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INTRODUCTION

These note intend to introduce and give examples of pure non-commutative Hodge

structures, also denoted by pure nc. Hodge structures, as introduced by Katzarkov,

Kontsevich and Pantev in [KKP08]. A pure nc. Hodge structure is a small refinement

of the notion of a trTERP structure, as introduced previously by Claus Hertling

[Her03]. The refinement only consists in taking care of the R-structure (or the

Q-structure) on the Stokes data of the trTERP structure. So, both notions are very

similar.

When forgetting the Q- or R-structure, a pure nc. Hodge structure is nothing but

the data of a connection on a trivial vector bundle on P1, having a pole of order at

most two at the origin and at infinity, and no other pole. The notion of Q- or R-

structure is more delicate, as it involves the Birkhoff-Riemann-Hilbert correspondence

for connections with irregular singularities.

In various geometrical situations, such a trivial bundle is not given, and only the

data of the connection near the origin is present. The main question is then to exhibit

such an extension of the connection to a neighbourhood of infinity.

The main technique used to produce geometrical example is the Fourier-Laplace

transformation. Starting from a usual polarized variation of pure Hodge structure on a

punctured affine complex line, one can define by Fourier-Laplace transformation such

a connection in the neighbourhood of the origin. The theorem which is explained in

Lecture 3 explains the way it works. Note that it uses the polarization in an essential

way.

As an application of this technique, we explain in Lecture 4 how a pair of Stokes

matrices satisfying a positivity property can give rise to a pure nc. Hodge structure.

This result was conjectured by Claus Hertling and Christian Sevenheck in [HS07],

and proved in [HS11].

There are other applications, as the existence of a tt* structure on the germ of

Frobenius manifold attached to a convenient and non-degenerate Laurent polyno-

mial, that I will not treat in these notes, since variations of polarized pure nc. Hodge

structures are not considered here.

Lecture 1 gives the necessary tools to understand Stokes data, and Lecture 2 ex-

plains how to construct a pure nc. Hodge structure from data near the origin of P1

only.

I refer to [Sab11] for a more complete survey on these notions.



LECTURE 1

CONNECTIONS WITH A POLE OF ORDER TWO

1.1. Germs of meromorphic connections

Let z be a coordinate on the complex line. We will consider six kinds of objects,

written similarly (H ,∇):

(1) H is a free C{z}-module of finite rank µ and ∇ is a meromorphic connection

∇∂z : H → C({z})⊗H .

(2) H is a free OC-module of finite rank µ and ∇ is a meromorphic connection

∇∂z : H → OC(∗0)⊗H with a possible pole at z = 0 and no other pole.

(3) H is a free Oan
P1 (∗∞)-module of finite rank µ and ∇ is a meromorphic connec-

tion having a possible pole at the origin, a regular singularity at infinity, and no other

pole.

(4) H is a free Oalg
P1 (∗∞)-module of finite rank µ and ∇ is a meromorphic con-

nection having a possible pole at the origin, a regular singularity at infinity, and no

other pole.

(5) H is a free OA1-module of finite rank µ and ∇ is a rational connection ∇∂z :

H → OA1(∗0) ⊗H with a possible pole at z = 0, no other pole at finite distance,

and a regular singularity at infinity.

(6) H is a free C[z]-module of finite rank µ and ∇ is a rational connection ∇∂z :

H → C[z, z−1]⊗H having a regular singularity at infinity.

All five categories of objects are known to be equivalent:

• We pass from (1) to (2) by extending the local system from a small punctured

disc around the origin to a local system on C∗.
• We pass from (2) to (3) by Deligne’s meromorphic extension at infinity on P1.
• We pass from (3) to (4) by a GAGA theorem.
• We pass from (4) to (5) by restricting to A1 (in the Zariski topology).
• We pass from (5) to (6) by taking global sections.
• We pass from (6) to (1) by tensoring with C{z} over C[z].

