and on the graded pieces by the monodromy
filtration.

(5) Show similar results for graded (−)Hodge-Lefschetz structures.

1.4.b. Quasi-Hodge-Lefschetz structures. We now assume that the eigenvalues
λ of T are roots of unity, i.e., that T is quasi-unipotent (in what follows, it would be
enough to assume that they have a modulus equal to one). We will write λ = exp 2πib

with b ∈ ] − 1, 0] ∩ Q. The decomposition of H into eigenspaces of Ts is not defined
over Q in general. We will not assume that the filtration F •H is compatible with
this decomposition. In order to induce a filtration on each of these eigenspaces, we
proceed as follows: let us consider the decreasing filtration (Hb)b∈]−1,0] such that
grbH := Hb/H>b is the exp(2πib)-eigenspace of Ts. We define the filtration F •grbH

by setting

F pgrbH :=
F pH ∩Hb

F pH ∩H>b
.

We therefore get a filtration on grH =
⊕

b∈]−1,0] grbH. Of course, grH and H are
canonically identified as C-vector space, but not as filtered C-vector spaces.

Definition 1.4.12. We say that
(
(H,F •H), HQ, T

)
is a quasi-Hodge-Lefschetz structure

of weight w if
(
(grH,F •grH), HQ, Tu

)
is a Hodge-Lefschetz structure of weight w as

in Definition 1.4.12.

Remark 1.4.13. Notice that, a priori, the F -filtration depends on the ordering of the
logarithms b. For instance, with the choice we made, the filtration F •gr0H is a sub-
filtration of F •H, as H>0 = 0. If we had chosen b ∈ [0, 1[, it would have been a
quotient filtration.

1.4.c. Polarization. We will only consider the case of a unipotent automorphism
T = Tu, and thus of a (±)Hodge-Lefschetz structure (graded, in the (−) case). Let
SQ :

(
(H,F •H), HQ

)
⊗
(
(H,F •H), HQ

)
→ Q(−w) be a pairing. Assume that N is an
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infinitesimal automorphism of SQ, that is, SQ(N•, •) + SQ(•,N•) = 0. Then, for any
` > 0, SQ induces a pairing

S
(`,−`)
Q : grM`

(
(H,F

•
H), HQ

)
⊗ grM−`

(
(H,F

•
H), HQ

)
−→ Q(−w).

If we set S(`,`)
Q (x, y) := S

(`,−`)
Q (x, (grN)`y), we define in this way a pairing

S
(`,`)
Q : grM`

(
(H,F

•
H), HQ

)
⊗ grM`

(
(H,F

•
H), HQ

)
−→ Q(−w ∓ `)

and we can restrict this pairing to the primitive part. The polarization condition is
that, for any ` > 0, the pairing

S
(`,`)
Q : PgrM`

(
(H,F

•
H), HQ

)
⊗ PgrM`

(
(H,F

•
H), HQ

)
−→ Q(−w ∓ `)

is a polarization of the Hodge structure.

Remark 1.4.14. In fact, grM`
(
(H,F •H), HQ

)
is also a polarized Hodge structure, but

the polarization form is not equal to S
(`,`)
Q . It is however obtained by an explicit

formula, cf. [11].

Remark 1.4.15. This definition of polarized graded (−)Hodge-Lefschetz structure is
the right analogue of the geometric Hodge structure of § 1.2 (cf. Remark 1.3.8). We
have there a canonical splitting of the monodromy filtration of N = (2πi)LL . If we
denote by HQ the total cohomology H∗(X,Q), then Hn−`

Q = grM` HQ, w = n = dimCX

and S(`,−`)
Q = Qn−` = ε(n− `)〈•, •〉`.

Exercise 1.4.16. Define the notion of a polarization when the automorphism is quasi-
unipotent.



LECTURE 2

HODGE D-MODULES ON CURVES
LOCAL PROPERTIES

2.0. Introduction

A Hodge structure, as explained in the previous lecture, can be considered as a
Hodge structure on a vector bundle supported by a point, that is, a vector space. The
question we address in this lecture and the next one is the definition and properties
of Hodge structures on a vector bundle on a curve (Riemann surface).

The case “without singularity” is called a variation of Hodge structure. We explain
this notion in § 2.1 from a local point of view. The global properties will be considered
in the next lecture.

In order to analyze singularities, we restrict ourselves to a local setting, where the
base manifold is a disc D centered at the origin in C (or simply the germ of D at
the origin). We denote by t a coordinate on the disc, by C{t} the ring of convergent
power series in the variable t and by D = C{t}〈∂t〉 the ring of germs of holomorphic
differential operators. There is a natural increasing filtration F•D indexed by Z
defined by

FkD =

{
0 if k 6 −1,∑k
j=0 C{t} · ∂

j
t if k > 0.

This filtration is compatible with the ring structure (i.e., Fk · F` ⊂ Fk+` for any
k, ` ∈ Z. The graded ring grFD :=

⊕
k grFk D =

⊕
k Fk/Fk−1 is isomorphic to the

polynomial ring C{t}[τ ] (graded with respect to the degree in τ).
We also denote by DD the sheaf of differential operators with holomorphic coeffi-

cients on D. This is a coherent sheaf, similarly equipped with an increasing filtration
F•DD by free OD-modules of finite rank. The graded sheaf grFDD is identified with
the sheaf on D of functions on the cotangent bundle T ∗D which are polynomial in
the fibres of the fibration T ∗D → D.

Like a Hodge structure on a vector space, a “Hodge structure” on a holonomic
D-module consists of the data of a filtered holonomic DD-module (M , F•) (analogue
of a filtered vector space), of a constructible sheaf FQ of Q-vector spaces on the disc
(analogue of a Q-vector space), and of an isomorphism α : DR M

∼−→ C ⊗Q FQ.
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In such a presentation, the Hodge decomposition is lacking, as it involves complex
conjugation, which is not defined on M . The idea of M. Saito is to use complex
conjugation only after restricting the D-module to a point of the disc D. If this does
not cause any trouble at points of D∗ := Dr{0}, this leads to problems at the origin
for two reasons:

– the stalk of the sheaf FQ at the origin gives few information on the sheaf in
the neighbourhood of the origin,
– the restriction of M consists usually of two vector spaces.

The right way to introduce the restriction consists in introducing nearby and vanishing
cycles. Therefore, the compatibility of the data with the nearby and vanishing cycles
functors will be the main tool in the theory of Hodge D-modules.

2.1. Variation of Hodge structure on a Riemann surface

The definitions below are modelled on the behaviour of the cohomology of a family
of smooth projective varieties parametrized by an algebraic curve, that is, a smooth
projective morphism f : Y → X, that we call below the “geometric setting”.

Let X be a connected (possibly non compact) Riemann surface. In such a setting,
the generalization of a Q-vector space HQ is a locally constant sheaf of Q-vector spaces
HQ on X. Let us choose a universal covering X̃ → X of X and let us denote by G
its group of deck-transformations, which is isomorphic to π1(X, ?) for any base-point
? ∈ X. Let us denote by H̃Q the space of global sections of the pull-back H̃Q of
HQ to X̃. Then, giving HQ is equivalent to giving the monodromy representation
G→ GL(H̃Q).

The analogue of a complex vector space H could be a locally constant sheaf H of
finite dimensional C-vector spaces, so that the isomorphism H ' C⊗Q HQ would be
easily translated at the level of locally constant sheaves. However, it is known that,
in the geometric setting, the Hodge decomposition in each fibre of the family does
not give rise to a locally constant sheaf, but to C∞-bundles.

In order to avoid the use of C∞-bundles and remain in the holomorphic framework,
we consider the Hodge filtration, which is known to give rise to holomorphic bundles.

Therefore, a better analogue of the complex vector space H is a holomorphic vec-
tor bundle V equipped with a holomorphic connection ∇ : V → Ω1

X ⊗OX
V , so that

the locally constant sheaf H = Ker∇ is the desired local system. A filtration is
then a finite (exhaustive) decreasing filtration by subbundles F •V . The main prop-
erty, known as Griffiths transversality property is that the filtration should satisfy
∇(F pV ) ⊂ Ω1

X ⊗OX
F p−1V for any p ∈ Z.

Definition 2.1.1 (Variation of Hodge structure). A variation of Hodge structure of
weight w is a tuple

(
(V,∇, F •V ),HQ, α

)
such that

(a) (V,∇, F •V ) is a vector bundle with connection and filtration satisfying Griffiths
transversality,
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(b) HQ is a locally constant sheaf of Q-vector spaces,

(c) α is an isomorphism H = Ker∇ ∼−→ C⊗Q HQ,

such that the restriction to any point x of X gives rise to a Hodge structure (Hx =

Vx, F
•Hx,HQ,x, αx).

Let us remark that we did not introduce the complex conjugation at the level of the
family, as this would lead to consider C∞-bundles (or, at least, real analytic bundles).

A polarization is a non-degenerate bilinear form SQ : HQ ⊗Q HQ → QX(−w)

inducing a polarization in each fibre (cf. Remark 1.3.7).
In the next lecture we will give an idea of the proof of the Hodge theorem:

Theorem 2.1.2 (Hodge-Deligne theorem on a compact Riemann surface)
Let

(
(V,∇, F •V ),HQ, α,SQ

)
be a polarized variation of Hodge structure of

weight w on a compact Riemann surface. Then the cohomology Hk
Q := Hk(X,HQ) is

naturally equipped with a polarized Hodge structure of weight w + k.

2.2. Variation of Hodge structure on a punctured disc

We now consider the behaviour of a variation of Hodge structure near a singular
point. From now on, we will work on the disc D, as indicated in the introduction
of this lecture and we will denote by D∗ the punctured disc D r {0}. Assume that(
(V,∇, F •V ),HQ, α

)
is a variation of Hodge structure on D∗. Our goal is to define a

suitable restriction of these data to the origin. As for the case of a generic point, the
underlying vector space of the restricted object should have a dimension equal to the
generic rank of the bundle.

2.2.a. The locally constant sheaf. Let HQ be a locally constant sheaf on D∗. We
wish to define a “restriction” of HQ at the origin. This should be a Q-vector space
of the same dimension as the generic dimension of the stalks of HQ. This condition
eliminates the natural candidate, namely the space of sections of HQ over D∗.

On the other hand, let us choose a universal covering D̃∗ → D∗ (for instance, one
can use the exponential map). As π1(D∗, ?) ' Z, giving HQ is equivalent, as we
have indicated in § 2.1, to giving an element T ∈ GL(H̃Q) called monodromy. Our
“restriction” of HQ at the origin will be the pair (H̃Q, T ). This is not only a Q-vector
space, but it is a vector space with an automorphism. We will use the notation

Ψt(HQ) := H̃Q.

Moreover, for any λ ∈ C∗, the generalized eigenspace Ψλ
t (HQ) = Ker(T − λ Id)N

(N � 0) is a subspace of Ψt(H ) = C ⊗Q Ψt(HQ). We have a decomposition
Ψt(H ) =

⊕
λ Ψλ

t (H ). Over Q, we only keep the decomposition as by considering
only Ψ1

t (HQ)⊕Ψ6=1
t (HQ), with Ψ 6=1

t (HQ) :=
⊕

λ6=1 Ψλ
t (HQ) (we can also distinguish

λ = −1 if we wish).
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The space of sections of HQ on D∗ is identified with the subspace Ker(T − Id) of
the space Ψt(HQ) of multivalued sections of HQ on D∗. More precisely, it is contained
in Ψ1

t (HQ).
Assume now that we have a non-degenerate bilinear form SQ : HQ ⊗ HQ →

QD∗(−w) on the locally constant sheaf HQ on D∗ (here, the Tate twist only means
multiplication by (2πi)−w). It gives rise to a non-degenerate bilinear form ΨtSQ on
the space of multivalued sections H̃Q, and the monodromy is an automorphism of this
bilinear form, that is, ΨtSQ(T •, T •) = ΨtSQ(•, •). In particular, the decomposition
Ψt(HQ) = Ψ1

t (HQ) ⊕ Ψ 6=1
t (HQ) is orthogonal with respect to ΨtSQ. Using the

decomposition into Ψλ
t (H )’s, we find ΨtS (Ψλ

t (H ),Ψµ
t (H )) = 0 unless µ = λ−1

(which also reads as µ = λ if T is quasi-unipotent).

2.2.b. The vector bundle with connection. If we are given (V,∇) on D∗, there
exists a unique meromorphic extension, called Deligne meromorphic extension, of
the bundle V to a meromorphic bundle Ṽ (that is, a free sheaf of OD[1/t]-modules)
equipped with a connection. It consists of all local sections of j∗V (where j : D∗ ↪→ V

is the inclusion) whose coefficients in some (or any) basis of multivalued horizontal
sections have moderate growth in any sector with bounded arguments. Equivalently,
it is characterized by the property that the coefficients of any multivalued horizontal
section expressed in some basis of Ṽ are multivalued functions on D∗ with moderate
growth in any sector with bounded arguments.

Remark 2.2.1. This statement is a form of the Riemann-Hilbert correspondence on
the disc: there exists a unique regular holonomic DD-module having Rj∗H as its
de Rham complex. This DD-module is Ṽ .

Similarly, there exists a OD-submodule Ṽ 0 of Ṽ , called theDeligne canonical lattice,
consisting of all local sections of j∗V whose coefficients in any basis of horizontal
sections on any bounded sector are holomorphic functions on this sector with at most
logarithmic growth. On this bundle, the connection ∇̃ has a logarithmic pole. The
residue R of the connection on Ṽ 0 is an endomorphism of the vector space Ṽ 0/tṼ 0,
that we denote by ψtṼ . The real part of its eigenvalues belong to [0, 1[. The latter
two properties also characterize Ṽ 0. There is a natural isomorphism

(2.2.2) ψtṼ
∼−→ ΨtH

(recall that H = Ker∇), under which the monodromy T is expressed as exp(−2πiR).
Let us note that the connection ∇̃makes Ṽ a left DD-module by setting ∂tṽ := ∇̃∂t ṽ

(cf. also Exercise 2.4.9).
We can more generally consider a whole family of Deligne canonical lattices: for any

b ∈ R, we denote by Ṽ b the lattice defined by the property that the eigenvalues of the
residue of the connection have their real part in [b, b+ 1[. If we set Ṽ >b =

⋃
b′>b Ṽ

b′ ,
then Ṽ >b is the Deligne canonical lattice for which the eigenvalues of the residue of
the connection belong to ]b, b+ 1].
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2.2.c. The filtration. We would like to extend the filtration F •V as a filtration
F •Ṽ by subbundles satisfying the Griffiths transversality property with respect to
the meromorphic connection ∇̃. Here the first delicate problem shows up. A first
natural choice would be to set

F pṼ := j∗F
pV ∩ Ṽ ,

where j : D∗ ↪→ D denotes the inclusion. This choice can lead to a non-coherent
OD-module: for instance, if p� 0, we have F pV = V and we get F pṼ = Ṽ , which is
not OD-coherent. Being more clever, one first defines

(2.2.3) F pṼ >−1 := j∗F
pV ∩ Ṽ >−1.

