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NON-COMMUTATIVE HODGE STRUCTURES
MAINZ, MARCH 29-31, 2012

Claude Sabbah

Abstract. These lectures survey recent results on a generalization of the notion of a
Hodge structure. The main example is related to the Fourier-Laplace transform of a
variation of polarizable Hodge structure on the punctured affine line, like the Gauss-
Manin systems of a proper or tame algebraic function on a smooth quasi-projective
variety. Variations of non-commutative Hodge structures often occur on the tangent
bundle of Frobenius manifolds, giving rise to a tt* geometry. The notes closely follow
the article with the same title, to appear in Ann. Institut Fourier (Grenoble), 2011,
arXiv: 1107.5890, and the reader will find precise references and more details therein.
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LECTURE 1

WHY?

Summary. Why do non-commutative Hodge structures occur in algebraic ge-
ometry? After recalling the notion of a Hodge structure and that of variation of
such objects, we give various reasons explaining the needs for a generalization of
this notion. We give a simple linear algebra approach to the notion of nc. Hodge
structure, but such an object does not occur in this way usually, so another ap-
proach, called “twistor”, will be introduced in the next lecture, which will also
be useful for understanding what a variation of nc. Hodge structure is.

1.1. Hodge structures and their variations

1.1.1. Hodge structures. Let H be a finite dimensional complex vector space. A
complex Hodge structure of weight w ∈ Z consists of a grading H =

⊕
p∈Z H

p,w−p

(Hodge decomposition). Equivalently, it consists of a semi-simple endomorphism Q

of H with half-integral eigenvalues. The eigenspace of Q corresponding to the eigen-
value p − w/2, p ∈ Z, is Hp,w−p. The role of the weight only consists in fixing the
grading.

A real Hodge structure consists of a complex Hodge structure together with a
R-vector space HR such that H = C⊗RHR, with respect to which Hw−p,p = Hp,w−p.
Then the matrix of Q in any basis of HR is purely imaginary.

On the other hand, a polarization of a complex Hodge structure is a nondegenerate
(−1)w-Hermitian pairing k on H such that the Hodge decomposition is k-orthogonal
and such that the Hermitian form h on H defined by h|Hp,w−p = ip−(w−p)k|Hp,w−p =
i−w(−1)pk|Hp,w−p is positive definite, in other words, defining the Weil operator C by
eπiQ, h(u, v) = k(Cu, v). For a real Hodge structure, the real polarization Q is then
defined as the real part of k, and it is (−1)w-symmetric on HR.

A Q-Hodge structure of weight w consists of a real Hodge structure of weight w
together with a Q–structure HQ ⊂ HR. Important is the polarization, which is a
rational bilinear form S on HQ which is (−1)w-symmetric, such that Q = (2π)−wS
is a polarization of the underlying real Hodge structure, that is, if we set h(x, y) =
(2π)−wS(Cx, y), the gradation is h-orthogonal and h is a positive definite Hermitian
form h on H.
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Example. Let X be a smooth projective complex variety equipped with an ample line
bundle. Then the primitive cohomology Hk

prim(X,Q) (k 6 dimX) is equipped with
a Q-Hodge structure for which the polarization is defined from the Poincaré duality
pairing and the cup product by the Chern class of the ample line bundle.

1.1.2. Variations of Hodge structures and their limits. Let V be a holo-
morphic vector bundle on a complex manifold X, equipped with a flat holomorphic
connection ∇ : V → Ω1

X ⊗ V . Let V = ker∇ the associated locally constant sheaf of
C-vector spaces, so that V ' OX⊗C V , and let (H,∇+∂) the associated C∞-bundle,
so that V = ker ∂ : H → A

(0,1)
X ⊗ H. A variation of complex Hodge structure of

weight w consists of a grading H =
⊕

pH
p,w−p by C∞ sub-bundles such that, for

each p,

(1) F pH :=
⊕

p′>pH
p,w−p is stable by ∂ and defines a holomorphic sub-bundle

F pV ⊂ V ,
(2) (Griffiths transversality) ∇F pV ⊂ Ω1

X ⊗ F p−1V .

Note that the semi-simple operator Q on H has constant eigenvalues.
A variation of real Hodge structure consists of the supplementary data of a real

C∞ sub-bundle HR ⊂ H which is ∇ + ∂-horizontal or equivalently a real sub-local
system VR ⊂ V satisfying V = C ⊗R VR, such that, at each x ∈ X, HR,x is a real
structure on the complex Hodge structure Hx =

⊕
pH

p,w−p
x .

On the other hand, a polarization of a variation of complex Hodge structure is a
(∇+ ∂)-horizontal non-degenerate (−1)w-Hermitian pairing k on H, or equivalently
a non-degenerate (−1)w-Hermitian pairing k on V , so that h(u, v) := k(eπiQu, v) is a
polarization at each x ∈ X, that is, h is a Hermitian metric on H. For a real Hodge
structure, the polarization Q is defined as the real part of k and is (−1)w-symmetric
on VR.