Note however that going from (1) to (6) is a very transcendental operation, since

it necessitates computing solutions of the differential equation near the origin and

extending them on the whole complex line. It consists then in finding, inside H as

in (1), a free C[z]-module which generates it over C[z], on which the connection has

a regular singularity at infinity and no other pole than the origin.
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1.2. Numbers

Let us consider (H ,∇) as living on P1 as in (3) or (4). We will assume that the

eigenvalues of the monodromy on C∗ have absolute value equal to one, in order to

simplify the explanation. Deligne’s construction furnishes, for each γ ∈ R a locally

free OP1-module V γH ⊂ H so that it coincides with H on P1 r {∞} and the

connection ∇ has a logarithmic pole at infinity, with residue having eigenvalues in

[γ, γ+1). This defines a decreasing filtration. Each V γH has a Birkhoff-Grothendieck

decomposition V γH ' OP1(a1)⊕· · ·⊕OP1(aµ), a1 > · · · > aµ. Set vγ = #{i | ai > 0}
and νγ = vγ − v>γ > 0. We can express these numbers a little differently. We have a

natural morphism

OP1 ⊗C Γ(P1, V γH ) −→ V γH

whose image is denoted by V γ . This is a subbundle of V γH in the sense that

V γH /V γ is also a locally free sheaf of OP1 -modules; more precisely, fixing a Birkhoff-

Grothendieck decomposition as above, we have V γ =
⊕

i|ai>0 OP1(ai) (indeed, for

any line bundle OP1(k), OP1 ⊗C Γ(P1,OP1(k)) → OP1(k) is onto if k > 0 and 0 if

k < 0) so V γ is a direct summand of V γH of rank vγ . Restricting to C, we get a

decreasing filtration V • of H indexed by R. The graded pieces grγV H := V γ/V >γ

are locally free OC-modules (being isomorphic to the kernel of H /V >γ → H /V γ),

and νγ = rk grγV H .

The set of pairs (−γ, νγ) is called the spectrum at infinity of the meromorphic

connection.

Example. f : U → A1 a tame regular function on a smooth quasi-projective variety U

with dimU = n. Set H = Ωn(U)[z]/(zd + df)Ωn−1(U)[z] and ∇∂z in induced by the

action of ∂z − f/z2. The first component of the spectrum at infinity is known to be

contained in [0, n] ∩Q and the spectrum is symmetric with respect to n/2.

Exercise (The Harder-Narasimhan filtration). Let us fix γ ∈ R. Denote by F pV γH

the Harder-Narasimhan filtration of V γH , i.e., set ip = max{i | ai > p}. Then

F pV γH := OP1(a1)⊕ · · · ⊕ OP1(aip).

(1) Show that F 0V γH = V γ .

(2) Show that F pV γH = V γ+p.

Exercise (Mochizuki). Assume that ∇ has a pole of order 6 2 at the origin. Then the

meromorphic connection ∇ : V γH → V γH ⊗Ω1
P1(2{0}+1{∞}) sends F pV γH into

F p−1V γH ⊗Ω1
P1(2{0}+1{∞}). [Hint : Use the Birkhoff-Grothendieck decomposition

and the standard differential on each term to write ∇ = d + A and prove the result

for the O-linear morphism A : V γH → V γH ⊗ Ω1
P1(2{0}+ 1{∞}).]

In other words, away from the pole, the Harder-Narasimhan filtration satisfies the

Griffiths transversality property with respect to the connection.

1.3. Meromorphic connections with a pole of order 6 2

From now on, we assume that the connection has a pole of order 6 2. The Levelt-

Turrittin theorem gives a normal form for the formalized connection, i.e., up to a

formal meromorphic base change, after a possible ramification of z. We assume here



4 LECTURE 1. CONNECTIONS WITH A POLE OF ORDER TWO

that no ramification is needed for the connections we consider. In other words we

make the following assumption (nr. exponential type).