If this sheaf is OD-coherent, it will then be natural to define, for any p, in order to
obtain Griffiths transversality,

(2.2.4) F pṼ =
∑
j>0

(∇̃∂t)jF p+j Ṽ >−1.

Indeed, with this definition, the relation ∇̃∂tF pṼ ⊂ F p−1Ṽ is clearly satisfied.

Exercise 2.2.5 (Extension of the filtration). Show that

(1) For any b > −1, we have F pṼ ∩ Ṽ b = j∗F
pV ∩ Ṽ b and for any b > −1,

F pṼ ∩ Ṽ >b = j∗F
pV ∩ Ṽ >b;

(2) if F pṼ >−1 is OD-coherent, it is OD-locally free, hence free (use that F pṼ >−1 ⊂
Ṽ >−1);

(3) F pṼ is a OD-module;

(4) under the assumption in (2), F pṼ is OD-coherent, and thus OD-free;

(5) the sheaf
⋃
p F

pṼ is a coherent DD-module; it is equal to the DD-submodule
of Ṽ generated by Ṽ >−1.

(Hint: Recall that there exists an integer p0�0 such that F p0V =0 and F−p0V =V .)

This discussion shows that, assuming that each F pṼ is OD-coherent, the DD-
module Ṽ contains an irrelevant part for our purpose: if we denote by Ṽmin the
DD-submodule of Ṽ generated by the Deligne lattice Ṽ >−1, then Ṽ /Ṽmin is not used
in the construction.

Definition 2.2.6. We call Ṽmin the minimal extension (1) of (V,∇) across the origin
(whereas Ṽ should be called the maximal one).

Exercise 2.2.7. Assuming that each F pṼ is OD-coherent and setting FkṼmin = F−kṼ ,
show that F•Ṽmin is a good filtration of Ṽmin (cf. § 2.4.a).

Exercise 2.2.8 (cf. [24, Prop. 3.2.2]). Assume that each F pṼ is OD-coherent and that
the eigenvalues of the residue R of ∇̃ on Ṽ 0 are real. One can then consider the
filtration Ṽ •min indexed by R (cf. § 2.4.e). Prove that the filtration F •Ṽ satisfies the
following properties:

1. It is also called middle extension or intermediate extension; this is justified by Exercise 2.4.25.
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(1) for any b > −1, t(F pṼ ∩ Ṽ bmin) = F pṼ ∩ Ṽ b+1
min ;

(2) for any b < 0, ∂tF pgrb(Ṽmin) = F p−1grb−1(Ṽmin).

[The inclusions⊂ are easy, cf. Exercise 2.4.17; the remarkable property is the existence
of inclusions ⊃; we will call this property strict specializability, cf. § 4.3.b.]

Conversely, prove that if F•Ṽmin is a good filtration satisfying (1) and (2), it can
be obtained by the formulas (2.2.3) and (2.2.4).

2.3. Hodge D-modules on a Riemann surface

2.3.a. Gathering the properties. We can now give a name to the object we want
to single out. Let M be a holonomic DD-module which is a minimal extension of its
restriction to D∗, which we assume to be a vector bundle with connection. We will
assume that

(a) there exists a logarithmic lattice in M , that is to say a free OD-submodule on
which the connection is logarithmic and which generates M as a DD-module, (2)

(b) the residue of the connection on some (or any) logarithmic lattice has real
eigenvalues.

Let F•M be a good F -filtration of M .

Definition 2.3.1 (Strict specializability). We say that the filtered DD-module (M , F•)

is strictly specializable at the origin if the properties 2.2.8(1) and (2) are satisfied.

Definition 2.3.2 (Hodge DD-module with strict support the disc)
A Hodge DD-module of weight w and having the germ of disc D as its strict

support consists of the data
(
(Ṽmin, F

•), j∗HQ, j∗α
)
such that

(a) The residue of the connection on some (or any) logarithmic lattice of Ṽmin has
rational eigenvalues (equivalently, the monodromy of HQ is quasi-unipotent),

(b) it restricts to a variation of Hodge structure
(
(V, F •),HQ, α

)
of weight w onD∗,

(c) (Ṽmin, F
•) is strictly specializable at the origin,

(d) the object
(
(ψtṼmin, F

•ψtṼmin),ΨtHQ, T, ψtα
)

is a quasi-Hodge-Lefschetz
structure of weight w.

Recall that α is an isomorphism Ker∇ ∼−→ C ⊗Q HQ. It defines an isomorphism
Ψtα : Ψt Ker∇ ∼−→ C⊗Q ΨtHQ compatible with the monodromy. We denote by ψtα
the morphism composed of Ψtα and of the isomorphism ψtṼ

∼−→ Ψt Ker∇ whose
existence is indicated in § 2.2.b.

Definition 2.3.3 (Hodge DD-module). A Hodge D-module on the disc with singularity
at the origin at most will then consist of the direct sum of

2. We then say that M has a regular singularity at the origin.
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– a Hodge D-module with strict support equal to the disc and with singularity
at the origin at most,
– a Hodge D-module with strict support equal to the origin: this is mainly a
Hodge structures on a finite dimensional Q-vector space, extended to the disc by
the direct image functor (i+, i∗) induced by the inclusion i : {0} ↪→ D.

Exercise 2.3.4 (Abelianity). Prove that the category of Hodge D-modules (where the
morphisms are pairs of morphisms in the categories of D-modules and sheaves respec-
tively, compatible with α) is abelian.

Definition 2.3.5 (Polarized Hodge DD-module with strict support the disc)
Let

(
(Ṽmin, F

•), j∗HQ, j∗α
)
be a Hodge D-module of weight w. A polarization is

a polarization SQ of the restriction to D∗ such that

(f) ΨtSQ induces a polarization of the quasi Hodge-Lefschetz structure of weight w(
(ψtṼmin, F

•ψtṼmin),ΨtHQ, T, ψtα
)
.

The definition of a polarized Hodge D-module is obtained in a way similar to that
of 2.3.3.

Remark 2.3.6. In § 4.4, we will use the convention of M. Saito: the F -filtration F •Saito
on V is F •[−1] := F •−1V and, correspondingly, the F -filtration F •SaitoψtṼmin is the
filtration induced by F •Saito[1]Ṽmin, that is, the filtration induced by F •Ṽmin. Corre-
spondingly, one should be change the constants in the polarization on ψt. We postpone
the adjustment of multiplicative constants in the Saito convention until § 4.4.

Exercise 2.3.7 (Semi-simplicity). Prove that the category of polarized Hodge D-
modules is semi-simple.

2.3.b. So what? After all these definitions, one is entitled to ask: Does there exist
any Hodge D-module on D other than the variations of Hodge structure on D?

This question has various aspects:

(a) Existence,

(b) openness of the notion,

(c) closedness of the notion.

In the first direction, we start from a quasi-Hodge-Lefschetz structure of weight w
on some given Q-vector space H̃Q. It is then possible to construct

(
(Ṽ , ∇̃),HQ, α

)
giving rise to (H̃, H̃Q, ψtα, T ) by specialization. The question is to define a filtration
F •Ṽ specializing to the given filtration F •H̃ and such that, on D∗, we get a variation
of Hodge structure of weight w.

For (b), assume that we are given a well-filtered DD-module with regular singular-
ity, and which is the minimal extension of its restriction to D∗, that is, it takes the
form (Ṽmin, F•Ṽmin). Assume that we are also given HQ on D∗ with quasi-unipotent
monodromy and an isomorphism α : H = Ker∇|D∗

∼−→ C ⊗Q HQ. Lastly, assume
that the ‘restriction’ to the origin of these data give rise to a quasi-Hodge-Lefschetz
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structure of weight w. The question is to know whether the restriction of these data
to any point in D∗ is also a Hodge structure of weight w. In other words, is the
previous construction open?

For (c), the question is if, starting from a variation of Hodge structure on D∗, the
previous construction does give rise to coherent OD-modules F •Ṽ and, if so, if we get
a Hodge structure of weight w with a quasi-unipotent automorphism on the special
fibre, by the construction ψt.

The fundamental theorems of W. Schmid [29] assert that the answer to each of these
questions is positive, provided that we moreover assume the existence of a polarization.
More precisely, they give a positive answer to the questions when we add in the
assumption and in the conclusion the existence of a polarization.

For the existence, the result is known as the Nilpotent orbit theorem, at least when
the automorphism we start with is unipotent.

That (b) is true can be related, at least when the weight is zero, to the rigidity of
trivial vector bundles on the Riemann sphere (according to Exercise 1.3.2(3)).

In the proof of (c) enters the easy fact that, if we have a continuous one-parameter
family of Hermitian forms on a vector space such that the special Hermitian form is
non-degenerate and the general one is positive definite, then the special one is also
positive definite.

However, a lot of analysis has to be developed in order to use these simple facts.

2.4. Appendix: Basics on holonomic D-modules

We keep the notation given in the introductory part of this lecture.

2.4.a. Good F -filtrations, holonomic modules. Let M be a finitely generated
D-module. By an F -filtration of M we mean increasing filtration F•M by O = C{t}-
submodules, indexed by Z, such that, for any k, ` ∈ Z, FkD · F`M ⊂ Fk+`M . Such a
filtration is said to be good if it satisfies the following properties:

(1) FkM = 0 for k � 0,

(2) each FkM is finitely generated over O,

(3) for any k, ` ∈ Z, FkD · F`M ⊂ Fk+`M ,

(4) there exists `0 ∈ Z such that, for any k > 0 and any ` > `0, FkD · F`M =

Fk+`M .

Remark 2.4.1 (Increasing or decreasing?) In Hodge theory, one usually uses decreasing
filtrations. The trick to go from increasing to decreasing filtrations is to set (3), for

3. However, when one considers the V -filtration below, the rule for going from an increasing to a
decreasing filtration on a holonomic D-module (but not on D itself) will also include a translation:

V bM = VaM with a = −b− 1.

This can be useful to keep in mind when referring to the literature.
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any p ∈ Z,
F pM := F−pM.

Exercise 2.4.2 (The Rees module). The previous properties can be expressed in a sim-
pler way by adding a dummy variable. Let M be a left D-module and let F•M be an
F -filtration of M . Let z be such a variable and let us set RFD =

⊕
k∈Z FkD · zk and

RFM =
⊕

k∈Z FkM · zk.

(1) Prove that RFD is a Noetherian ring.

(2) Prove that RFM has no C[z]-torsion.

(3) Prove that the F -filtration condition is equivalent to: RFM is a left RFD-
module.

(4) Prove that RFM/zRFM = grFM and RFM/(z − 1)RFM = M .

(5) Prove that the goodness of F•M is equivalent to: RFM is a finitely generated
left RFD-module.

(6) Prove that M has a good F -filtration if and only if it is finitely generated.

Definition 2.4.3. We say thatM is holonomic if it is finitely generated and any element
of M is annihilated by some P ∈ D .

One can prove that any holonomic D-module can be generated by one element
(i.e., it is cyclic), hence of the form D/I where I is a left ideal in D , and that this
ideal can be generated by two elements (cf. [1]).

2.4.b. The V -filtration. In order to analyze the behaviour of a holonomic module
near the origin, we will use another kind of filtration, called the Kashiwara-Malgrange
filtration. It is an extension to holonomic modules of the notion of Deligne lattice for
meromorphic bundle with connection.

We first define the decreasing filtration V •D indexed by Z, by giving to any mono-
mial ta1∂b1t · · · tan∂

bn
t the V -degree

∑
i ai −

∑
i bi, and by defining the V -order of an

operator P ∈ D as the smallest V -degree of its monomials.

Exercise 2.4.4

(1) Check that the V -order of P does not depend on the way we write a monomial.

(2) Check that each V kD is a O-module, and that, for k > 0, V kD = tkV 0D .

(3) Check that the filtration by the V -order is compatible with the product, and
more precisely that

V kD · V `D

{
⊂ V k+`D for any k, ` ∈ Z,
= V k+`D if k, ` 6 0 or if k, ` > 0.

Conclude that V 0D is a ring and that each V kD is a left V 0D-module.

(4) Check that the Rees object RV D :=
⊕

k∈Z V
kD · z−k is a Noetherian ring.
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(5) Show that gr0V D can be identified with the polynomial ring C[E], where E is
the class of t∂t in gr0V D .

(6) Show that E does not depend on the choice of the coordinate t on the disc.

Definition 2.4.5. Let M be a left D-module. By a V -filtration we mean an decreasing
filtration U•M of M , indexed by Z, which satisfies V kD · U `M ⊂ Uk+`M for any
k, ` ∈ Z. We say that U•M is good if there exists `0 ∈ N such that the previous
inclusion is an equality for any k 6 0 and ` 6 −`0, and for any k > 0 and ` > `0.

Exercise 2.4.6
(1) Show that a filtration U•M is a V -filtration if and only if the Rees object

RUM :=
⊕

k∈Z U
kMz−k is naturally a left RV D-module.

(2) Show that, for any V -filtration U•M on M , RUM/zRUM = grUM and
RUM/(z − 1)RUM = M .

(3) Show that any finitely generated D-module has a good V -filtration.

(4) Show that a V -filtration is good if and only if the Rees module RUM is finitely
generated over RV D .

(5) Show that, ifM is holonomic, then for any good V -filtration the graded spaces
grkUM are finite dimensional C-vector spaces equipped with a linear action of E.

(6) Show that, if U•M is a V -filtration of M , then the left multiplication by t

induces for any k ∈ Z a C-linear homomorphism grkUM → grk+1
U M and that the

action of ∂t induces grkUM → grk−1U M . How does E commute with these morphisms?

(7) Show that if a V -filtration is good, then t : UkM → Uk+1M is an isomorphism
for any k � 0 and ∂t : grkUM → grk−1U M is so for any k � 0.

Theorem 2.4.7 (The Kashiwara-Malgrange filtration). Let M be a holonomic
D-module. Then there exists a unique good V -filtration denoted by V •M and
called the Kashiwara-Malgrange filtration of M , such that the eigenvalues of E
acting on the finite dimensional vector space gr0VM have their real part in [0, 1[.

Exercise 2.4.8. Show that the Kashiwara-Malgrange filtration satisfies the following
properties:

(1) for any k > 0, the morphism V kM → V k+1M induced by t is an isomorphism;

(2) for any k > 0, the morphism gr−1−kV M → gr−2−kV M induced by ∂t is an
isomorphism.

Exercise 2.4.9. Show that, for any holonomic module M , the module O[t−1]⊗O M is
still holonomic and is a finite dimensional vector space over the field of Laurent series
O[t−1], equipped with a connection. Conversely, prove that any finite dimensional
vector space over the field of Laurent series O[t−1] equipped with a connection is a
holonomic D-module. Conclude that the germ at the origin of (Ṽ , ∇̃) considered in
§ 2.2.b is a holonomic D-module.



LECTURE 2. HODGE D-MODULES ON CURVES. LOCAL PROPERTIES 27

2.4.c. Nearby and vanishing cycles. For simplicity, in the following we always
assume that M is holonomic.