A variation of Q-Hodge structure of weight w consists of a variation of R-Hodge
structure of weight w together with a Q-structure VQ ⊂ VR and, in case of a polar-
ization, a bilinear form S on VQ which induces a polarization on each fibre.

Let D be a divisor with normal crossings in X and set j : X∗ := X rD ↪→ X. Let
(V,∇, F •V, k) be a variation of polarized complex Hodge structure of weight w on X∗.

Theorem (Regularity theorem). Under these assumptions, the subsheaf (j∗V )lb of j∗V ,
consisting of local sections whose h-norm is locally bounded near D, is a locally free
sheaf on which the connection ∇ has at most logarithmic poles. Moreover, for each p,
j∗F pV ∩ (j∗V )lb (intersection taken in j∗V ) is a locally free sheaf.

Example. Let f : Y → X be a smooth projective morphism. Then Rkf∗QY is a
polarized variation of Q-Hodge structure.
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1.2. The need for an extension of the notion of a Hodge structure

1.2.1. Irregular Hodge theory. Let f : X → A1 a regular function on an al-
gebraic manifold. What kind of a structure do we have on the twisted de Rham
cohomology H∗(X, f ; C) := H∗

(
(X, (Ω•X ,d + df∧)

)
? This is related to the proper-

ties of exponential periods, i.e., integrals
∫

Γ
efω, ω an algebraic form on X, Γ a locally

closed cycle. The Q-structure is understood: H∗(X, f ; Q) = H∗(X,Re(f) = +∞; Q)
(cf. Lecture 3).

Deligne remarked in 1984 that the classical formula∫
R
e−x

2
dx =

√
π

suggests that for f(x) = −x2 : A1 → A1, H∗(X, f ; C) has a Hodge structure of type
(1/2, 1/2). In the case where X is a curve, Deligne defines a filtration of the complex
(Ω•X ,d + df∧) indexed by rational numbers, and shows a E1-degeneracy property,
looking like the standard Hodge⇒ de Rham degeneacy.

1.2.2. Fourier transform of a variation of Hodge structure. Let (V,∇, F •V, k)
be a variation of polarized complex (or real, or rational) Hodge structure of weight w
on A1 r {p1, . . . , pr} (or more generally on An r D). In order to define its Fourier
transform, one has first to extend (V,∇) as a left regular holonomic C[t]〈∂t〉-module on
the Weyl algebra with coordinate t (more generally t = (t1, . . . , tn)). One chooses the
minimal extension M , characterized by the property that DRM is the intermediate
extension IC(VC).

Add a new variable τ and consider the cokernel

FM = coker
[
M [τ ]

∇∂t − τ−−−−−−−→M [τ ]
]
.

This is a C[τ ]-module equipped with a connection ∇∂τ induced by the action:
∇∂τ (

∑
kmkτ

k) =
∑
k[(k + 1)mk+1 − tmk]τk. We get in this way a holonomic

C[τ ]〈∂τ 〉-module with a regular singularity at τ = 0, an irregular singularity at
τ = ∞ and no other singularity. According to the regularity theorem, its restriction
to A1

τ r {0} cannot underly a variation of polarized Hodge structure. Does it underly
a variation of some kind of Hodge structure?

This question was already asked by Katz and Laumon with analogy to the results
for the Fourier-Deligne transformation of Q`-sheaves on A1

Fq .

1.2.3. Hodge structure in Singularity theory (local and global aspects)

Let f : (Cn, 0) → (C, 0) be a germ of holomorphic function with an isolated
singularity. Steenbrink has produced a canonical mixed Hodge structure on the space
of vanishing cycles Hn−1(F,Q) (F = Milnor fibre), which has been expressed by
Varchenko in terms of the Brieskorn lattice. However, this mixed Hodge structure
does not arise as a limit of a variation of polarized Hodge structure. Is it the limit of
a variation of some kind of Hodge structure?

A similar question, suitably modified, can be raised in the case of a regular function
with isolated singularities and tame at infinity (cf. Lecture 3).



4 LECTURE 1. WHY?

As an application, when f is the Landau-Ginzburg potential associated to a toric
Fano manifold, the nc. Hodge structure constructed with the Brieskorn lattice allows
one to construct a tt*-structure on the quantum cohomology of the toric Fano mani-
fold.

1.2.4. Hodge structures for non-commutative spaces. The terminology “non-
commutative Hodge structure” (which should not be confused with that of non-
abelian Hodge theory developed by C. Simpson) has been introduced by Katzarkov-
Kontsevich-Pantev to cover the kind of Hodge structure one should expect on the
periodic cyclic cohomology of smooth compact non-commutative spaces. The point
is that the periodic cyclic cohomology comes naturally equipped, as a C((z))-vector
space, with a connection having a pole of order two. There is an analogue of the
degeneration of the Hodge⇒ de Rham spectral sequence, but many other properties
are still lacking.