Assumption (Exponential type with no ramification). There exists a finite subset C⊂C
and for each c ∈ C a germ (Hc,∇c) with possible double pole but with regular singu-

larity, such that

C[[z]]⊗C{z} (H ,∇) '
⊕
c∈C

[
C[[z]]⊗C{z} (Hc,∇c + c Id dz/z2)

]
.

If one accepts base changes with poles, then this is equivalent to asking that there

exists a germ (Hc,∇c) with a simple pole such that

C((z))⊗C{z} (H ,∇) '
⊕
c∈C

[
C((z))⊗C{z} (Hc,∇c + c Id dz/z2)

]
.

We will write

(Gc,∇c) := C({z})⊗C{z} (Hc,∇c) and (Ĝc, ∇̂c) = C((z))⊗C({z}) (Gc,∇c).

We can understand this property from a global point of view. Set τ = z−1 and,

with respect to the description (6) regard H as a C[τ ]-module with a connection. By

inverse Laplace transformation, it defines a module over the Weyl algebra C[t]〈∂t〉,
i.e., t acts as −∇∂τ and ∂t acts as τ .

Exercise. (H ,∇) has nr. exponential type if and only if, when H is regarded as a

C[t]〈∂t〉-module, it has only regular singularities, at finite distance and at t =∞.

Examples.
(1) Let us write the connection as ∇ = d +Adz with

A = A−2z
−2 +A−1z

−1 + · · · : H −→ z−2H .

Then A−2 is well defined as an O-linear endomorphism of H . If A−2 is semi-simple,

then (H ,∇) has nr. exponential type.

(2) On the other hand, consider the connection with matrix

A(z)dz := P (z)
(Y
z

+ Id
)
P (z)−1 · dz

z
,

with

Y =

0 0 0

1 0 0

0 1 0

 , P (z) = Id +zZ, Z =

0 0 1

0 0 0

0 0 0

 .

Then the matrix z2A(z) = P (Y + z Id)P−1 has characteristic polynomial equal

to χ(λ) = (λ − z)3, but one can check that it needs ramification (this contradicts

a criterion given [KKP08, Rem. 2.13]).

1.4. Stokes filtration

The Stokes data (Betti data) only depend on the meromorphic bundle (H [z−1],∇)

that we denote from now on by (G ,∇).

Let L be the local system ker∇ on C∗. It has rank µ. We regard it as a local

system on S1 with coordinate eiθ, if θ = arg z.
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Theorem (Deligne, Magrange). The category of (G ,∇) of nr. exponential type is equiv-

alent to the category of Stokes-filtered local systems (L ,L•) of nr. exponential type.

Let A mod be the sheaf of germs on S1 of holomorphic functions with moderate

growth on a sector of C∗, and similarly A rd with rapid decay. Asymptotic analysis of

horizontal sections of ∇ shows that ∇∂z : A mod ⊗ G → A mod ⊗ G is onto, as well as

∇∂z : A rd ⊗ G → A rd ⊗ G . Their kernels form nested subsheaves L<0 ⊂ L60 of L .

Moreover, L60/L<0 is a local system on S1 whose monodromy is that of (G0,∇0) in

the Levelt-Turrittin decomposition of (G ,∇).

For each c ∈ C we can define a pair (L<c,L6c) of subsheaves of L by considering

∇− c Id dz/z2 acting on A mod ⊗ G resp. A rd ⊗ G .

This family (L , ((L<c,L6c)c∈C) has the following properties, that can be taken

as the definition of a Stokes-filtered local system of nr. exponential type.

(1) (Grading condition) For each c ∈ C, grcL := L6c/L<c is a local system which

is zero except for c in a finite subset C ⊂ C, and
∑
c rk grcL = µ.

(2) (Filtration condition) For each θ ∈ S1 and each c ∈ C, L<c,θ =
∑
c′<

θ
c L6c′,θ,

where c′ <
θ
c means

c 6= c′ and arg(c− c′) ∈ θ + (π/2, 3π/2) mod 2π.

(This is a partial order on C: c′ is not comparable to c at θ if and only if (c− c′)e−iθ
is purely imaginary.)