Definition 2.4.10 (Nearby and vanishing cycles). Let M be a holonomic D-module.
– For any β ∈ C with real part b ∈ [0, 1[, we denote by ψβtM ⊂ gr0VM the
generalized eigenspace of E : gr0VM → gr0VM with respect to the eigenvalue β,
– we denote by ψ−1t M ⊂ gr−1V M the generalized eigenspace of E : gr−1V M →
gr−1V M with respect to the eigenvalue 1.
– Using Exercise 2.4.8, we define ψβtM for any β ∈ C. We note that there exists
a finite set B ∈ C such that ψβtM = 0 for any β 6∈ B + Z.

We denote by N the nilpotent part of the endomorphism induced by −E on ψβtM

(β ∈ C). Moreover, can : ψ0
tM → ψ−1t M is the homomorphism induced by −∂t and

var : ψ−1t M → ψ0
tM is that induced by t, so that var ◦ can = N and can ◦ var=N.

We also denote by M•ψ
β
tM the monodromy filtration defined by the nilpotent endo-

morphism N on ψβtM (cf. § 1.4.a).

Exercise 2.4.11. Let M be a holonomic D-module. Prove that

(1) the construction of ψβt (β ∈ C), can, var, N, is functorial with respect to M
and ψβt are compatible with short exact sequences;

(2) can is onto iff M has no quotient supported at the origin (i.e., there is no
surjective morphism M → N where each element of N is annihilated by some power
of t);

(3) var is injective if and only ifM has no submodule supported at the origin (i.e.,
whose elements are annihilated by some power of t);

(4) ψ−1t = Im can⊕Ker var if and only if M = M ′ ⊕M ′′, where M ′′ is supported
at the origin and M ′ has neither a quotient nor a submodule supported at the origin
(in such a case, we say that M is S(upport)-decomposable).

Definition 2.4.12 (Middle extension). We say that a holonomic M is a middle (or min-
imal, or intermediate) extension of O[t−1] ⊗O M if can is onto and var is injective,
that is, if M has neither a quotient nor a submodule supported at the origin.

Examples 2.4.13

(1) If 0 is not a singular point of M , then M is O-free of finite rank and ψβtM = 0

unless β ∈ −N∗. Then can = 0, var = 0 and N = 0.

(2) If M is purely irregular, e.g., M = (O,∇) with ∇ = d+ dt/t2, then ψβtM = 0

for any β. In such a case, the ψ-functor does not bring any information on M .

Exercise 2.4.14. Show that M is a middle extension if and only if M is equal to the
D-submodule generated by V 0M .

Definition 2.4.15 (Regular singularity). We say that M has a regular singularity (or is
regular) at the origin if V 0M has finite type over O.



28 LECTURE 2. HODGE D-MODULES ON CURVES. LOCAL PROPERTIES

Exercise 2.4.16. Prove that the Deligne meromorphic extension of § 2.2.b has regular
singularity at the origin.

2.4.d. The monodromy filtration. Each vector space ψβtM is equipped with a
nilpotent endomorphism N. As we indicated above, it acquires then a monodromy
filtration M•(N) (cf. § 1.4.a).

Let us assume that all β’s such that ψβtM 6= 0 are real. We denote them by the
letter b to recall they are real. It is possible to extend the V -filtration V •M to a
filtration indexed by (a discrete subset of) R, in such a way that 2.4.5 holds when
` ∈ R and that, for any b ∈ R, we have ψbtM = grbVM := V bM/V >bM . Then we can
lift the monodromy filtration, by defining M`V

bM to be the pull-back of M`ψ
b
tM by

the projection V bM → V bM/V >bM = ψbtM .

Exercise 2.4.17

(1) Show the analogue of Exercise 2.4.8, that is,
• t : V bM → V b+1M is an isomorphism for any b > −1,
• ∂t : grbVM → grb−1V M is an isomorphism for any b < 0.

(2) Show that, if M has a regular singularity, V bM has finite type over O for any
b ∈ R and is O-free of finite rank for any b > −1.

(3) With the same assumption, show that M`V
bM has finite type over O for any

` ∈ Z and b ∈ R and is stable by V0D . Show that, for any b > −1, it is a free
O-module of finite rank with a logarithmic connection (i.e., stable by V0D).

2.4.e. F -filtration on nearby and vanishing cycles. Let M be holonomic and
equipped with a good F -filtration F•M . There is a natural way to induce a filtration
on each vector space gr`VM by setting

Fpgr`VM :=
FpM ∩ V `M
FpM ∩ V `+1M

.

Note that, unless ψβtM = 0 for any β 6∈ Z, there is no natural way to induce a
filtration on each ψβtM . There is nevertheless a canonical way, as we assumed that
all β’s are real, hence naturally totally ordered. In such a case, using the notation of
§ 2.4.d, we can set

(2.4.18) Fpψ
b
tM :=

FpM ∩ V bM
FpM ∩ V >bM

.

Exercise 2.4.19. Show that N · FpψbtM ⊂ Fp+1ψ
b
tM for any b ∈ C and that

can(Fpψ
0
tM) ⊂ Fp+1ψ

−1
t M,

var(Fpψ
−1
t M) ⊂ Fpψ0

tM.
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2.4.f. The de Rham complex

The germic version of the de Rham complex. Let us first consider the de Rham com-
plex of M . The holomorphic de Rham complex DRM is defined as the complex

DRM = {0 −→M
∇−−−→ Ω1 ⊗O M −→ 0}.

The de Rham complex can be V -filtered, by setting

V k DRM = {0 −→ V kM
∇−−−→ Ω1 ⊗O V k−1M −→ 0},

for any k ∈ Z, and if moreover the eigenvalues of E acting on gr0V M are real, then we
can extend this filtration to indices b ∈ R. The terms of this complex are finite type
O-modules. As the morphism grbVM → grb−1V M induced by ∂t is an isomorphism for
any b < 0, it follows that the inclusion of complexes

(2.4.20) V 0 DRM ↪−→ DRM

is a quasi-isomorphism.

Example 2.4.21 (The de Rham complex of a minimal extension)
Let us assume that M is a minimal extension, that is, that can is onto and var

is injective. Then V −1M = ∂tV
0M + V >−1M and t : V −1M → tV −1M is an

isomorphism. Therefore, V 0 DRM is quasi-isomorphic to

(2.4.22) {0 −→ V 0M
−t∂t−−−−−→ Ω1 ⊗O (t∂tV

0M + V >0M) −→ 0}.

We can refine the presentation of this complex by using the lifted monodromy filtration
M•V

•M .

Lemma 2.4.23. If M is a minimal extension, then DRM is quasi-isomorphic to

{0 −→ M0V
0M

−t∂t−−−−−→ Ω1 ⊗O M−2V
0M −→ 0}.

Proof. Clearly, the complex in the lemma is a subcomplex of (2.4.22). Let us consider
the quotient complex. This is

(2.4.24) 0 −→ (ψ0
tM/M0ψ

0
tM)

N−−→ (image N/M−2ψ
0
tM) −→ 0.

Applying Exercise 1.4.4, we find that this complex is quasi-isomorphic to 0 (i.e., the
middle morphism is an isomorphism).

The sheaf version of the de Rham complex. We now sheafify the previous constructions
and consider a DD-module M . We assume it is holonomic, that is, its germ at any
point of D is holonomic in the previous sense. Then the DD-module M is a OD-
module and is equipped with a connection. Moreover, away from the origin (and if
the disc D is chosen sufficiently small), it is locally OD∗ -free of finite rank.

The holomorphic de Rham complex DR M is defined as the complex

DR M = {0 −→M
∇−−−→ Ω1

D ⊗OD
M −→ 0}.
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Away from the origin, the de Rham complex has cohomology in degree −1 only,
and Ker∇ is a local system of finite dimensional C-vector spaces on D∗. In general,
DR M is a constructible complex on D, that is, its cohomology spaces at the origin
are finite dimensional C-vector spaces.

Exercise 2.4.25. Show that the holomorphic de Rham complex DR Ṽmin has cohomol-
ogy in degree 0 only and that this cohomology sheaf is j∗H , if j : D∗ ↪→ D denotes
the inclusion.



LECTURE 3

HODGE D-MODULES ON CURVES
GLOBAL PROPERTIES

In Section 3.1, we state various generalizations of the Hodge theorem on Riemann
surfaces. The case of constant coefficients has been considered in § 1.1. The next case
is that of a unitary representation of the fundamental group of a compact Riemann
surface. This is a variation of polarized Hodge structure of weight (0, 0). We then
consider the case of a general variation of polarized Hodge structure on a compact
Riemann surface.

The next step consists in introducing singularities, that is, in considering a punc-
tured compact Riemann surface. We first consider a unitary representation of the
fundamental group, and then the general case of a variation of polarized Hodge struc-
ture. The general result is due to Zucker [34]. Using the results of the previous lecture,
we interpret this theorem as a theorem on direct images of a Hodge D-module on a
compact Riemann surface (direct image with respect to the constant map).

Given a local system LQ of Q-vector spaces on a punctured compact Riemann
surface X∗ ↪ j−→ X which underlies a variation of Hodge structure, the cohomology
which is expected to underlie a Hodge structure is the cohomology Hk(X, j∗LQ).
The Hodge properties will be a consequence of an identification of this cohomology
(tensored with C) with a L2-cohomology, which has harmonic representatives. The
theorems of Schmid in § 3.2 justify this identification. It remains then to do Hodge
theory on this L2-cohomology: this is the content of § 3.3.

3.1. The Hodge theorem

3.1.a. The Hodge theorem for unitary representations. We will extend the
Hodge theorem (Theorem 1.2.5 and the results indicated after its statement concern-
ing the polarization) to the case of the cohomology with coefficients in a unitary
representation. It is not needed to assume here that the underlying manifold is a
Riemann surface.

Let us start with a holomorphic vector bundle V of rank d on a complex projective
manifold X equipped with a flat holomorphic connection ∇ (flatness is tautological
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on a Riemann surface). The local system H = Ker∇ corresponds to a representation
π1(X, ?)→ GLd(C), up to conjugation. The unitarity assumption means that we can
conjugate the given representation in such a way that it takes values in the unitary
group.

In other words, there exists a Hermitian metric h on the associated C∞-bundle
H = C∞ ⊗OX

V such that, if we denote by D the connection on H defined by
D(ϕ⊗v) = dϕ⊗v+ϕ⊗∇v (this is a flat connection which decomposes asD = D′+D′′

and D′′ = d′′ ⊗ Id), the connection D is compatible with a metric (i.e., is the Chern
connection of the metric).

Exercise 3.1.1. Show that a connection D is flat if and only if it satisfies

D′2 = 0, D′′2 = 0, D′D′′ +D′′D′ = 0.

That D is a connection compatible with the metric implies that its formal adjoint
(with respect to the metric) is obtained with a Hodge ? operator by the formula
D∗ = − ? D ? . This leads to the decomposition of the space of C∞ k-forms on X

with coefficients in H (resp. (p, q)-forms) as the orthogonal sum of the kernel of the
Laplace operator with respect to D (resp. D′ or D′′), that is, harmonic section, and
its image.

As the connection D is flat, there is a C∞ de Rham complex (E •X ⊗H,D), and
standard arguments give

Hk(X,H ) = Hk(X,DR(V,∇)) = Hk
(
Γ(X, (E •X ⊗H,D))

)
.

One can also define the Dolbeault cohomology groups by decomposing E • into E p,q’s
and by decomposing D as D′ +D′′. Then Hp,q

D′′(X,H) = Hq(X,ΩpX ⊗ V ).
As the projective manifold X is Kähler, we obtain the Kähler identities for the

various Laplace operators: ∆D = 2∆D′ = 2∆D′′ .
Then, exactly as in Theorem 1.2.5, we get:

Theorem 3.1.2. Under these conditions, one has a canonical decomposition

Hk(X,DR(V,∇)) =
⊕

p+q=k

Hp,q(X,H)

and Hq,p(X,H) is identified with Hp,q(X,H∨), where H∨ is the dual bundle. (1)

The Hard Lefschetz theorem also holds in this context.

3.1.b. Variation of polarized Hodge structure on a compact Kähler man-
ifold: the Hodge-Deligne theorem. Let us keep notation of § 3.1.a. We do not
assume anymore that H is unitary. We only assume that it underlies a variation
of polarized Hodge structure of some weight w. In such a situation, we have flat
connection D on the C∞-bundle H associated to V , with D = D′ + d′′, and we also

1. When we work with a variation of polarized Hodge structure, the polarization SQ identifies
(H,D) and (H∨, D∨) and we recover the usual conjugation relation between Hq,p and Hp,q .
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have a Hermitian metric h on H, but D is possibly not compatible with the metric.
The argument using the Hodge ? operator is not valid anymore.

Exercise 3.1.3. Let (V,∇, F •V,HQ,SQ) be a variation of Hodge structure of weight w
on X (cf. Definition 2.1.1). Let H be the C∞-bundle associated to V , let h be the
Hermitian metric deduced from SQ and let D = D′ + D′′ with D′′ = d′′ ⊗ IdV
be the flat C∞ connection deduced from ∇. Let H =

⊕
p+q=wH

p,q be the Hodge
decomposition (which is h-orthogonal by construction).

Show that

(1) the Griffiths transversality relation ∇F pV ⊂ Ω1
X⊗F p−1V can be translated as

D′Hp,q ⊂ Ω1
X ⊗ (Hp,q ⊕Hp−1,q+1),

D′′Hp,q ⊂ Ω1
X ⊗ (Hp,q ⊕Hp+1,q−1);

(2) the composition of D′ (resp. D′′) with the projection on the first summand
defines a (1, 0) (resp. (0, 1))-connection D′E (resp. D′′E), and that the projection to
the second summand defines a C∞-linear morphism θ′E (resp. θ′′E).

(3) Show that DE := D′E + D′′E is compatible with the metric h, but is possibly
not flat.

(4) Show that the connection D′′ := D′′E + θ′E has square zero, as well as the
connection D′ := D′E + θ′′E .

The decomposition D = D′+D′′ is replaced with the decomposition D = D′+D′′.
The disadvantage is that we loose the decomposition into types (1, 0) and (0, 1), but
we keep the flatness property. On the other hand, as DE is compatible with the
metric, its formal adjoint is computed with a Hodge ? operator. Using the Kähler
metric, one shows that θE satisfies the right relations in order to ensure the equality
of Laplace operators ∆D = 2∆D′ = 2∆D′′ .

We remark we did not really loose the decomposition into type if we are more
careful: the operator D′′ sends a section of Hp,q to a section of Ω1

X ⊗ Hp−1,q+1 +

Ω1
X ⊗Hp,q. Counting the total type, we find (p, q+ 1) for both terms. In other word,

taking into account the Hodge type of a section, the operator D′′ is indeed of type
(0, 1). A similar argument applies to D′.

This being understood, the arguments of Hodge theory apply to this situation
as in the case considered in § 3.1.a, to get the Hodge-Deligne theorem 2.1.2. The
polarization is obtained from SQ and Poincaré duality as we did for Qn in § 1.2, still
using the sign ε, and from it we cook up the form SQ.

3.1.c. Unitary representation on a Riemann surface with a complete met-
ric. The compactness assumption in Hodge theory is not mandatory. One can relax
it, provided that the metric remains complete (cf. e.g., [7, § 12]). Let us indicate the
new phenomena that occur in the setting of § 3.1.a.