1.3. N.c. Hodge structures from the operator point of view

A complex nc. Hodge structure of weight w ∈ Z, consists of the data (H,U ,U †,Q, w),
where U ,U †,Q are endomorphisms of H. When w is fixed, these data form a cat-
egory, where morphisms are linear morphisms H → H ′ commuting with the
endomorphisms U ,U †,Q. For a complex Hodge structure, we have U = U † = 0
and Q is as above. The category of complex nc. Hodge structures of weight w ∈ Z is
abelian.

Example. Assume U = U † = 0 and Q is semi-simple. One can decompose H =⊕
λ∈C∗ Hλ, where Hλ is the λ-eigenspace of e−2πiQ. Then each (Hλ, 0, 0,Q, w) is a

Hodge structure of weight w and we can regard (H, 0, 0,Q, w) as a Hodge structure
of weight w equipped with a semi-simple automorphism, with eigenvalue λ on Hλ.

In order to understand various operations on complex nc. Hodge structures, we
associate to (H,U ,U †,Q, w) the C[z]-module H = C[z]⊗C H, with the connection

(∗) ∇ = d +
(
z−1U − (Q + (w/2) Id)− zU †

)dz
z
.

This connection has a (possibly irregular) singularity at z = 0 and z = ∞, and no
other singularity. Duality and tensor product are defined in a natural way, according
to the rules for connections. Hence

(H,U ,U †,Q, w)∨ = (H∨,−tU ,−tU †,−tQ,−w),

and (H1,U1,U
†

1 ,Q1, w1) ⊗ (H2,U2,U
†

2 ,Q2, w2) has weight w1 + w2 and the endo-
morphisms are defined by formulas like U1⊗Id2 + Id1⊗U2. The involution ι : z 7→ −z
induces a functor ι∗, with ι∗(H,U ,U †,Q, w) = (H,−U ,−U †,Q, w).

Real nc. Hodge structures. The complex conjugate of the complex nc. Hodge structure
is defined as

(H,U ,U †,Q, w) := (H,U †,U ,−Q, w),

where H is the R-vector space H together with the conjugate complex structure.
A real structure κ on (H,U ,U †,Q, w) is an isomorphism from it to its conjugate,
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such that κ ◦ κ = Id. A real structure consists therefore in giving a real structure HR
on H, with respect to which U † = U and Q + Q = 0. We denote such a structure
by (HR,U ,Q, w). Morphisms are R-linear morphisms compatible with U and Q.
Real nc. Hodge structures (HR,U ,Q, w) satisfy properties similar to that of complex
nc. Hodge structures and we have similar operations defined in a natural way.

Polarization of a complex nc. Hodge structure. A polarization of (H,U ,U †,Q, w) is
a nondegenerate Hermitian form h on H such that
• h is positive definite,
• U † is the h-adjoint of U and Q is self-adjoint with respect to h.

It is useful here to introduce the complex Tate object TC(`) defined as (C, 0, 0, 0,−2`)
for ` ∈ Z, corresponding to the Hodge structure C−`,−`. The Tate twist by TC(`) is
simply denoted by (`). The last condition is equivalent to asking that h defines an
isomorphism

(H,U ,U †,Q, w) ∼−→ ι∗(H,U ,U †,Q, w)∨(−w).

The tensor product

(H1,U1,U
†

1 ,Q1, h1, w1)⊗ (H2,U2,U
†

2 ,Q2, h2, w2)

of polarized complex nc. Hodge structures is defined by the supplementary relation
h = h1 ⊗ h2, and is also polarized.

Polarization of a real nc. Hodge structure and the Betti structure. Although the notion
of a real nc. Hodge structure seems to be defined over R, the real vector space HR
does not contain the whole possible “real” information on the structure, in cases
more general than that of a Hodge structure. The Weil operator is not defined in
this setting. The formula C = eπiQ for Hodge structures exhibits the Weil operator
as a square root of the monodromy of the connection d−Qdz/z. This suggests that
the monodromy of the connection ∇ defined by (∗) should be taken into account in
order to properly define the notion of a real nc. Hodge structure, and further, that
of a nc. Q-Hodge structure. Even further, if ∇ has an irregular singularity, the Betti
real structure is encoded in the Stokes data attached to the connection, not only in
the monodromy, together with the notion of a Q-Betti structure.

Here is another drawback of the presentation of a complex nc. Hodge structure as
a vector space with endomorphisms: the notion of a variation of such objects is not
defined in a holomorphic way, exactly as the spaces Hp,w−p do not vary holomorphi-
cally in classical Hodge theory. Good variations are characterized by the property
of the Hermitian metric to be harmonic, and the endomorphisms U ,Q satisfy rela-
tions encoded in the notion of a CV structure. The “twistor” approach of the next
lecture will be more adapted to the notion of a variation of nc. Q-Hodge structure.





LECTURE 2

WHAT?

Summary. What is... a non-commutative Hodge structure? We give the
“twistor” definition of a nc. Q-Hodge structure with details. In order to do so,
we first recall some known results on bundles with meromorphic connections
on a neighbourhood of the origin in the complex line, and we describe gluing
procedures to get bundles with meromorphic connections on the Riemann
sphere.