One can define the notion of a Stokes-filtered local system of nr. exponential type on

any base field, and this leads for example to the notion of a Q-structure on (G ,∇): this

is by definition a Stokes-filtered local system of nr. exponential type defined over Q,

whose tensorization by C is isomorphic to that attached to (G ,∇).

1.5. Stokes data

The previous description of the Stokes filtration is independent of any choice. On

the other hand, the description with Stokes data below depends on some choices.

Let C be a non-empty finite subset of C. We say that θ ∈ R/2πZ is generic with

respect to C if the set C is totally ordered with respect to 6
θ
. Once θo generic with

respect to C is chosen, there is a unique numbering {c1, . . . , cn} of the set C in strictly

increasing order. We will set θ′o = θo + π. Note that the order is exactly reversed

at θ′o, so that −C is numbered as {−c1, . . . ,−cn} by θ′o.
The category of Stokes data of type (C, θo) (defined over a base field, say Q or C)

has objects consisting of two families of vector spaces (Lc,1, Lc,2)c∈C and a diagram

of morphisms

⊕n
i=1 Lci,1 = L1

S

''

S′

77
L2 =

⊕n
i=1 Lci,2

such that

(1) S = (Sij)i,j=1,...,n is block-upper triangular, i.e., Sij : Lci,1 → Lcj ,2 is zero

unless i 6 j, and Sii is invertible (so dimLci,1 = dimLci,2, and S itself is invertible),
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(2) S′ = (S′ij)i,j=1,...,n is block-lower triangular, i.e., S′ij : Lci,1 → Lcj ,2 is zero

unless i > j, and S′ii is invertible (so S′ itself is invertible).

A morphism of Stokes data of type (C, θo) consists of morphisms of vector spaces

λc,` : Lc,` → L′c,`, c ∈ C, ` = 1, 2, which are compatible with the corresponding

diagrams as above. This allows one to classify Stokes data of type (C, θo) up to

isomorphism. The monodromy T1 on L1 is defined by T1 = S−1S′. Grading the

Stokes data means replacing (S, S′) with their block diagonal parts. There is a natural

notion of tensor product in the category of Stokes data of type (C, θo), and a duality

from Stokes data of type (C, θo) to Stokes data of type (−C, θo).
Fixing bases in the spaces Lc,`, c ∈ C, ` = 1, 2, allows one to present Stokes data

by matrices (Σ,Σ′) where Σ = (Σij)i,j=1,...,n (resp. Σ′ = (Σ′ij)i,j=1,...,n) is block-lower

(resp. -upper) triangular and each Σii (resp. Σ′ii) is invertible. The matrix Σ−1
ii Σ′ii is

the matrix of monodromy of Lci,1, while Σ−1Σ′ is that of the monodromy of L1.

Given θo generic with respect to C, there is an equivalence (depending on θo)

between the category of Stokes filtered local systems (L ,L•) defined over the base

field with jumping indices in C and that of Stokes data of type (C, θo) defined over

the base field, which is compatible with grading, duality and tensor product (cf. e.g.,

[HS11, §2]).

One can give another description as follows, by emphasizing the monodromy T.

Stokes data of type (C, θo) consist of a graded vector space L =
⊕n

i=1 Lci endowed

with an automorphism T such that, for each k, the endomorphism Tk,k : Lck → Lck
and the endomorphism T6k,6k :

⊕k
i=1 Lci →

⊕k
i=1 Lci are invertible. Grading the

Stokes data consists in replacing T with its block-diagonal part. Note that a mor-

phism ϕ of Stokes data is a graded morphism ϕ =
⊕

k ϕk, with ϕk : Lk → Lk, which

commutes with T. In particular, ϕk commutes with Tk,k.

Let us finally remark that the Stokes data attached to a meromorphic connection

of nr. exponential type depend on the choice of the generic θo. Changing θo changes

the Stokes data attached to the same (G ,∇).