One works with C∞ sections v of E •X ⊗ H which are globally L2 with respect to
the metric h and to the complete metric on X, and whose differential Dv is L2. The
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analysis of the Laplace operator is now similar to that of the compact case. One uses
a L2 de Rham complex and a L2 Dolbeault complex (i.e., one puts a L2 condition on
sections and their derivatives).

One missing point, however, is the finite dimensionality of the L2-cohomologies
involved. In the compact case, it is ensured, for instance, by the finiteness of the
Betti cohomology Hk(X,HQ). So the theorem is stated as

Theorem 3.1.4. Let (X,ω) be a complete Kähler manifold and (V,∇) be a holomor-
phic bundle with a flat connection ∇ corresponding to an irreducible representation
Ker∇ of π1(X, ?). Then, with the assumption that all the terms involved are finite
dimensional, one has a canonical isomorphisms

Hk
L2(X,H,D) '

⊕
p+q=k

Hp,q
L2 (X,H,D′′), Hq,p

L2 (X,H,D) ' Hp,q
L2 (X,H∨, D∨).

It remains to relate the L2 de Rham cohomology with topology. If we are lucky,
then this will not only provide a relation with Betti cohomology, but the Betti coho-
mology will be finite dimensional and this will also provide the finiteness assumption
needed for the L2 de Rham cohomology.

There will also be a need for the finiteness of the L2 Dolbeault cohomology. In the
case, that will occupy us later, where X is a punctured compact Riemann surface, this
will be done by relating L2 Dolbeault cohomology with the cohomology of a coherent
sheaf on the compact Riemann surface.

We will indicate in § 3.3 the way to solve these two problems, through the
L2 Poincaré Lemma and the L2 Dolbeault Lemma.

3.1.d. Variation of polarized Hodge structure on a punctured compact Rie-
mann surface: the Hodge-Zucker theorem. We now mix the setting of §§ 3.1.b
and 3.1.c, that is we consider a variation of polarized Hodge structure of weight w on
a punctured compact Riemann surface X∗ ↪ j−→ X. We will prove:

Theorem 3.1.5 (Zucker [34]). In such a case, the cohomology Hk(X, j∗H ) (k = 0, 1, 2)
carries a natural polarized Hodge structure of weight w + k.

The way of using L2 cohomology is the exactly the same as in § 3.1.c, provided
that we replace D′ and D′′ with D′ and D′′. Then we are left with the corresponding
L2 Poincaré and Dolbeault Lemmas, that we will consider in § 3.3.

3.1.e. Hodge D-modules on a compact Riemann surface: the Hodge-Saito
theorem. Let us now start with a polarized Hodge DX -module on a compact Rie-
mann surface X (cf. Definition 2.3.5). We denote it by

(
(Ṽmin, F

•), j∗HQ, j∗α,SQ
)
.

Away from a finite set Σ ↪
i−→ X, it corresponds to a variation of Hodge structure

of weight w. The de Rham complex DR Ṽmin is naturally filtered (cf. Formula 4.1.2
below) and we get in a natural way a filtration on its hypercohomology. Recall that
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(cf. Exercise 2.4.25), this de Rham complex is a resolution of j∗H , where we denote
of course by X∗ = X r Σ ↪

j−→ X the inclusion.
The Hodge-Saito theorem asserts that the k-th cohomology of j∗HQ gets in this

way a polarized Hodge structure of weight w + k.
What is the difference with the Hodge-Zucker theorem? A priori, it seems that

the Hodge-Saito theorem is implied by the Hodge-Zucker theorem, and such is the
case, indeed, as we will see in a moment. However, the object with start with is
defined on X, and for instance is algebraic by GAGA, although in the theorem of
Hodge-Zucker it is only defined on X∗. Part of the theorem of Hodge-Zucker con-
sists in extending the object to X (at least at the level of de Rham or Dolbeault
complexes). Then the main part in proving the Hodge-Saito theorem will be checking
that the extended object defined by Zucker and the a priori object defined by M. Saito
correspond. In other words, a polarized Hodge DX -module is nothing but the exact
algebraic expression, before taking ‘de Rham’ of the extended object constructed by
Zucker (through the theorems of Schmid, cf. § 3.2.b).

The main point will then be Theorem 3.3.4 together with Theorem 3.3.5, putting to-
gether Schmid’s theorem 3.2.7 and Lemma 2.4.23 (this called the L2 Poincaré lemma)
and a similar statement for the filtered object (this is called the L2 Dolbeault lemma).

3.2. Metric characterization of the minimal extension

Before trying to prove the Hodge theorem in the singular case, we will have to
come back to the local setting of § 2.2. Let us consider a variation of polarized
Hodge structure

(
(V,∇, F •V ),HQ, α,SQ

)
of weight w on the punctured disc. The

polarization SQ gives rise to a positive definite Hermitian metric h on the C∞-bundle
associated to V .

3.2.a. Reminder on Hermitian bundles on the punctured disc. Let V be a
holomorphic vector bundle on D∗ and let h be a Hermitian metric on the associated
C∞-bundle C∞D∗ ⊗OD∗ V .

Let V be a holomorphic bundle on D∗, equipped with a Hermitian metric h. We
denote by hṼ the subsheaf of j∗V consisting of local sections, the h-norm of which
has moderate growth in the neighbourhood of the origin. This is a OD[1/t]-module,
which coincides with V when restricted to D∗.

The parabolic filtration hṼ • is the decreasing filtration, indexed by R, consisting
of local sections such that: for any compact neighbourhood K of the origin, in the
punctured neighbourhood of which the local section is defined, and for any ε > 0,
there exists C = C(K, ε) > 0 such that the h-norm on K∗ := K r {0} of the local
section is locally bounded by C|t|•−ε. By definition, we have hṼ b =

⋂
b′<b

hṼ b
′
.

Clearly, each hṼ b is a OD-submodule of hṼ , which coincides with V when restricted
to D∗, and we have

hṼ =
⋃
b

hṼ b, and ∀ k ∈ Z, tkhṼ
•

= hṼ
•+k.
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A jump (or, more correctly, jumping index) of the parabolic filtration is a real num-
ber b such that the quotient hṼ b/hṼ >b 6= 0, where hṼ >b :=

⋃
b′>b

hṼ b
′
. Clearly, if b is

a jump, then b + k is a jump for any k ∈ Z. We denote by J(b) the set of jumping
indices which belong to [b, b+ 1[. We have J(b+ k) = J(b) for any k ∈ Z.

Definition 3.2.1. We say that the metric is moderate if hṼ is OD[1/t]-locally free and
each hṼ b is OD-locally free.

When the metric is moderate, J(b) is finite for any b ∈ R and we have
hṼ b/thṼ b =

⊕
b′∈J(b)

grb
′
(hṼ ).

3.2.b. The theorems of Schmid. Let us consider a variation of Hodge structure
on D∗, as in the beginning of this section, with associated Hermitian metric h.

Theorem 3.2.2 (Schmid). The metric h on C∞D∗ ⊗OD∗ V is moderate and the meromor-
phic extension hṼ of V with respect to the metric h is equal to the canonical Deligne
meromorphic extension Ṽ of (V,∇).

Example 3.2.3 (The unitary case). Let us consider the simple case where the connection
is compatible with the Hermitian metric h. This corresponds to a variation of Hodge
structure of pure type (0, 0). Then the norm of any horizontal section ofH is constant,
hence bounded. By definition of Deligne meromorphic extension, the norm of any
section of Ṽ has thus moderate growth. Hence Ṽ ⊂ hṼ .

In fact, both extensions are then equal, and therefore the metric is moderate, as
asserted in the general case by Schmid’s theorem. Indeed, given any section v of V , we
express it on a unitary frame of multivalued horizontal sections, and the norm of the
section has moderate growth if and only if the coefficients are multivalued functions
with moderate growth in any bounded angular sector. Similarly, we can express a
OD[t−1]-basis of Ṽ on this unitary frame, and the coefficients have moderate growth.
Expressing now v in the chosen OD[t−1]-basis of Ṽ , we find univalued coefficients with
moderate growth, that is, meromorphic functions. In other words, hṼ ⊂ Ṽ .

From now on, we will not distinguish between hṼ and Ṽ . One can go further, and
analyze the parabolic filtration. But first, we need a result, due to Borel (cf. [29,
Lemma 4.5]), which asserts:

Lemma 3.2.4. For such a variation, the monodromy is quasi-unipotent.

With such a result, we can extend the Kashiwara-Malgrange filtration to a filtration
indexed by R (in fact Q). The next result is:

Theorem 3.2.5 (Schmid). The parabolic filtration hṼ • on Ṽ induced by the metric h is
equal to the (extended) Kashiwara-Malgrange filtration Ṽ •.

Exercise 3.2.6. Prove the result in the unitary case of Example 3.2.3.
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This result characterizes sections of Ṽ b in terms of growth of their norm with
respect to real powers of t. In order to analyze the L2 behaviour of the norm, we
will need to refine this result by using a logarithmic scale. Recall that we can lift the
monodromy filtration M•ψ

b
t Ṽ to M•Ṽ

b.

Theorem 3.2.7 (Schmid). A local section of M`Ṽ
b has a non-zero image in grM` ψ

b
t Ṽ if

and only if its norm has the same order of growth as |t|bL(t)`/2.

Remark 3.2.8. In § 2.2.b, when extending the vector bundle V with holomorphic con-
nection ∇ from D∗ to D, we chose Deligne’s meromorphic extension, that is, we
chose an extension with regular singularities. Such a choice, while being canonical
and, in some sense, as simple as possible, was not the only one. We could have chosen
other kinds of extensions, with irregular singularities. A posteriori, when considering
variations of polarized Hodge structures, the theorems of Schmid strongly justify the
previous choice.

3.3. Proof of the Hodge-Zucker theorem

3.3.a. Hermitian bundle and volume form. If we fix a metric on the punctured
disc, with volume element vol, we can define the L2-norm of a section v of V on an
open set U ⊂ D∗ by the formula

‖v‖22 =

∫
U

h(v, v) d vol .

In order to be able to apply the techniques of § 3.1.c, we choose a metric which
is complete in the neighbourhood of the puncture. We will assume that, near the
puncture, it takes the form

(3.3.1) d vol =
dx2 + dy2

|t|2L(t)2
, with x = Re t, y = Im t, L(t) := | log |t|2| = − log tt.

3.3.b. L2 computation of j∗Ker∇. The goal of this section is to explain the proof,
by S. Zucker [34], of the following theorem:

Theorem 3.3.2. The cohomology H∗(X, j∗Ker∇) is equal to the L2 cohomology of the
C∞-bundle with flat connection (H,D) associated with the holomorphic bundle (V,∇),
the L2 condition being taken with respect to the Hodge metric h on H and a complete
metric on X∗, locally equivalent near each puncture to the Poincaré metric.

Instead of directly proving this result, one proves a local result: one introduces a
L2 complex, whose global cohomology computes the desired L2 cohomology, and one
shows a quasi-isomorphism of this complex with j∗Ker∇. Therefore, we will start a
local analysis on a punctured disc D∗. We keep notation of the previous section.

Let us be more explicit concerning the Poincaré metric. Working in polar coor-
dinates t = reiθ, we find a characterization of the L2 behaviour of forms near the
puncture:
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(0) f ∈ L2(d vol)⇔ |log r|−1 f ∈ L2(dθ dr/r);

(1) ω = f dr/r + g dθ ∈ L2(d vol)⇔ f and g ∈ L2(dθ dr/r);

(2) η = h dθ dr/r ∈ L2(d vol)⇔ |log r|h ∈ L2(dθ dr/r).

On the other hand, for any integer `, we have |log r|`/2 ∈ L2(dθ dr/r) if and only
if ` 6 −2.

3.3.c. The holomorphic L2 de Rham complex. Let us consider the holomorphic
de Rham complex of Ṽ :

DR Ṽ = {0 −→ Ṽ
∇−−−→ Ω1

D ⊗ Ṽ −→ 0}.

We will consider the holomorphic L2 de Rham complex

(DR Ṽ )(2) = {0 −→ Ṽ(2)
∇−−−→ (Ω1

D ⊗ Ṽ )(2) −→ 0},

defined in the following way:
– (Ω1

D ⊗ Ṽ )(2) is the subsheaf of Ω1
D ⊗ Ṽ consisting of L2-sections (with respect

to the metric h on Ṽ and the volume d vol on D∗),
– Ṽ(2) is the subsheaf of Ṽ consisting of sections v which are L2, and such that
∇v belongs to (Ω1

D ⊗ Ṽ )(2) defined above.
Let us note that, by the very construction, we get a complex.

Exercise 3.3.3

(1) Let r0 ∈ ]0, 1[, let b ∈ R and ` ∈ Z. Show that the integral∫ r0

0

r2b+1L(r)`dr

is finite iff b > −1 or b = −1 and ` 6 −2 (recall that L(r) = | log r| = − log r).

(2) Deduce from Schmid’s theorem 3.2.7 and the characterization of L2(d vol) given
above for 1-forms that (Ω1

D ⊗ Ṽ )(2) = M−2Ṽ
−1.

(3) Similarly, show that the holomorphic sections of V which are L2 near the origin
are the sections of M0Ṽ

0.

(4) Conclude that Ṽ(2) = M0Ṽ
0 (use that tM−2Ṽ

−1 = M−2Ṽ
0 and that

t∂t(M0Ṽ
0) ⊂ M−2Ṽ

0).

According to Lemma 2.4.23, we get

Theorem 3.3.4 (Zucker). We have (DR Ṽ )(2) ' DR Ṽmin = j∗Ker∇.

This theorem is the first step toward a L2 computation of j∗Ker∇.
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3.3.d. The L2 de Rham complex. We now work with the associated C∞ bundle
H = C∞D∗ ⊗OD∗ V . It is equipped with a flat C∞ connection D = D′ + D′′, with
D′′ = d′′⊗ Id and D′ induced by ∇. We can similarly define the L2 de Rham complex

0 −→ L 0
(2)(H)

D−−−→ L 1
(2)(H)

D−−−→ L 2
(2)(H) −→ 0,

where the upper index refers to the degree of forms. One should give a precise
definition of each term. Let us only say that we consider sections of H having as
coefficients currents of degree k (k = 0, 1, 2, currents of degree 0 are distributions)
and the norm of these sections should be locally L2 on the disc D. Moreover, we have
to ensure that the differential of theses sections are also L2, in order to get a complex.

Let us note that, with such a definition, it is not clear that we can decompose the
complex with respect to type, that is, it is not clear that, if a section v is such that
Dv is L2, then D′v and D′′v are also L2.

Theorem 3.3.5 (L2 Poincaré Lemma, Zucker). The natural inclusion of complexes
(DR Ṽ )(2) ↪→ L •

(2)(H,D) is a quasi-isomorphism.

According to Theorem 3.3.4, taking hypercohomology gives Theorem 3.3.2.