2.1. Meromorphic connections with a pole of order 6 2

2.1.1. Exponential type with no ramification. Let z be a coordinate on the
complex line. We will consider four kinds of objects, written similarly (H ,∇):

(1) H is a free C{z}-module of finite rank and ∇ is a meromorphic connection
∇∂z : H → C({z})⊗H with a pole of order 6 2, that is, ∇∂z (H ) ⊂ 1

z2 H .
(2) H is a free OC-module of finite rank and ∇ is a meromorphic connection

∇∂z : H → OC(2 · 0)⊗H with a pole of order 6 2 at z = 0 and no other pole.
(3) H is a free OA1-module of finite rank and ∇ is a meromorphic connection

∇∂z : H → OA1(2 · 0)⊗H with a pole of order 6 2 at z = 0, no other pole at finite
distance, and a regular singularity at infinity.

(4) H is a free C[z]-module of finite rank and ∇ is a meromorphic connection
∇∂z : H → 1

z2 ⊗H , and a regular singularity at infinity.

All four categories of objects are known to be equivalent: by the sheafification
functor for the Zariski topology (4) 7→ (3), the analytization functor (3) 7→ (2) (this
uses Deligne’s canonical extension at infinity) and the germ at the origin functor
(2) 7→ (1), and I will often not distinguish between them.

Assumption (Exponential type with no ramification). There exists a finite subset C⊂C
such that

C[[z]]⊗C{z} (H ,∇) '
⊕
c∈C

[
C[[z]]⊗C{z} (Hc,∇c)

]
,

where ∇c − c Id dz/z2 has a regular singularity.
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2.1.2. Stokes structures. The local system L attached to (H ,∇)|C∗ comes
equipped with a family of pairs of nested subsheaves L<c ⊂ L6c for each c ∈ C,
which satisfies the properties below. We will say that (L ,L•) is a Stokes-filtered local
system. Note that these properties can be defined for a local system over any field
(and can be adapted over a ring), and we will use the notion of Stokes-filtered Q-local
system. For a fixed z ∈ C∗, define a partial order 6z on C compatible with addition
by setting c 6z 0 iff c = 0 or Re(c/z) < 0 (and c <z 0 iff c 6= 0 and Re(c/z) < 0).
This partial order on C only depends on z/|z| ∈ S1. The required properties are as
follows.

• For each z ∈ C∗, the germs L6c,z form an exhaustive increasing filtration of Lz,
compatible with the order 6z.
• For each z ∈ C∗, the germ L<c,z can be recovered as

∑
c′<zc

L6c′,z.
• The graded sheaves L6c/L<c are local systems on C∗.
• The rank of

⊕
c∈C L6c/L<c is equal to the rank of L , so that both local systems

are locally isomorphic, and there is only a finite set C ⊂ C of jumping indices.

A Q-structure consists of a Stokes-filtered local system (LQ,LQ,•) defined over Q
such that (L ,L•) = C⊗Q (LQ,LQ,•). In particular, the monodromy of L is defined
over Q. On the other hand, one can define a Riemann-Hilbert functor (G ,∇) :=
O(∗0)⊗O (H ,∇) 7→ (L ,L•), which is an equivalence of categories compatible with
duality and tensor product.

The decomposition in the assumption is unique, and the formalization functor
(G ,∇) 7→ C((z))⊗C({z})(G ,∇) corresponds, via the Riemann-Hilbert functor (G ,∇) 7→
(L ,L•) to the Stokes grading functor (L ,L•) 7→

⊕
c∈C L6c/L<c, so that the local

system associated to (Hc,∇c)|C∗ is grcL . As a consequence, if we define the notion
of a Q-structure on (H ,∇) as a Q-structure on the associated Stokes-filtered local
system, such a Q-structure induces a Q-structure on each (Hc,∇c).

Remark. One can give an equivalent presentation in terms of Stokes matrices.

2.2. Gluing of vector bundles

We start with (H ,∇) as in § 2.1.1, and we denote by (L ,L•) the Stokes-filtered
local system associated to (G ,∇). It will be convenient and equivalent to regard L

as a local system on S1 = {|z| = 1}, since the Stokes structure only depends on z/|z|.

Gluing with a real structure. Assume L defined over R (or Q), i.e., L ' L .

• Set γ : P1 → P1, z 7→ 1/z. Notice γ|S1 = Id.
• Glue H with γ∗H to get H̃ (holomorphic vector bundle on P1):

H|S1 = O|S1 ⊗L ' O|S1 ⊗L = (γ∗H )|S1
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Gluing with a sesquilinear pairing. Assume we are given an isomorphism C : L ∨ '
ι−1L , where ι is the involution z 7→ −z. We call it a nondegenerate ι-sesquilinear
pairing on L , since we can regard it as a pairing

C : L ⊗ ι−1L −→ CS1 .

• Set σ := γ ◦ ι : P1 → P1, z 7→ −1/z.
• Glue H ∨ with σ∗H to get Ĥ (holomorphic vector bundle on P1):

H ∨
|S1 = O|S1 ⊗L ∨ C' O|S1 ⊗ ι−1L = (σ∗H )|S1 .

Assume moreover that C : L ∨ ' ι−1L is ι-Hermitian. Then the construction
produces a natural isomorphism S : Ĥ ∨ → σ∗Ĥ and therefore an isomorphism
Γ(P1, Ĥ )∨ ∼−→ Γ(P1, σ∗Ĥ ) = Γ(P1, Ĥ ). If Ĥ is trivializable, then H := Γ(P1, Ĥ )
comes equipped with a Hermitian form h = Γ(P1,S ).

Comparison. Assume
• we are given a real structure L ' L on L ,
• we are given a non-degenenerate pairing QR : LR ⊗ ι−1LR → R, and a non-

degenenerate O-bilinear pairing Q : (H ,∇)⊗ ι∗(H ,∇)→ (z−wO,d) for some w ∈ Z,
so that QC corresponds to the restriction of Q to (G ,∇) by the Riemann-Hilbert
corresopndence.

Then, on the one hand, from the real structure on L we get H̃ . On the other
hand, Q defines a non-degenerate ι-sesquilinear pairing C, hence Ĥ .

Lemma (C. Hertling). Under these assumptions, Q induces an isomorphism

H̃
∼−→ ι∗Ĥ ⊗ OP1(w).

Consequence. H̃ ' OP1(w)rk H ⇐⇒ Ĥ is trivial.

2.3. Non-commutative Hodge structures

2.3.1. Hodge structures from the twistor point of view. Let z be a new vari-
able. Then the decreasing filtration F •H defined by F pH =

⊕
p′>pH

p′,w−p′ allows
one to define a free C[z]-module H =

⊕
p F

pHz−p, which satisfies C[z, z−1]⊗C[z]H =
C[z, z−1] ⊗C H. It is equipped with a connection ∇ (induced by the differential d)
which has a pole of order one on H . The local system ker∇ on C∗ = {z 6= 0} is
trivial (monodromy equal to identity) with fibre H, and it has a rational constant sub
local system with fibre HQ.

Let γ : P1 → P1 be as in § 2.2. Then γ∗H =
∑
q F

qHzq is a C[z−1]-free module,
and C[z, z−1]⊗C[z] γ

∗H = C[z, z−1]⊗CH ' C[z, z−1]⊗CH, due to the real structure.
One can then glue the bundles H and γ∗H into a holomorphic bundle H̃ on P1.
The opposedness (or gradation) property is then equivalent to the property that H̃

is isomorphic to OP1(w)dimH .
We will follow this approach for defining a nc. Q-Hodge structure.
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2.3.2. Definition of a polarized nc. Q-Hodge structure

Definition. Data:

• (H ,∇) having a pole of order two with no ramification,
• (LQ,LQ,•) a Stokes-filtered Q-local system on S1,
• a pairing

QB : (LQ,LQ,•)⊗ ι−1(LQ,LQ,•) −→ (QS1 ,QS1 , •)

((QS1 ,QS1 , •): trivial Stokes filtration on QS1).

We say that
(
(H ,∇), (LQ,LQ,•),QB

)
is a polarized nc. Q-Hodge structure of weight w

if it satisfies the following properties:

(1) QB is non-degenerate (−1)w-ι-symmetric (in particular, it induces a non-
degenerate (−1)w-ι-symmetric pairing on each local system grcLQ).

(2) The (−1)w-ι-symmetric pairing Q that QB induces on (G ,∇) = O(∗0)⊗(H ,∇)
through the RH correspondence, which takes values in OC(∗0) satisfies:

Q
(
H ⊗ ι∗H

)
⊂ z−wOC

and is non-degenerate as such.
(3) Letting C be the ι-sesquilinear pairing associated to i−wQ (hence C is a nonde-

generate ι-Hermitian pairing), then

(a) Ĥ is trivial (i.e., H̃ ' OP1(w)d, opposedness),
(b) h := Γ(P1,S ) is positive definite on H := Γ(P1, Ĥ ) (polarisation).

Remark. In a O-basis of H induced by a C-basis of H, the connection ∇ takes the
form (∗) given in § 1.3.

2.4. A few words about variations of polarized nc. Q-Hodge structures

Let X be a complex manifold. A variation of polarized nc. Q-Hodge structure of
weight w parametrized by X consists of the following data:

• (H ,∇) a holomorphic bundle on X × C with a flat meromorphic connection ∇
having poles of Poincaré rank one along {z = 0} (i.e., z∇ is logarithmic) and no other
pole,
• A Stokes-filtered Q-local system (LQ,LQ,•) on X × S1,
• a pairing

QB : (LQ,LQ,•)⊗ ι−1(LQ,LQ,•) −→ (QX×S1 ,QX×S1 , •)

((QX×S1 ,QX×S1 , •): trivial Stokes filtration on QX×S1),

subject to the condition that, for each x ∈ X, the restriction to {x}×C is a polarized
nc. Q-Hodge structure of weight w.
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Hodge structures Hodge structures (Nc) Nc. Hodge structures
Filtered vect. sp. (H,F •H) (H ,∇) = ⊕p(F pHz−p,d) H free OA1-mod.,

free C[z]-mod + connect. ∇: connect.,
0 = only pole, ord. 6 2, n.r.