Indication for the proof of Theorem 3.3.5. The proof is purely local near the origin of
the disc. The main observation is

Lemma 3.3.6 (cf. [34, Prop. 6.4]). Let L be a holomorphic line bundle on D∗ (equipped
with the complete metric (3.3.1)) with Hermitian metric h and having a frame v such
that ‖v‖h ∼ L(t)k for k ∈ Z. Then, if k 6= 1, any germ η = fdt ⊗ v of section of
L

(0,1)
(2) (L, h) at the origin is equal to ∂ψ⊗v for some local section ψ⊗v of L 0

(2)(L, h).

This is a ∂ equation with logarithmically twisted L2 conditions. It is proved using
the decomposition in Fourier series and Hardy inequalities.

Once this lemma is proved, the proof of Theorem 3.3.5 when the monodromy
is unipotent follows (this is not completely straightforward) from Schmid’s theorem
3.2.7. The quasi-unipotent case can be deduced by considering a suitable ramified
covering of the disc.

3.3.e. The L2 Dolbeault lemma. One of the important points in order to prove
the E1-degeneracy of the Hodge-to-de Rham spectral sequence in the context of the
Hodge-Zucker theorem is the Dolbeault lemma, making the bridge between the holo-
morphic world and the L2 world of harmonic sections. We will briefly give indications
on its proof to end this lecture.

Recall that the Dolbeault lemma, on a compact complex manifold X, says that
Hq(X,ΩpX) ' Hp,q

d′′ (X) = Hq
(
Γ(X,E p,•

X ), d′′
)
.

If we now consider a variation of polarized Hodge structure on X, as in § 3.1.b,
the complex E •X(V ) is filtered by taking into account the holomorphic degree of the
form and the Hodge degree of the section. Moreover, this filtration splits as direct
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sum of terms E i,j
X ⊗Hk,`, and each of this term is a summand in the p, q term of the

decomposition if p = i+ k and q = j + `. The Dolbeault lemma then says that

Hq
(
X, grpF DR(V,∇)

)
= Hq

(
Γ(X, grpFE •X(V ))

)
.

Let us note that the differential in the complex grpFE •X(V )) is D′′ introduced in Ex-
ercise 3.1.3(4).

Let us now come back to the context of the Hodge-Zucker theorem. The first point
to be settled is the freeness of each step of the F -filtration of Ṽmin. Recall that it is
defined with (2.2.3) and (2.2.4).

Let us first consider F pṼ(2) := j∗F
pV ∩ Ṽ(2). According to Exercise 3.3.3(4), this

is also j∗F pV ∩M0Ṽ
0. If we show its coherence, then F pṼ 0 will be coherent as well,

as Ṽ 0/M0Ṽ
0 is finite dimensional. In the same way, F pṼ >−1 will be coherent. It will

then also be locally free of rank equal to rkF pV , and F pṼmin defined by (2.2.4) will
be a good filtration of Ṽmin satisfying F pṼmin ∩ Ṽ(2) = F pṼ(2).

The coherence of F pṼ(2) is shown in [34, Prop. 5.2], using results of Schmid [29].
Moreover, one can give the following interpretation of these results:

Theorem 3.3.7 (Schmid).
(
(Ṽmin, F

•Ṽmin), j∗HQ, α,SQ
)
is a polarized Hodge D-module

on the disc D, in the sense of Definitions 2.3.3 and 2.3.5.

It is not difficult to filter the complex DR Ṽmin by the usual procedure (cf. (4.1.2)
below) from the filtration of Ṽmin. On the other hand, according to Theorem 3.3.4,
the inclusion (DR Ṽ )(2) ↪→ DR Ṽmin is a quasi-isomorphism. Is it a filtered quasi-
isomorphism?

Firstly, we have to define the filtration F •(DR Ṽ )(2). Using the interpretation
of Exercise 3.3.3, we are reduced to defining the filtration on M0Ṽ

0 and M−2Ṽ
−1.

The natural choice is simply to induce the filtration F •Ṽmin on these submodules.
Therefore, answering the question above amounts to answering the following ones:

(1) Is (2.4.20) a filtered isomorphism, when the terms are equipped with the in-
duced filtration?

(2) Is (2.4.24) a filtered isomorphism, when the terms are equipped with the in-
duced filtration?

The answer to both questions is yes. For the first question, we have to show that,
for any b < 0 and any p, the complex

0 −→ F pψbt Ṽmin
∂t−−−→ F p−1ψb−1t Ṽmin −→ 0

is an isomorphism. This is Exercise 2.2.8(2). Using now Exercise 2.2.8(1), we can
replace the filtered complex F •V 0 DR Ṽmin with the filtered complex corresponding
to (2.4.22).

For the second question, we have to prove the filtered analogue of Lemma 2.4.23.
This is done by an argument of strictness: both terms in (2.4.24) are shown to be
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mixed Hodge modules, and the morphism between them (if one Tate-twists the right-
hand term by −1) a morphism of mixed Hodge modules, hence is strictly compatible
with the Hodge filtration.

Let us come back to the Dolbeault lemma. On the holomorphic side, we have
Hq(X, grpF DR Ṽmin), that we now can write as Hq(X, grpF (DR Ṽmin)(2)), a form which
will help us to compare with the L2 side.

The L2 Dolbeault complex has to be taken with respect to the differential D′′ and
the L2 condition on a section η ⊗ v concerns the derivative D′′(η ⊗ v).

By using Lemma 3.3.6, one gets

Theorem 3.3.8 (L2 Dolbeault Lemma, Zucker). The natural morphism (induced by the
inclusion of complexes) Hq(X, grpF (DR Ṽmin)(2))→ Hq(X, grpFL(2)(V,D

′′)) is an iso-
morphism.





LECTURE 4

HODGE D-MODULES: AN INTRODUCTION

In this lecture, we introduce the general notion of a Hodge D-module and state
the Hodge-Saito theorem. The analytic part of the proof is contained in the Hodge-
Zucker theorem of § 3.1.d. The remaining part is a consequence of the properties
of the nearby and vanishing cycles. The functor of nearby cycles is instrumental in
defining the notion of a Hodge module. It has to be defined at various levels:

– for perverse complexes,
– for holonomic D-modules,
– for filtered holonomic D-modules.

We will extend to holonomic D-modules in arbitrary dimension the results of § 2.4
which are given for dimension one.

4.1. Good filtrations on DX-modules

To any complex manifold X is associated the sheaf of holomorphic functions
OX and the sheaf of holomorphic differential operators DX . In local coordinates
x1, . . . , xn, a differential operator can be written as

∑
α∈Nn aα(x)∂αx . The degree of a

local section of DX is max{|α| | aα(x) 6≡ 0}. The sheaf DX comes equipped with an
increasing filtration F•DX by the degree. Each FkDX is a locally free OX -module of
finite rank.

Exercise 4.1.1. Prove that, in an intrinsic way, the graded sheaf grFDX :=
⊕

k grFk DX

is identified with the sheaf OX [TX] of holomorphic functions on the cotangent bundle
which are polynomial in the fibers of T ∗X → X.

Given a OX -module M , the following are equivalent:

(1) a flat connection ∇ : M → Ω1
X ⊗OX

M , i.e., a C-linear operator satisfying the
Leibniz rule ∇(fm) = df ⊗m + f∇m, and with vanishing curvature ∇ ◦ ∇ : M →
Ω2
XM ,

(2) a structure of left DX -module on M .
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Therefore, to any left DX -module M one can attach the de Rham complex

DR M = {0 −→M
∇−−−→ Ω1

X ⊗M
∇−−−→ · · · ∇−−−→ ΩdimX

X ⊗M −→ 0}.

It will be convenient to us the perverse shift convention, and to denote by pDRM

the same complex, but where the last term has degree 0; in other words, pDRM =

DR M [dimX].
Let F•M be a good filtration of M . We define a filtration on the de Rham complex

by the formula:

(4.1.2) Fk
pDRM = {0 −→ Fk−dimXM

∇−−−→ Ω1
X ⊗ Fk−dimX+1M

∇−−−→ · · ·
∇−−−→ ΩdimX

X ⊗ FkM
•

−→ 0}.

Examples 4.1.3
(1) Consider the left DX -module (OX , d) with filtration FkOX = 0 if k 6 −1 and

FkOX = OX if k > 0. This is a good filtration, and the filtration on the de Rham
complex is, up to a shift (and up to changing increasing with decreasing), the same
as that defined in (1.2.4).

(2) Let i : Y ↪→ X be the inclusion of a closed submanifold. Then i+OY is a left
DX -module. It is equipped with a natural F -filtration which can be described in the
following way. Let us choose local coordinates (x, y) on X, such that Y is defined by
x = 0. Then i+OY =

⊕
α∈NcodimY OY ∂αx and the F -filtration is by the total degree in

∂x.

(3) Let i : Y ↪→ X be the inclusion of a closed analytic hypersurface in X. Let
us consider the sheaf OX [∗Y ] of meromorphic functions on X with poles along Y at
most. This is a left DX -module. One can filter it by the order of the pole (so that
OX = F0OX [∗Y ].

4.2. Hodge D-modules: a first approach

Hodge D-modules are supposed to play the role of Hodge structures with a multi-
dimensional parameter. These objects can acquire singularities. The way each char-
acteristic of a Hodge structure is translated in higher dimension of the parameter
space is given by the table below.

dimension 0 dimension n > 1

H a C-vector space M a holonomic D-module

F •H a filtration F•M a good filtration

HQ a Q-vector space FQ a bounded complex
with constructible cohomology

C⊗Q HQ = H a Q-structure α : pDRM
∼−→ C⊗Q FQ an isomorphism
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Why choosing holonomic D-modules as analogues of C-vector space? The reason
is that the category of holonomic D-modules is artinian, that is to say any holonomic
D-module has finite length (locally on the underlying manifold). A related reason
is that its de Rham complex has constructible cohomology, making the last line of
the table a priori meaningful. On the other hand, the last line implies that FQ is a
perverse sheaf.

In order to define the Hodge properties, we use the same method as in dimension
one:

– we only consider holonomic D-modules which are S-decomposable, that is,
which are direct sum of D-modules having an irreducible strict support, in other
words supported by an irreducible closed analytic subset of the underlying man-
ifold and having neither sub-module nor quotient module supported in a smaller
subset;
– we moreover ask that the F -filtration is compatible with the decomposition
by the support, in other words, the filtered D-module is strictly S-decomposable;
– similarly, we only considerQ-perverse sheaves which are S-decomposable; their
irreducible S-components then take the form IC

•
LQ, where LQ is a locally

constant sheaf of Q-vector spaces on a Zariski open dense smooth subset Zo of
an irreducible closed analytic subset Z of the underlying manifold, and where IC

means “intersection complex”;
– in order to reduce the structure to a point, we use iterated nearby cycles,
along a family of functions, the ideal of which define the point; therefore, one
has to define the functor of nearby cycles in each of the settings of the table
above, and to check the compatibility of it with α.

4.3. The V -filtration and the nearby cycle functor

4.3.a. The Kashiwara-Malgrange filtration. We will repeat here, in higher di-
mension, some of the constructions of § 2.4.b. Let M be a holonomic DX -module
on a complex manifold X and let f be a holomorphic function on X. Denote by
if : X ↪→ X × C the map x 7→ (x, f(x)) and let t denote the coordinate on C. We
define the filtration V •DX×C by giving t the weight 1, ∂t the weight −1 and any op-
erator in DX the weight 0. Using the existence of a local Bernstein-Sato polynomial,
one deduce a filtration V •if,+M indexed by Z such that, locally on X, there exists
B ∈ C[s]r{0} with roots having their real part in [0, 1[, such that B(t∂t−k) vanishes
on grkV if,+M for any k ∈ Z.

For any β ∈ C, we can define a functor ψβf , from holonomic DX -modules to DX -
modules supported on f = 0. It is known that it takes values in holonomic DX -
modules supported on f = 0. As in dimension one, we define N, can, var and the
monodromy filtration M• on each ψβf .
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We say that M is quasi-unipotent along f = 0 if the roots of the minimal B belong
to Q. In the following, we only consider holonomic DX -modules which are quasi-
unipotent along any germ of hypersurface. We can then extend the V -filtration as a
filtration indexed by (a discrete set of) Q, as in § 2.4.d.

4.3.b. Strict specializability. Let (M , F•M ) be a holonomic DX -module
equipped with a good filtration and let f be a holomorphic function on X. We
still assume that M is quasi-unipotent along f = 0. We want to define a filtration
on each ψbfM .

Firstly, it is easy to define a good filtration F•(if,+M ), and there is a direct image
functor (1) if,+(M , F•M ).

So the question amounts to defining a filtration on each grbV if,+M . A natural
candidate is given by a formula similar to (2.4.18).

We say that (M , F•M ) is strictly specializable along f = 0 if the following prop-
erties are satisfied (cf. Exercise 2.2.8):

(a) for any b > −1, the isomorphism t : V b(if,+M ) → V b+1(if,+M ) is strictly
compatible with the filtration induced by F•M ,

(b) for any b < 0, the isomorphism ∂t : ψbf (if,+M ) → ψb−1f (if,+M ) is strictly
compatible with the filtration induced by F•M .

4.3.c. Regularity. The previous definition would be of no use without finiteness
properties of the induced F -filtration. Let M be holonomic and quasi-unipotent
along f = 0, and let F•M be a good filtration. Let us assume that (M , F•M ) is
strictly specializable. We then say that (M , F•M ) is regular along f = 0 if the
filtration F•ψ

b
fM is good, for any b ∈ [−1, 0] (considering other values of b is not

necessary, according to the property of strict specializability).

Exercise 4.3.1. Show that, in dimension one, this definition implies that M is regular
in the sense of Definition 2.4.15.

Remark 4.3.2. In the theory of Hodge D-modules, the notion of regular singularity
for holonomic D-modules is not used. What is used is the previous notion, which
applies to filtered D-modules. One can define the notion of regular singularity for
a filtered holonomic D-module by induction on the dimension of the support of the
D-module: we ask that (M , F•M ) is regular along any germ of hypersurface f = 0

and that, whenever f = 0 has everywhere codimension one in the support of M , then
(ψbfM , F•ψ

b
fM ) is regular.

Fortunately, it can be shown that, if a filtered D-module is regular in this sense
of M. Saito, then the underlying holonomic D-module is regular in the classical sense
(Kashiwara, Mebkhout).

1. Let us note however that this is not an equivalence of categories.
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As we will see below, the usual way to prove a property for a Hodge D-module is
by induction on the dimension of the support. This is due to the inductive way in
which the definitions are formulated.

4.3.d. The nearby cycle functor. For a complex FQ with Q-constructible coho-
mology (in particular, for a Q-perverse sheaf) on X, we can define, for any holo-
morphic function f on X a complex ΨfFQ, which has constructible cohomology,
and is equipped with an automorphism T (monodromy). It is known that, if FQ is
perverse, then ΨfFQ is perverse up to a shift by −1. We are therefore led to set
pΨfFQ := ΨfFQ[−1].

One can decompose pΨfF with respect to eigenvalues λ of T as a direct sum
of perverse sheaves (recall that the category of perverse sheaves is abelian, so it is
meaningful to consider the perverse sheaf Ker(T − λ Id)N for N � 0): we have

pΨfF =
⊕
λ∈C∗

pΨλ
fF , pΨλ

fF := Ker(T − λ Id)N , N � 0.