H L = ker∇ on H|S1 idem

HQ LQ (cst Q-loc. syst. on S1) LQ,• (Stokes-filt. Q-loc. syst.)

F pH ∩ Fw−p+1H = 0 ∀ p H̃ ' OP1(w)rk H idem

Q: (−1)w-sym. Q : LQ ⊗ ι−1LQ → Q Q : LQ,• ⊗ ι−1LQ,• → Q•
non-deg. Q-bilin. form. (−1)w-ι-sym. non-deg. idem

s.t. Q(Hp,q, Hp′,q′) = 0 (H ,∇)⊗ ι∗(H ,∇)→(z−wO,d) idem
for p′ 6= w − p non-deg. idem

Q h Herm. form Q C: ι-Herm. on L idem

H Ĥ trivial, H := Γ(P1, Ĥ ) idem

h def.> 0 h def.> 0 on Γ(P1, Ĥ ) ' H idem

Table 1. Comparison table

Example (The rescaling of a nc. Q-Hodge structure). C. Hertling has considered the ac-
tion of C∗ on the category of connections (H ,∇) with a pole of order two obtained
by rescaling the variable z. For x ∈ C∗, consider the map µx : A1 → A1 defined by
µx(z) = xz. The rescaled connection is µ∗x(H ,∇). Since

µ−1
x (S1) = {z | |xz| = 1} 6= S1 if |x| 6= 1,

we define the pull-back local system µ−1
x L by working with local systems on C∗ (recall

that the inclusion S1 ↪→ C∗ induces an equivalence of categories of local systems on
the corresponding spaces).

The rescaling acts on the category of objects (H ,∇,LR) (by the same procedure as
above), on the category of objects (H ,∇,C) since ι commutes with µx, and similarly
on the category of objects (H ,∇,LQ,QB) (without paying attention to the nc. Hodge
property at the moment). It also acts on Stokes-filtered local systems (LQ,LQ,•)
in a way compatible, by the Riemann-Hilbert correspondence, to the action on the
meromorphic bundles (G ,∇): the subsheaf (µ−1

x L )Q,6c is defined as µ−1
x (LQ,6c/x).

If (H ,∇,LR) is pure of weight w (resp. if (H ,∇,C) is pure of weight 0 and
polarized, resp. if (H ,∇,LQ,QB) is pure of weight w and polarized) then, provided
|x−1| is small enough, the corresponding rescaled object remains pure (resp. pure and
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polarized) of the same weight: this follows from the rigidity of trivial bundles on P1.
In this way, we obtain a variation of polarized nc. Q-Hodge structure parametrized by
some open neighbourhood of 1 in C∗. On the other hand, this may not remain true
for all values of the rescaling parameter x.

The subcategory of pure polarized nc. Hodge structures which remain so by rescal-
ing by any x ∈ C∗ is a global analogue of a nilpotent orbit in the theory of variation
of polarized Hodge structures.



LECTURE 3

HOW?

Summary. How do the nc. Hodge structures are produced in a natural way?
The basic construction comes from the Fourier-Laplace transform of a variation
of polarized Hodge structure in dimension one. From this construction one de-
duces nc. Hodge properties of more geometric objects as the exponentially twisted
de Rham cohomology.

3.1. Producing a nc. Q-Hodge structure by Fourier-Laplace transformation

Starting point. Let C ⊂ A1 be a finite set of points on the complex affine line with
coordinate t. Let (VQ, F

•V,∇, QB) be a variation of polarized Hodge structure of
weight w ∈ Z on X := A1 r C. Namely,
• (V,∇) is a holomorphic vector bundle with connection on X,
• F •V is a finite decreasing filtration of V by holomorphic sub-bundles satisfying

the Griffiths transversality property: ∇F pV ⊂ F p−1V ⊗OX Ω1
X ,

• VQ is a Q-local system on X with VQ ⊗Q C = V ∇,
• QB : VQ ⊗Q VQ → Q is a nondegenerate (−1)w-symmetric pairing,

all these data being such that the restriction at each x ∈ X is a polarized Hodge
structure of weight w (cf. § 1.1.2). We denote by Q the nondegenerate flat pairing
(V,∇) ⊗ (V,∇) → (OX , d) that we get from QB through the canonical isomorphism
OX ⊗Q VQ = V . The associated nondegenerate sesquilinear pairing is denoted by
k : (V,∇) ⊗C (V,∇) → C∞X , which can also be obtained from kB : V ⊗C V → C
similarly. It is (−1)w-Hermitian and i−wk induces a flat Hermitian pairing on the
C∞-bundle (C∞X ⊗OX V,∇ + ∂). We can regard (V,∇, F •V, i−wk) as a variation of
polarized complex Hodge structure, pure of weight 0.

Theorem. Let (VQ, F
•V,∇, QB) be a variation of polarized Q-Hodge structure of weight

w ∈ Z on X := A1rC. Then its Fourier-Laplace transform ((H ,∇), (LQ,LQ,•),−ĵ∗QB)
is a pure polarized nc. Q-Hodge structure of weight w + 1.

• Fix zo ∈ S1. Define Φzo as the family of closed sets S ⊂ A1 such that

S ∩ {(∞, eiθ) | Re(eiθ/zo) > 0} = ∅ in A1 ∪ S1
∞.
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• (LQ)zo = H1
Φzo

(A1, j∗VQ) = H1(P̃1, β!α∗j∗VQ) (with P̃1 = C ∪ S1
∞):

c

β!α∗j∗L
c1

c2

cn

cij∗VQ

• (ĵ∗QB)zo is the cup product followed by QB (note: Φzo ∩ Φ−zo = family of
compact sets in A1):

H1
Φzo

(A1, j∗VQ)⊗H1
Φ−zo

(A1, j∗VQ) −→ H2
c (A1,Q) ' Q,

c

β!α∗j∗L
c1

c2

cn

cij∗VQ

⊗ c

β!α∗j∗L
c1

c2

cn

cij∗VQ

−→ Q

Note that here appears the involution ι.
• For c ∈ C, we define LQ,6c,z and LQ,<c,z by using a picture similar to the above

one:

c1

c2

ci

c

β!α∗j∗VQ

c1

c2

c

ci

β!α∗j∗VQ

LQ,6c,z LQ,<c,z

Intermediate step for the de Rham and Hodge side

De Rham side: The bundle (V,∇) can be extended in a unique way as a free
OP1(∗C ∪ {∞})-module with a connection ∇ having a regular singularity at C ∪ {∞}
(Deligne’s meromorphic extension). Taking global sections on P1 produces a left
module M̃ on the Weyl algebra C[t]〈∂t〉. The minimal extension (along C) of M̃
is the unique submodule M of M̃ which coincides with M̃ after tensoring both
by C(t), and which has no quotient submodule supported in C (it is character-
ized by the property that DRanM = j∗V ). The pairing k extends first (due to

the regularity of the connection) as a pairing k̃ : M̃ ⊗C M̃ → S ′(A1 r C), where
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S ′(A1) denotes the Schwartz space of temperate distributions on A1 = R2, and
S ′(A1 r C) := C

[
t,
∏
c∈C(t − c)−1

]
⊗C[t] S ′(A1). Then one shows that, when re-

stricted to M ⊗C M , k̃ takes values in S ′(A1), and we denote it by k.
Hodge side: The Hodge filtration F •V extends, according to a procedure due to

M. Saito and relying on Schmid’s theory of limits of variations of polarized Hodge
structures, to a good filtration F •M of M as a C[t]〈∂t〉-module.

How to get (G ,∇): Laplace transform of M . Set G = C[t]〈∂t, ∂−1
t 〉 ⊗C[t]〈∂t〉 M , and

define the action of C[z, z−1]〈∂z〉 on G as follows: z · m = ∂−1
t m, z−1 · m = ∂tm,

and z2∂zm = tm. One can show that G is a free C[z, z−1]-module, and the action
of ∂z is that of a connection (i.e., satisfies Leibniz rule). Its analytization as a free
O(∗0)-module with connection is denoted by (G ,∇).

How to get (H ,∇): the Brieskorn lattice of the filtration F •M . We denote by l̂oc :
M → G the natural morphism (the kernel and cokernel of which are isomorphic to
powers of C[t] with its natural structure of left C[t]〈∂t〉-module). For any lattice L
of M , i.e., a C[t]-submodule of finite type such that M = C[∂t] · L, we define the
associated Brieskorn lattice as

G
(L)
0 =

∑
j>0

∂−jt l̂oc(L).

This is a C[∂−1
t ]-submodule of G. Moreover, because of the relation [t, ∂−1

t ] = (∂−1
t )2,

it is naturally equipped with an action of C[t]. If M has a regular singularity at
infinity, then G

(L)
0 has finite type over C[∂−1

t ]. We have G = C[∂t] ·G(L)
0 .

Let us now consider a filtered C[t]〈∂t〉-module. Let p0 ∈ Z. We say that F •M is
generated by F p0M if, for any ` > 0, we have F p0−`M = F p0M+ · · ·+∂`tF p0M . Then
F p0M is a lattice of M . Moreover, the C[∂−1

t ]-module ∂p0t G
(Fp0 )
0 does not depend on

the choice of the index p0, provided that the generating assumption is satisfied. We
thus define the Brieskorn lattice of the filtration F •M as

G
(F )
0 = ∂p0t G

(Fp0 )
0 for some (or any) index p0 of generation.

If we also set z = ∂−1
t , then one can show that G(F )

0 is a free C[z]-module which
satisfies G = C[z, z−1] ⊗C[z] G

(F )
0 and which is stable by the action of z2∂z := t. Its

analytization H is a free O-module on which the connection has a pole of order 6 2.