On the other hand, let (M , F•M ) be a holonomic DX -module with a good filtra-
tion. We assume that M is quasi-unipotent along f = 0, that it is strictly specializable
and regular along this hypersurface. Then, for any b ∈ ]− 1, 0], the filtration F•ψbfM
induced by F•if,+M is good. We set

ψbf (M , F•M ) := (ψbfM , F•[1]ψbfM ),

where the notation for the shift is F•[1] = F•−1 and, correspondingly, F •[1] = F •+1.
In order to define the nearby cycles for a triple

(
(M , F•M ),FQ, α

)
, it remains

to apply the functor to α. Recall that α is a chosen isomorphism pDRM
∼−→ F =

C⊗Q FQ (cf. the table above). Applying the topological functor pΨf , we get pΨfα :
pΨf

pDRM
∼−→ pΨfF compatible with monodromies.

In order to define ψfα, we need to construct in a canonical and functorial way an
isomorphism similar to (2.2.2)

(4.3.3) pDRψfM
∼−→ pΨf (pDRM ),

such that T corresponds to exp(−2πit∂t). This isomorphism will then decompose as
the direct sum of its components

(4.3.4) pDRψbfM
∼−→ pΨλ

f (pDRM ), λ = exp−2πib.

Such an isomorphism exists under a regularity assumption along f = 0. Such a
result goes back to Malgrange and Kashiwara. With the assumption of the existence
of a good filtration F•M satisfying the regularity property 4.3.c, its existence has
been proved by M. Saito [24, Prop. 3.4.12]. For a good survey, see [20] or [15].

We now have at our disposal an object ψf
(
(M , F•M ),FQ, α

)
, equipped with

a quasi-unipotent automorphism. If we compare with the construction of § 1.4.b,
we remark that, by its very construction, the filtration F• respects the gradation⊕

b∈]−1,0] ψ
b
fM .
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We then regard the operator N = (2πi)−1 log Tu as a morphism

(4.3.5) N : ψf
(
(M , F•M ),FQ, α

)
−→ ψf

(
(M , F•M ),FQ, α

)
(−1).

4.3.e. What about vanishing cycles? A priori, the results above should be com-
pleted by the construction of vanishing cycles (with respect to the eigenvalue 1 of the
monodromy): one should have to construct pΦ1

fFQ with its (unipotent) monodromy
and the diagram

pΨ1
fFQ

Can
**
pΦ1

fFQ

Var

jj
,

Var ◦Can = T − Id : pΨ1
fFQ −→ pΨ1

fFQ,

Can ◦Var = T − Id : pΦ1
fFQ −→ pΦ1

fFQ.

One should have a similar diagram

ψ0
fM

can
**

ψ−1f M

var
ii

,
var ◦ can = N : ψ0

fM −→ ψ0
fM ,

can ◦ var = N : ψ−1f M −→ ψ−1f M .

and an isomorphism pDRψ−1f M
∼−→ pΦ1

f (pDRM ) completing (4.3.4), so that the
diagrams above suitably correspond.

Although these results are true with the same assumptions as above, we will not
have to use them, as we will soon restrict to strictly S-decomposable objects. For
each strict component of such an object, can (resp. Can) is onto and var (resp. Var) is
injective, so the vanishing cycles can be defined as the image of N in (4.3.5). From the
point of view of Hodge D-module structure, we also define the vanishing cycles as the
image of N in the category of Hodge-Lefschetz D-modules, using the same procedure
as in Exercise 1.4.11.

4.4. Polarizable Hodge D-modules: definition

4.4.a. Pure Hodge D-modules. Let X be a complex manifold. One defines by
induction on d the category MH6d(X,w) of Hodge D-modules of weight w and di-
mension of support 6 d.

(MH0) A Hodge module supported on a point {xo} ↪ i−→ X is i+ (in the sense of filtered
D-modules and perverse sheaves) of a Hodge structure

(
(H,F •H), HQ

)
.

An object of MH6d(X,w) is a triple
(
(M , F•M ),FQ, α

)
where (M , F•M ) is

a holonomic DX -module with a good filtration, FQ is a Q-perverse sheave and
α : pDRM → C⊗Q FQ is an isomorphism. This triple is assumed to be strictly
S-decomposable: it is the direct sum of objects having strict support on an irreducible
closed analytic subset of X.

We are now reduced to defining the category MHZ(X,w) of Hodge D-modules
having strict support the irreducible closed analytic subset Z of X (by induction, we
assume that dimZ = d).
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The condition is local on Z (or X).

(HS) For any germ f of holomorphic function on Z, the triple
(
(M , F•M ),FQ, α

)
is

strictly specializable along f = 0 and the corresponding monodromy is quasi-unipotent.

We can therefore consider the nearby cycles ψbf
(
(M , F•M ),FQ, α

)
(b ∈ ] − 1, 0])

which are supported on f = 0. If f is not identically 0 on Z, we get an object
supported in dimension 6 d− 1. On the nearby cycle objects, we have the nilpotent
endomorphism N and its monodromy filtration M•.

(MH>0) Each grM` ψ
b
f

(
(M , F•M ),FQ, α

)
(b ∈ ] − 1, 0], ` ∈ Z) is an object of the

category MH6d−1(X,w − 1 + `).

Remarks 4.4.1

(1) This definition can look frightening: in order to check that an object(
(M , F•M ),FQ, α

)
belongs to MH(X,w), we have to consider in an inductive way

nearby cycles with respect to all germs of holomorphic functions.
It should be considered however the other way round. Once we know at least

one Hodge D-module, we automatically know an infinity of them, by considering
(monodromy-graded) nearby or vanishing cycles with respect to any holomorphic
function.

(2) It can be proved (by induction on d) that the category of such objects, as well
as the category of mixed objects obtained by the ψ functor, are abelian. This is an
important property.

(3) If we define vanishing cycles as the image by N of ψ0
f (this is justified by the

previous remark) we get an object such that the corresponding graded pieces grM`
belong to MH6d−1(X,w + `) (note that the weight is w + `, not w − 1 + `).

(4) It is possible to define the notion of a Hodge-Lefschetz D-module, as we did for
Hodge structures in § 1.4. Then ψf

(
(M , F•M ),FQ, α

)
is a quasi-Hodge Lefschetz D-

module of weight w − 1 and ψ−1f
(
(M , F•M ),FQ, α

)
is a Hodge-Lefschetz D-module

of weight w.

4.4.b. The polarization. In order to define the notion of a polarization, we need to
introduce the notion of a pairing between Q-perverse sheaves (extending the notion of
a pairing between Q-vector spaces) and, in order to apply the inductive procedure to
reach a polarization on a Hodge structure, we need to determine its behaviour under
the topological pΨf functor for any holomorphic function f . This part is purely “topo-
logical”. One can consider the Poincaré-Verdier duality functor D. A non-degenerate
pairing on a constructible complex FQ is an isomorphism Q : FQ

∼−→ DFQ. In a
similar way to what happens to the functor pDR in (4.3.3), we need to construct a
canonical and functorial isomorphism

(4.4.2) D(pΨfFQ)
∼−→ pΨf (DFQ).
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A polarization of the Hodge D-module
(
(M , F•M ),FQ, α

)
will then be an iso-

morphism
SQ : DFQ −→ FQ(−w)

inducing, after applying pΨf and the isomorphism (4.4.2) a polarization of the Hodge-
Lefschetz D-module ψt

(
(M , F•M ),FQ, α

)
. At the beginning of the induction, we use

the notion of polarization of Remark 1.3.7.

Remark 4.4.3. Strictly speaking, it is necessary to impose a priori neither the non-
degeneracy property nor the symmetry property (that I forgot above), as all these
properties should be proved to hold by induction on the dimension of the support,
starting from the corresponding properties for Hodge structures.

4.5. The Hodge-Saito theorem

The Hodge-Saito theorem is a version with parameter and in higher dimension of
the Hodge-Saito theorem of § 3.1.e.

4.5.a. The direct image functor. Let f : X → Y be a projective morphism
between smooth projective varieties over C. Let

(
(M , F•M ),FQ, α

)
be a polarizable

Hodge D-module onX. The notion of direct image by f is well defined for D-modules,
as well as for complexes of sheaves. Moreover, as f is projective (hence proper),
f+M is a complex of DY -modules having DY -coherent and holonomic cohomology.
Similarly, Rf∗FQ is a complex of sheaves having constructible cohomology on Y .

Remark 4.5.1. The direct image f+OX corresponds to the classical construction of the
Gauss-Manin connection (cf. [8], see also [16]).

The cohomology modules H kf+M are DY -holonomic. The perverse cohomology
sheaves pRkf∗FQ are perverse sheaves on Y . We wish to cook up, out of α, an
isomorphism

αk : pDR(H kf+M )
∼−→ C⊗Q

pRkf∗FQ.

As for nearby cycles (4.3.3), this amounts to constructing a canonical and functorial
isomorphism in the derived category D(CY )

(4.5.2) pDRf+M
∼−→ Rf∗

pDRM .

Indeed, taking perverse cohomology of both terms will then give (using that pDRM

is perverse)

(4.5.3) pDR(H kf+M ) = pH k(pDRf+M )
∼−→ pRkf∗(

pDRM ).

We compose this isomorphism with
pRkf∗α : pRkf∗

pDRM
∼−→ C⊗Q

pRkf∗FQ

to get αk. That the isomorphism (4.5.2) exists is a very general fact (cf. for instance
[19]).
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It remains to define the notion of direct image for a filtered DX -module. This
is done by M. Saito [24] by using the notion of induced D-module. The approach
of induced D-modules is very efficient and gives in particular another proof of the
comparison (4.5.2) (cf. [24], see also [16]).

4.5.b. The Hodge-Saito theorem: statement. Let X be a projective variety
and let

(
(M , F•M ),FQ, α,SQ

)
be a polarized Hodge D-module of weight w on X.

The hypercohomology H∗(X, pDRM ) gets
– a filtration coming from the filtration (4.1.2) on the de Rham complex,
– a Q-structure coming from Hk(X,FQ) through α,
– a morphism Hk(X,FQ)∨ → H−k(X,FQ)(w) according to the Poincaré-
Verdier duality theorem.

Moreover, if we fix an ample line bundle on X, as in § 1.2, one can define a cor-
responding Lefschetz operator L on the hypercohomology. The theorem of M. Saito
asserts that the properties expressed in § 1.2 hold in such a setting (i.e., we get a
polarized graded (−)Hodge-Lefschetz structure).

4.5.c. The Hodge-Saito theorem: sketch of proof. It is not known how to
prove directly the Hodge-Saito theorem. One does not know how to develop an
analysis similar to the one which occurs in the Hodge theorem (or the Hodge-Deligne
theorem). The singularities of the support of the Hodge D-module make the direct
analysis of the Laplace operator much too hard. On the contrary, the proof uses the
machinery of direct images to reduce to dimension one, that is, to the theorem of
§ 3.1.e.

(1) One first states the Hodge-Saito theorem in a relative form: instead of consider-
ing the constant map f : X → pt, one considers any projective morphism f : X → Y ,
assuming only that X is quasi-projective, and one rephrases the theorem by replacing
‘k-th hypercohomology’ by ‘k-th direct image’ as in § 4.5.a.

(2) The proof of the relative Hodge-Saito theorem is done by induction on the pair
(dM , df+(M )), where dN is the dimension of the support of N by using the following
steps:

(a) the case dimX = 1 and dimY = 0 is nothing but the Hodge-Saito theo-
rem of § 3.1.e;

(b) If the theorem is true for a pair (n,m), then it is true for a pair
(n+ 1,m+ 1);

(c) if the theorem is true for the pair (n, 1) then, also using the first step, one
gets the theorem for the pair (n+ 1, 0); this is a kind of Fubini theorem.

(3) In order to prove the (absolute) Hodge-Saito theorem with pair (n, 0), one
produces a relative situation with pair (n−1, 1) by using a Lefschetz pencil. This is a
morphism X̃ → P1, where X̃ is the blow-up space of the axis of the pencil in X. If the
pencil is generic enough (with respect to the Hodge D-module we start with), then it
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is possible to pull-back the Hodge D-module to X̃ and obtain an object which is close
to be a Hodge D-module. Applying Step (2c) to it, one gets a Hodge structure. One
then compares this Hodge structure to the data obtained on the hypercohomology of
the original Hodge D-module.

4.6. Polarizable Hodge D-modules: some examples

The first main example is given by the following theorem, which is proven by
induction on the dimension and, when proving the property (MH>0) with respect to
a holomorphic function f , by using the resolution of singularities of f = 0. In order to
come back, one uses direct images by the resolution morphism; here, the Hodge-Saito
theorem for a morphism proves useful.

Theorem 4.6.1 (cf. [24]). A variation of polarized Hodge structure of weight w corre-
sponds to a polarized Hodge module of weight w + dimX.

We thus see that the weight of a Hodge D-module takes into account the dimen-
sion of its support. In order to understand the meaning of ‘corresponds’, let us
consider the particular case of OX . The corresponding Hodge D-module is the ob-
ject

(
(OX , F Saito

• OX), pQX , α
)
, with F Saito

• OX = F•[dimX]OX , pQX := QX [dimX]

and α :pDROX→pQX is the natural morphism. This is a pure Hodge module of
weight dimX. The polarization is that coming from the trivial pairing QX⊗QX

QX →
QX , suitably shifted ant Tate-twisted.

4.6.a. The Hodge structure on vanishing cycles for an isolated singularity.
Let us explain how the results of Varchenko and Steenbrink can be recovered in this
context. Let f be a germ of holomorphic function on X = Cn with an isolated
singularity at the origin. Then pΦf

pQX is supported at the origin. If {0} ↪ i0−→ X is
the inclusion, then pΦf

pQX = Ri0,∗HQ, where HQ is the reduced Q-cohomology of
the Milnor fibre of f at the origin.

The complex cohomology of the Milnor fibre is obtained by Φf
pDROX , where we

denote by Φf the functor
⊕

b∈[−1,0[ ψ
b
f .

In such a situation, we find that φf
(
(OX , F Saito

• OX), pQX , α
)
is a mixed Hodge

structure, and more precisely that each grM` φf
(
(OX , F Saito

• OX), pQX , α
)
has weight

`+ n = `+ dimX.

Exercise 4.6.2. Prove that if,+OX = OX [∂t] as a OX -module and determine the DX×C-
action in this presentation. Show that the filtration F•if,+OX is the filtration by the
degree in ∂t. Give the characterization of the V -filtration.

The result of Varchenko and Steenbrink are related to the local Gauss-Manin sys-
tem M , which is the direct image by the projection X × C→ C of if,+OX . One has
to restrict to a Milnor ball near the singularity in order to obtain something intrinsic.
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We have (using the definition of direct images of D-modules and the fact that the
singularity is isolated)

M = ΩnX,0[∂t]
/

(d− ∂tdf∧)Ωn−1X,0 [∂t].

This is known to be a germ of regular holonomic D-module (here, we take the notation
of § 2.0). The F -filtration induced by the filtration of if,+OX is the filtration by the
degree in ∂t.