A direct definition of C: the Fourier transformation. Set z′ = z−1 (it corresponds to ∂t
in the Laplace correspondence above). The Fourier transformation Ft : S ′(A1

t) →
S ′(A1

z′) with kernel exp(tz′ − tz′) i
2π dt ∧ dt is an isomorphism from the Schwartz

space S ′(A1
t) considered as a C[t]〈∂t〉 ⊗C C[t]〈∂t〉-module, to S ′(A1

z′) considered as
a C[z′]〈∂z′〉 ⊗C C[z′]〈∂z′〉-module.

Composing k with Ft and restricting to C∗ produces a sesquilinear pairing Fk :
(G ,∇)⊗ ι∗(G ,∇)→ (C∞C∗ ,d), whose horizontal part restricted to S1 defines a pairing
C : L ⊗ ι−1L → CS1 as in § 2.2.
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The pairing Fk restricts to horizontal sections of (G ,∇) to produce a Betti
ι-sesquilinear pairing (Fk)B on L . It is defined only over C∗. On the other hand,
in a way similar to the definition of ĵ∗QB, there is a topological Laplace transform
ĵ∗kB, which is compatible with the Stokes filtration. In fact, ĵ∗kB is the ι-sesquilinear
pairing associated with the ι-bilinear pairing ĵ∗QB and the real structure on L . The
comparison between both is given by:

Lemma. Over C∗ we have (Fk)B = i
2π ĵ∗kB.

Remark. The change of weight from w to w+ 1 in the theorem follows from the i/2π
in this formula.

3.2. The nc. Q-Hodge structure attached to a tame function

Let X be a complex smooth quasi-projective variety and let f : X → A1 be
a regular function on it, that we regard as a morphism to the affine line A1 with
coordinate t. For each k ∈ Z, the perverse cohomology sheaf pH k(Rf∗QX) underlies
a mixed Hodge module. The fibre at z = 1 of its topological Laplace transform is the
k-th exponential cohomology space of X with respect to f (or simply of (X, f)).

For the sake of simplicity, we will only consider the case of a cohomologically tame
function f : U → A1 on a smooth affine complex manifold U , for which there is only
one non-zero exponential cohomology space. Cohomological tameness implies that
there exists a diagram

U
� � κ //

f
  

@@
@@

@@
@ X

F
��

A1

where X is quasi-projective and F is projective, such that the cone of natural mor-
phism κ!QU → Rκ∗QU has no vanishing cycle with respect to F − c for any c ∈ C.

We will use the perverse shift convention by setting pQU = Q[dimU ]. By Poincaré-
Verdier duality, we have a natural pairing

QB : Rf!
pQU ⊗Q Rf∗

pQU −→ QA1 [2].

Considering the Q-perverse sheaf F = pH 0(Rf∗pQU ), we therefore get a morphism
DF → F , whose kernel and cokernel (in the perverse sense) are constant sheaves up
to a shift. Let (LQ,LQ,•) be the Stokes-filtered local system on S1 deduced from the
topological Laplace transform of F . It comes equipped with a nondegenerate pairing

QB := −ĵ∗QB : (LQ,LQ,•)⊗ ι−1(LQ,LQ,•) −→ QS1 .

On the other hand, let G0 denote the Brieskorn lattice of f . By definition,

G0 = ΩdimU (U)[z]
/

(zd− df∧)ΩdimU−1(U)[z],
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and set G = C[z, z−1] ⊗C[z] G0, with the action of ∇∂z induced by ∂z + f/z2 =
ef/z ◦ ∂z ◦ e−f/z on ΩdimU (U)[z]. We also set Gk = z−kG0. For ` ∈ Z we set
ε(`) = (−1)`(`−1)/2.

Theorem. The data ((GdimU ,∇), (LQ,LQ,•), ε(dimU − 1)QB) is a polarized
nc. Q-Hodge structure which is pure of weight dimU .

Sketch of proof. We first replace the perverse sheaf F defined above with F!∗ :=
pH 0(RF∗κ!∗pQU ), which generically is the local system of intersection cohomology
of the fibres of F , and we have a corresponding Poincaré-Verdier duality pairing
QB,!∗, whose topological Laplace transform − ̂j∗QB,!∗ coincides with QB. By applying
M. Saito’s results on polarizable Hodge D-modules, together with the theorem of § 3.1,
we find that ((GH

0 ,∇), (LQ,LQ,•), ε(dimU − 1)QB) is a pure polarized nc. Q-Hodge
structure of weight dimU , where GH

0 is the Brieskorn lattice of the Hodge filtration of
the Hodge module corresponding to F!∗. Taking also into account the shift between
the standard filtration and M. Saito’s Hodge filtration, we have GH

0 = GdimU .

Corollary. The data

((G0,∇), (LQ,LQ,•), ε(dimU − 1)QB)

is a pure polarized nc. Q-Hodge structure of weight −dimU .