Scherk and Steenbrink [28] have proved that one can work onM instead of if,+OX
in order to obtain the Hodge filtration on the vanishing cycles. Namely, one identifies
pΦf

pCX with φtM (computed with the V -filtration of M) and one induces on it the
F -filtration of M to get the Hodge filtration.

The local Gauss-Manin system has a specific property: the action of ∂t is invertible.
Moreover, each FkM is stable by ∂−1t . It follows that, for any k > 1, FkM = ∂kt F0M .

It follows that the graded parts of the Hodge filtration on φtM can be recovered
(applying a suitable power of ∂t) of the graded part of the filtration induced by V •M
on the Jacobian module

F0M/∂−1t F0M = ΩnX,0/df ∧ Ωn−1X,0 .

4.6.b. The intersection complex of an isolated hypersurface singularity.
Let us keep the setting of § 4.6.a, still assuming that the hypersurface Y = {f = 0}
has an isolated singularity at the origin. The constant sheaf pQY shifted by the
dimension of Y is known to be a perverse sheaf on Y . Does it underlie a Hodge
DX -module strictly supported on Y ?

One remarks that, without strong assumptions on Y (for instance Y having a
quotient singularity), it is not self-dual with respect to Poincaré-Verdier duality. This
will be problematic for the polarization to exist.

The DX -module corresponding, via pDR, to pQY (or, more precisely, to the sheaf
equal to pQY on Y and equal to 0 away from Y ) can by obtained from ψ0

fOX : it is
equal to Ker[N : ψ0

fOX → ψ0
fOX ]. Indeed, let us denote by iY : Y ↪→ X the inclusion.

At the level of the perverse complexes, we have a triangle

RiY,∗i
−1
Y

pQY −→ pΨ1
f
pQX

Can−−−−→ pΦ1
f
pQX

+1−−−→

which is in fact an exact sequence in the abelian category of perverse sheaves

0 −→ RiY,∗i
−1
Y

pQY −→ pΨ1
f
pQX

Can−−−−→ pΦ1
f
pQX −→ 0,

and, as Var is injective in the same category, we have RiY,∗i
−1
Y

pQY = Ker Can =

Ker(T − Id). A similar reasoning can be made with the DX -modules.

Exercise 4.6.3. Let us consider an object of an abelian category which is acted on by
a nilpotent endomorphism N. Let us denote by M• the corresponding monodromy
filtration.

(1) Show that Ker N ⊂ M0.

(2) Show that the primitive part PgrM0 is equal to Ker N/(Ker N ∩ Im N).
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(Hint: one will first check these statements in the case of a nilpotent matrix having
the Jordan normal form.

At the level of Hodge DX -modules, Ker N is a mixed Hodge module (here, we use
that ψ0

f

(
(OX , F Saito

• OX), pQX , α
)
is a mixed Hodge D-module and that the category

of mixed Hodge D-modules is abelian, although we did not define such a notion).
By Exercise 4.6.3, Ker N has weights less than or equal to dimY (recall that the
original Hodge module corresponding to OX has weight dimX). Moreover, the prim-
itive object PgrM0 ψ

0
f

(
(OX , F Saito

• OX), pQX , α
)
is a polarized pure Hodge module of

weight dimY . Of course, when we restrict away from the singularity of Y , we find
the object

(
(OY , F Saito

• OY ), pQY , α
)
.

In fact, the pure component PgrM0 ψ
0
f corresponds to the intersection complex ICY

on Y . In such a way, we have constructed a canonical Hodge D-module structure on
ICY .

Exercise 4.6.4. Does the previous argument depend on the fact that Y has an isolated
singularity?



LECTURE 5

HOW TO USE HODGE D-MODULES

In this lecture, I will insist on the use of the Hodge filtration, from various points
of view. I will allow an excursion to mixed Hodge modules to give more emphasis to
some of its properties.

(1) Strictness: preservation of strictness under various operations implies, more or
less directly, a strict control of the behaviour of the Hodge filtration by the topology.

(2) Determining the Hodge filtration: in many examples, some D-module is proved
to underlie a (mixed) Hodge module, but the Hodge filtration is not explicit. Making
it explicit can be hard, but leads to interesting consequences.

5.1. Strictness

Let M be a left DX -module and let F•M be a F -filtration (not necessarily good,
but satisfying FkDXF`M ⊂ Fk+`M for any k, `). Then the Rees module RFM :=⊕

k FkM zk is a left module over the Rees ring RFDX . Conversely, a left RFDX -
module takes the form RFM for some filtered DX -module M if and only if it has no
C[z]-torsion, if we regard C[z] acting as a subring of RFDX .

A bounded complex of filtered DX -modules is said to be strict if the cohomology
of the associated Rees complex has no C[z]-torsion.

5.1.a. Strictness of the dual module. If M is holonomic, then the dual complex
DM (which is the complex of left DX -modules associated to RHom DX

(M ,DX)) has
cohomology in degree dimX only, and this is the dual holonomic DX -module M ∨.

Starting now from a well-filtered DX -module, we can similarly consider the dual
complex D(RFM ). Two problems can occur at the same time:

– the cohomology possibly exists in degrees 6= dimX; the corresponding coho-
mology classes are then annihilated by a power of z;
– the cohomology in degree dimX has possibly z-torsion.

In other words, the complex D(RFM ) is possibly not strict.
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Corollary 5.1.1. If (M , F•M ) underlies a Hodge DX-module, then D(RFM ) is
strict. In particular, grFM is a Cohen-Macaulay grFDX-module, i.e., the complex
RHom grF DX

(grFM , grFDX) has cohomology in degree dimX only, and

ExtdimX
grF DX

(grFM , grFDX) = grF
(

ExtdimX
DX

(M ,DX)
)
,

where the filtration on the right-hand side is the natural one.

5.1.b. Strictness of the direct images. One of the statements of the Hodge-Saito
theorem I did not insist on in § 4.5.b is the strictness property. It corresponds to
Theorem 1.2.5 in classical Hodge theory. It is particularly useful to state it that way,
instead of the decomposition

⊕
Hp,q as, in the relative case where the target space has

dimension > 0, it can be stated in exactly the same way, although the decomposition
needs introducing C∞ coefficients, which is not desirable near singularities.

Let (M , F•M ) be a holonomic DX -module equipped with a good filtration and
let RFM be the associated Rees module. It is RFDX -coherent. If f : X → Y is
a holomorphic map, the direct image functor f+ extends as a filtered direct image
functor, that is, as a direct image functor for RFDX -modules. If f is proper, then
f+RFM has RFDY -coherent cohomology.

The Hodge-Saito theorem says, in the setting of § 4.5.c, that the direct image
f+RFM of the filtered DX -module underlying a polarizable Hodge DX -module by a
projective morphism is strict.

5.1.c. Application to vanishing cycles: analytic case. Let f : X → C be a
holomorphic function on a complex analytic manifold. Let (M , F•M ) be a well-
filtered coherent DX -module, DR(M ) = (Ω•X ⊗OX

M ,∇) its de Rham complex,
which is naturally filtered by (4.1.2), and (Ω•X⊗OX

grFM , grF∇) the associated graded
complex.

Theorem 5.1.2. Let (M , F•M ) be (the filtered holonomic DX-module underlying) a
mixed Hodge Module (1) on X such that the restriction of f to the support of M is a
projective morphism in a neighbourhood of f−1(0). Then for all k ∈ Z one has

dimHk−1
(
f−1(0),Φf DR(M )

)
= dimHk

(
f−1(0), (Ω

•
X ⊗OX

grFM , grF∇− df∧)
)
.

Letting M = OX in theorem 5.1.2, which is justified by Theorem 4.6.1 (the shift
in the filtration does not affect the strictness property), we get:

Corollary 5.1.3. If f : X → C is projective in a neighbourhood of f−1(0), one has for
all k ∈ Z

dimHk−1
(
f−1(0),ΦfCX

)
= dimHk

(
f−1(0), (Ω

•
X , df∧)

)
.

1. The notion of a mixed Hodge module will not be defined here. One is referred to [25] for
a precise definition. We will use that the strictness of direct images also applies to mixed Hodge
D-modules.
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Notice that the corollary is well-known if one assumes that, in a neighbourhood
of f−1(0), the function f has only a finite number of critical points; one then knows
[23] that the complex (Ω•X , df∧) has cohomology in degree dimX at most and has
support in the set of critical points; so is then the perverse sheaf pΦf pCX ; in this case
the corollary is consequence of the formula

µ(f, xo) = dim OX,xo

/( ∂f
∂x1

, . . . ,
∂f

∂xn

)
where µ(f, xo) is the number of vanishing cycles of f at xo.

Let D be a divisor with normal crossings in X and j : U = X − D ↪→ X be the
inclusion. Taking M = OX [∗D] (cf. [25, § 2.d]), one gets:

Corollary 5.1.4. Under the same assumptions as above one has, for all k ∈ Z,

dimHk−1
(
f−1(0),ΦfRj∗CU

)
= dimHk

(
f−1(0), (Ω

•
X(logD), df∧)

)
.

Proof of theorem 5.1.2. Let i : X ↪→ X ×C denote the inclusion defined by the graph
of f . Identify i+M with M [∂t]. It is equipped with the good filtration

F`
(
M [∂t]

)
=

∑
j+k=`, k>0

FjM ∂kt

and grF`
(
M [∂t]

)
is identified with

⊕
j6` grFjM . The relative de Rham complex

DRX×C/C(i+M ) =
(
Ω
•
X ⊗OX

M [∂t],∇− ∂t · df ∧
)

is filtered by

Fp DRX×C/C(i+M ) =
(
Ω
•
X ⊗OX

Fp+•M [∂t],∇− ∂t · df ∧
)

so that

grFp DRX×C/C(i+M ) =
(
Ω
•
X ⊗OX

(
⊕j6p+• grFjM

)
, grF∇− df ∧

)
.

The right-hand term is also the p-th term of a filtration

G•
(
Ω
•
X ⊗OX

grFM , grF∇− df ∧
)
.

The graded complex Gp/Gp−1 is the complex(
Ω
•
X ⊗OX

grFp+•M , grF∇
)

= grFp DR M .

If p is large enough, this complex is acyclic in a neighbourhood of the compact fiber
f−1(0) ∩ Supp M (see e.g., [14, 17]). We conclude, taking inductive limits, that, for
p large enough and any k,

dimHk
(
f−1(0),

(
Ω
•
X ⊗OX

grFM , grF∇− df ∧
))

= dimHk
(
X × {0}, grFp DRX×C/C(i+M )

)
.

Let now F•H kf+M be the good filtration defined as

image
[
Rkf∗(Fp DRX×C/C(i+M )) −→ Rkf∗(DRX×C/C(i+M ))

]
.
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The strictness of the Hodge filtration on direct images (see [25, th. 2.14]) implies that

dimHk
(
X × {0}, grFp DRX×C/C(i+M )

)
= dim grFp H kf+M

for any p. Now, it follows from the local index theorem of Kashiwara (see e.g., [18,
p. 67]) that, for p large enough,

dim grFp H kf+M = dim pΦt
pDR(H kf+M ).

Then, on the one hand, using (4.5.3), we have pDR(H kf+M ) ' pRkf∗
pDRM and,

on the other hand, pΦtpRkf∗
pDRM = pRkf∗

pΦf
pDRM , as Φf commutes with direct

images and pΦf preserves perversity, hence commute with perverse cohomology of the
direct image. Now, up to a shift, the right-hand term is equal to the left-hand term
in the theorem.

5.1.d. Application to vanishing cycles: algebraic case. Let now f̃ : X̃ → P1

be a morphism of algebraic varieties and let f : X → A1 be its restriction over the
affine line A1. Thus, X is quasi-projective and f is projective. In the following, we
work in the algebraic category, so the differential forms are algebraic, etc.

Theorem 5.1.5. Let (M , F•M ) be (the filtered holonomic DX-module underlying) a
mixed Hodge Module on X. The hypercohomology spaces on X of the complexes
(Ω•X ⊗OX

M,∇ − df∧) and (Ω•X ⊗OX
grFM , grF∇ − df∧) have the same (finite) di-

mension.

Remark 5.1.6. It is well-known that one has

dimHi
(
X, (Ω

•
X ⊗OX

M,∇− df∧)
)

=
∑
c∈C

dimHi−1
(
f−1(c),Φf−c DR(M)

)
.

One can apply Theorem 5.1.5 to the pure Hodge D-module
(
(OX , F Saito

• OX),QX , α)

(and we can use F•OX instead of F Saito
• OX , as the shift of the filtration does not

affect strictness. One then has grFM = OX and grF∇ = 0. We thus get:

Corollary 5.1.7 (Kontsevitch and Barannikov). The hypercohomology spaces on X of
the complexes (Ω•X , d− df∧) and (Ω•X , df∧) have the same (finite) dimension.

One also can apply this result to M = OX [∗D], if D is a divisor of X. Then we
need here the theory of mixed Hodge D-modules. Assume that D is a divisor with
normal crossings. We get

Corollary 5.1.8. The hypercohomology spaces on X of the complexes

(Ω
•
X(logD), d− df∧) and (Ω

•
X(logD), df∧)

have the same (finite) dimension.
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Proof of theorem 5.1.5. By Theorem 5.1.2 and remark 5.1.6, it is enough to prove that
the natural map

(∗) Hk
(
X, (Ω

•
X ⊗OX

grFM , grF∇− df∧)
)

−→ Hk
(
Xan, (Ω

•
X ⊗OX

grFM , grF∇− df∧)an
)

is an isomorphism for all k. The cohomology of the complex(
Ω
•
X ⊗OX

grFM , grF∇− df ∧
)an

is supported by a finite number of fibers f−1(c) and, by faithful flatness of OXan over
OX , the same holds for the complex

(
Ω•X ⊗OX

grFM , grF∇− df ∧
)
. These complexes

can be regarded as having OX̃an - or OX̃ -coherent cohomology, and GAGA implies
that

(5.1.9) Hk
(
X,H j(Ω

•
X ⊗OX

grFM , grF∇− df∧)
)

−→ Hk
(
Xan,H j(Ω

•
X ⊗OX

grFM , grF∇− df∧)an
)

is an isomorphism. The analytization morphism is compatible with the natural spec-
tral sequences with Ejk2 -term respectively given by the left-hand and right-hand term
in (5.1.9). As Ejk2 is finite dimensional, the spectral sequence degenerates at a finite
rank and consequently (∗) is an isomorphism too.

5.1.e. Strictness and families. Another way to regard the strictness property is
the following consequence of the definition of a Hodge D-module:

Corollary 5.1.10. If (M , F•M ) is the filtered DX-module underlying a Hodge D-module
and if pDRM is a local system up to a shift, then each grFp M (and each FpM ) is a
holomorphic vector bundle on X.

In other words, no topological jump implies no analytic jump. For instance, let
f : X → C be a holomorphic function on the smooth manifold X having a smooth
critical locus C. Locally, C is included in one fibre of f , say f−1(0). Let us moreover
assume that ΦfQX is a local system on C. As it underlies a mixed Hodge module,
it follows that, for any b ∈ [−1, 0[ and any p, grpFψ

b
fOX is locally free of finite rank

on C (the shift between F•OX and F Saito
• OX has no effect here). Assume for instance

that dimC = 1. By choosing a local transverse section to C, we can regard f as a µ-
constant family (ft)t∈C of isolated hypersurface singularities defined by ft : Xt → C.
We conclude that, in such a situation, the spectrum of ft is locally constant when t
varies on C.

However, it is not known if any µ-constant family (ft)t∈C gives rise to a local
system ΦfQX , and such a proof cannot be applied to get a general proof that the
spectrum is constant in such a situation. On the one hand, there is a (quite tricky)
proof that the spectrum is constant in such a situation (and even a more general
semi-continuity result) by Varchenko [32] and Steenbrink [30].
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The condition that ΦfQX is a local system on C is a particular case of the general
condition (without assuming C smooth) that the transversal slice is non-characteristic.
Recent results of Dimca, Maisonobe, M. Saito and Torrelli [9] analyze the behaviour
of the spectrum by a non-characteristic restriction. The topological statement is as
follows:

Theorem 5.1.11 (cf. [9]). Let Y = {f = 0} be a smooth divisor in X and let iT :

T → X be the inclusion of a closed submanifold which is transversal to Y . Assume
that M is a regular holonomic DX-module such that T is non-characteristic for M

and for ψfM . Let V •M denote the Kashiwara-Malgrange filtration of M along the
hypersurface Y and also the Kashiwara-Malgrange filtration of the restriction i+TM

along the hypersurface T ∩Y . Then, for any b ∈ R and any β ∈ C, the following hold:

(a) i+T (V bM ) = V bi+TM ;

(b) i+Tψ
β
fM = ψβf|T i

+
TM .

In particular,

(5.1.11 ∗) i+T (ψfM ) = ψf|T (i+TM ) and i+T (φfM ) = φf|T (i+TM ).

If T is a smooth hypersurface defined by the equation t = 0 in a local coordinate
system, then the non-characteristic assumption in the theorem implies that T is also
non-characteristic with respect to ψfM and to φfM . Therefore, the functor φt
vanishes on M , ψfM and φfM and, in the last line of the theorem, one can replace
i+T with ψ0

t or with ψt.
A consequence of the definition of the Hodge filtration is

Corollary 5.1.12. With the assumptions of Theorem 5.1.11, assume moreover that
(M , F•M ) underlies a Hodge D-module. Then (5.1.11 ∗) holds after taking grFp for
the naturally induced filtration on all terms.

This corollary implies the constancy of the spectrum by a non-characteristic (in
the sense of Theorem 5.1.11) hyperplane section.

5.2. Determining the Hodge filtration

5.2.a. What does a polarizable Hodge D-module look like? One can give
the following description of a polarized Hodge D-module on a complex manifold X

(cf. [24, 25]. We know, by definition, that a Hodge D-module is S-decomposable.
On other words, it is decomposed as the direct sum of Hodge D-modules with strict
support. We are reduced to consider these Hodge D-modules. Let Z denote the
support of the Hodge D-module. By assumption, Z is then a closed irreducible
analytic subset of X. There exists a closed analytic subset Σ of Z, containing the
singular locus of Z, and a variation of polarized Hodge structure on Z r Σ, with
underlying local system HQ, such that the underlying constructible complex of the
Hodge D-module is the intermediate extension of HQ on Z, denoted by ICZ HQ.
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This result is by no means trivial, even when Z is smooth and Σ is a normal
crossing divisor. In such a case, this is a generalization of Schmid’s theorem 3.3.7 to
dimension > 2 (see [12, 13, 2, 3]).

Going back from the previous simple geometric situation to the general case of
(Z,Σ) uses resolution of singularities and the Hodge-Saito theorem for a projective
morphism.

Nevertheless, such a structure theorem does not give precise indication on the
Hodge filtration. We would like to have a formula generalizing (2.2.4) in order to
extend the filtration from Z rΣ to Z. This kind of formula exists in order to extend
the filtration from Z r Y to Z, where Y is a principal divisor of Z containing Σ

(cf. [24, Prop. 3.2.2]), but the terms of the V -filtration involved are not O-coherent,
hence let too much freedom to the Hodge filtration. In this direction, more precise
results are contained in [27].

5.2.b. A mixed example: the polar filtration. Let X be a complex manifold
and let Y be a reduced divisor in X. The sheaf OX(∗Y ) of meromorphic functions on
X with poles along Y at most is a DX -module. It does not underlie a pure Hodge D-
module, but a mixed one. Nevertheless, it is interesting to try to determine its Hodge
filtration. When X = Pn, it is also interesting to determine the Hodge filtration on
the hypercohomology of its de Rham complex, that is, on the cohomology of X r Y ,
after the comparison theorem. The latter question has been considered by Deligne
and Dimca [5].

The former question is treated in [26]. Let us denote by F•OX(∗Y ) the Hodge filtra-
tion and by P•OX(∗Y ) the filtration by the order of the pole, defined as PkOX(∗Y ) =

OX((k+ 1)Y ) (i.e., a pole of order 6 k+ 1 along Y ). Then PkOX(∗Y ) ⊂ FkOX(∗Y )

for any k and there is equality at x ∈ Y if k 6 αf,x − 1, where αf,x is the minimal
exponent of f at x.





BIBLIOGRAPHY

[1] J. Briançon & Ph. Maisonobe – “Idéaux de germes d’opérateurs différentiels
à une variable”, Enseign. Math. 30 (1984), p. 7–38.

[2] E. Cattani, A. Kaplan & W. Schmid – “Degeneration of Hodge structures”,
Ann. of Math. 123 (1986), p. 457–535.

[3] , “L2 and intersection cohomologies for a polarizable variation of Hodge
structure”, Invent. Math. 87 (1987), p. 217–252.

[4] P. Deligne – “Théorie de Hodge II”, Publ. Math. Inst. Hautes Études Sci. 40
(1971), p. 5–57.

[5] P. Deligne & A. Dimca – “Filtrations de Hodge et par l’ordre du pôle pour
les hypersurfaces singulières”, Ann. Sci. École Norm. Sup. (4) 23 (1990), no. 4,
p. 645–656.

[6] P. Deligne & L. Illusie – “Relèvements modulo p2 et décomposition du com-
plexe de de Rham”, Invent. Math. 89 (1987), p. 247–270.

[7] J.-P. Demailly – “Théorie de Hodge L2 et théorèmes d’annulation”, in Introduc-
tion à la théorie de Hodge, Panoramas & Synthèses, vol. 3, Société Mathématique
de France, 1996, p. 3–111.

[8] A. Dimca, F. Maaref, C. Sabbah & M. Saito – “Dwork cohomology and
algebraic D-modules”, Math. Ann. 318 (2000), no. 1, p. 107–125.

[9] A. Dimca, Ph. Maisonobe, M. Saito & T. Torrelli – “Multiplier ideals,
V -filtrations and transversal sections”, Math. Ann. 336 (2006), no. 4, p. 901–924.

[10] P.A. Griffiths & J. Harris – Principles of Algebraic Geometry, A. Wiley-
Interscience, New York, 1978.

[11] F. Guillén & V. Navarro Aznar – “Sur le théorème local des cycles invari-
ants”, Duke Math. J. 61 (1990), p. 133–155.



64 BIBLIOGRAPHY

[12] M. Kashiwara – “The asymptotic behaviour of a variation of polarized Hodge
structure”, Publ. RIMS, Kyoto Univ. 21 (1985), p. 853–875.

[13] , “A study of variation of mixed Hodge structure”, Publ. RIMS, Kyoto
Univ. 22 (1986), p. 991–1024.

[14] G. Laumon – “Sur la catégorie dérivée des D-modules filtrés”, in Algebraic ge-
ometry (Tokyo/Kyoto, 1982), Lect. Notes in Math., vol. 1016, Springer-Verlag,
1983, p. 151–237.

[15] Ph. Maisonobe & Z. Mebkhout – “Le théorème de comparaison pour
les cycles évanescents”, in Éléments de la théorie des systèmes différentiels
géométriques, Séminaires & Congrès, vol. 8, Société Mathématique de France,
Paris, 2004, p. 311–389.

[16] Ph. Maisonobe & C. Sabbah – “Aspects of the theory of D-modules”, Lecture
Notes (Kaiserslautern 2002), version de juillet 2011, disponible à http://www.
math.polytechnique.fr/~sabbah/livres.html, 2011.

[17] B. Malgrange – “Sur les images directes de D-modules”, Manuscripta Math.
50 (1985), p. 49–71.

[18] , Équations différentielles à coefficients polynomiaux, Progress in Math.,
vol. 96, Birkhäuser, Basel, Boston, 1991.

[19] Z. Mebkhout & L. Narváez Macarro – “Le théorème de constructibilité de
Kashiwara”, in Éléments de la théorie des systèmes différentiels (Ph. Maisonobe
& C. Sabbah, eds.), Les cours du CIMPA, Travaux en cours, vol. 46, Hermann,
Paris, 1993, p. 47–98.

[20] Z. Mebkhout & C. Sabbah – “§ III.4 D-modules et cycles évanescents”, in
Le formalisme des six opérations de Grothendieck pour les D-modules cohérents,
Travaux en cours, vol. 35, Hermann, Paris, 1989, p. 201–239.

[21] C. Peters & J.H.M. Steenbrink – Mixed Hodge Structures, Ergebnisse der
Mathematik und ihrer Grenzgebiete. 3. Folge, vol. 52, Springer-Verlag, Berlin,
2008.

[22] E. Reyssat – Quelques aspects des surfaces de Riemann, Progress in Math.,
vol. 77, Birkhäuser, Basel, Boston, 1989.

[23] K. Saito – “On a generalisation of de Rham lemma”, Ann. Inst. Fourier (Greno-
ble) 26 (1976), p. 165–170.

[24] M. Saito – “Modules de Hodge polarisables”, Publ. RIMS, Kyoto Univ. 24
(1988), p. 849–995.

[25] , “Mixed Hodge Modules”, Publ. RIMS, Kyoto Univ. 26 (1990), p. 221–
333.

http://www.math.polytechnique.fr/~sabbah/livres.html
http://www.math.polytechnique.fr/~sabbah/livres.html


BIBLIOGRAPHY 65

[26] , “On b-function, spectrum and rational singularity”, Math. Ann. 295
(1993), p. 51–74.

[27] , “On the Hodge filtration of Hodge modules”, Mosc. Math. J. 9 (2009),
no. 1, p. 161–191.

[28] J. Scherk & J.H.M. Steenbrink – “On the mixed Hodge structure on the
cohomology of the Milnor fiber”, Math. Ann. 271 (1985), p. 641–655.

[29] W. Schmid – “Variation of Hodge structure: the singularities of the period
mapping”, Invent. Math. 22 (1973), p. 211–319.

[30] J.H.M. Steenbrink – “Semi-continuity of the singularity spectrum”, Invent.
Math. 79 (1985), p. 557–565.

[31] J.H.M. Steenbrink & S. Zucker – “Variation of mixed Hodge structure I”,
Invent. Math. 80 (1985), p. 489–542.

[32] A.N. Varchenko – “On semicontinuity of the spectrum and an upper bound for
the number of singular points of projective hypersurfaces”, Soviet Math. Dokl.
27 (1983), p. 735–739.

[33] C. Voisin – Théorie de de Hodge et géométrie algébrique complexe, Cours spé-
cialisés, vol. 10, Société Mathématique de France, Paris, 2002.

[34] S. Zucker – “Hodge theory with degenerating coefficients: L2-cohomology in
the Poincaré metric”, Ann. of Math. 109 (1979), p. 415–476.


	Introduction
	Lecture 1. Hodge theory: review of classical results
	1.1. Hodge theory on compact Riemann surfaces
	1.2. Hodge theory of smooth projective varieties
	1.3. Polarized Hodge structures
	1.3.a. Hodge structures
	1.3.b. Polarized Hodge structures

	1.4. Polarized Hodge-Lefschetz structures
	1.4.a. Hodge-Lefschetz structures
	1.4.b. Quasi-Hodge-Lefschetz structures
	1.4.c. Polarization


	Lecture 2. Hodge D-modules on curves Local properties
	2.0. Introduction
	2.1. Variation of Hodge structure on a Riemann surface
	2.2. Variation of Hodge structure on a punctured disc
	2.2.a. The locally constant sheaf
	2.2.b. The vector bundle with connection
	2.2.c. The filtration

	2.3. Hodge D-modules on a Riemann surface
	2.3.a. Gathering the properties
	2.3.b. So what?

	2.4. Appendix: Basics on holonomic D-modules
	2.4.a. Good F-filtrations, holonomic modules
	2.4.b. The V-filtration
	2.4.c. Nearby and vanishing cycles
	2.4.d. The monodromy filtration
	2.4.e. F-filtration on nearby and vanishing cycles
	2.4.f. The de Rham complex


	Lecture 3. Hodge D-modules on curves Global properties
	3.1. The Hodge theorem
	3.1.a. The Hodge theorem for unitary representations
	3.1.b. Variation of polarized Hodge structure on a compact Kähler manifold: the Hodge-Deligne theorem
	3.1.c. Unitary representation on a Riemann surface with a complete metric
	3.1.d. Variation of polarized Hodge structure on a punctured compact Riemann surface: the Hodge-Zucker theorem
	3.1.e. Hodge D-modules on a compact Riemann surface: the Hodge-Saito theorem

	3.2. Metric characterization of the minimal extension
	3.2.a. Reminder on Hermitian bundles on the punctured disc
	3.2.b. The theorems of Schmid

	3.3. Proof of the Hodge-Zucker theorem
	3.3.a. Hermitian bundle and volume form
	3.3.b. L2 computation of j*`39`42`"613A``45`47`"603AKer
	3.3.c. The holomorphic L2 de Rham complex
	3.3.d. The L2 de Rham complex
	3.3.e. The L2 Dolbeault lemma


	Lecture 4. Hodge D-modules: an introduction
	4.1. Good filtrations on DX-modules
	4.2. Hodge D-modules: a first approach
	4.3. The V-filtration and the nearby cycle functor
	4.3.a. The Kashiwara-Malgrange filtration
	4.3.b. Strict specializability
	4.3.c. Regularity
	4.3.d. The nearby cycle functor
	4.3.e. What about vanishing cycles?

	4.4. Polarizable Hodge D-modules: definition
	4.4.a. Pure Hodge D-modules
	4.4.b. The polarization

	4.5. The Hodge-Saito theorem
	4.5.a. The direct image functor
	4.5.b. The Hodge-Saito theorem: statement
	4.5.c. The Hodge-Saito theorem: sketch of proof

	4.6. Polarizable Hodge D-modules: some examples
	4.6.a. The Hodge structure on vanishing cycles for an isolated singularity
	4.6.b. The intersection complex of an isolated hypersurface singularity


	Lecture 5. How to use Hodge D-modules
	5.1. Strictness
	5.1.a. Strictness of the dual module
	5.1.b. Strictness of the direct images
	5.1.c. Application to vanishing cycles: analytic case
	5.1.d. Application to vanishing cycles: algebraic case
	5.1.e. Strictness and families

	5.2. Determining the Hodge filtration
	5.2.a. What does a polarizable Hodge D-module look like?
	5.2.b. A mixed example: the polar filtration


	Bibliography