1.6. Isomonodromy deformations

Let X be a complex manifold and let G be a meromorphic bundle on X × C with

pole along the divisor X×{0}. An integrable meromorphic connection on G has good

nr. exponential type its restriction to each slice {xo}×C has nr. exponential type and

if C :=
⊔
x∈X Cx ⊂ X×C is a non-ramified covering over X. We also say that (G ,∇)

is a good meromorphic flat bundle with nr. exponential type along X × {0}.

Theorem. Assume that X is 1-connected. Then the restriction functor (G ,∇) 7→
(Gx,∇x) is an equivalence of categories.

As a consequence, for any connected X, given any base point xo ∈ X and a non-

ramified covering C ⊂ X× (Cnrdiagonals) of X, there is an equivalence between the

category of germs along X×{0} of meromorphic connections (G ,∇) of nr. exponential

type C and representations

π1(X,xo) −→ Aut(G|xo ,∇|xo).



LECTURE 2

PURE NON-COMMUTATIVE HODGE STRUCTURES

2.1. Pure nc. Hodge structures from the operator point of view

Let H be a finite-dimensional complex vector space. A polarized pure complex

Hodge structure of weight w ∈ Z consists of the data of a positive definite Hermitian

form h on H and an h-orthogonal decomposition H =
⊕

pH
p,w−p. The role of

the weight is to fix the grading. A Q-Betti structure is a Q-subspace HQ which

generates H over C.

Equivalently, a polarized pure complex Hodge structure of weight w consists of the

data (H,h,Q, w) where Q is an h-self-adjoint endomorphism of H with half-integral

eigenvalues: Q = (p − w/2) Id on Hp,w−p. The Weil operator C can be written as

C = expπiQ, and C2 is the monodromy of the connection ∇ = d −Qdz/z on the

trivial bundle H ⊗C OP1 . A Q-Betti structure induces such a structure on the local

system ker∇.

A polarized pure nc. Hodge structure of weight w consists of data (H,h,Q,U , w),

where Q is an h-self-adjoint endomorphism of H (no restriction on the eigenvalues),

and U is any endomorphism of H. It is useful to introduce the connection on the

trivial holomorphic bundle H ⊗C OP1 :

(∗) ∇ = d +
(
z−1U − (Q + (w/2) Id)− zU †

)dz

z
,

where U † is the h-adjoint of U . A Q-Betti structure is a Q-structure on the local

system ker∇, plus a Q-structure on the Stokes data of ∇ at z = 0 and z = ∞. I.e.,

the Stokes-filtered local system attached to ∇ should be defined over Q.

However, in many interesting examples, such a structure is not given in this way,

and one has to extract it from a set of data defined in the neighbourhood of z = 0

only.

2.2. Gluing of vector bundles

We start with (H ,∇) as in §1.1, and we denote by (L ,L•) the Stokes-filtered

local system associated to (G ,∇). It will be convenient and equivalent to regard L

as a local system on S1 = {|z| = 1}, since the Stokes structure only depends on z/|z|.
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Gluing with a real structure. — Assume L defined over R (or Q), i.e., L ' L .

• Set γ : P1 → P1, z 7→ 1/z. Notice γ|S1 = Id.

• Glue H with γ∗H to get H̃ (holomorphic vector bundle on P1):

H|S1 = O|S1 ⊗L ' O|S1 ⊗L = (γ∗H )|S1

• Since the gluing is ∇-flat, it is compatible with the connections ∇ and γ∗∇ and

produces a connection ∇̃ on H̃ with a pole at 0 and ∞ only.

Gluing with a sesquilinear pairing. — Let ι be the involution z 7→ −z. Assume we

are given an isomorphism C : L ∨ ' ι−1L . We call it a nondegenerate ι-sesquilinear

pairing on L , since we can regard it as a pairing

C : L ⊗ ι−1L −→ CS1 .

• Set σ := γ ◦ ι : P1 → P1, z 7→ −1/z.

• Glue H ∨ with σ∗H to get Ĥ (holomorphic vector bundle on P1):

H ∨
|S1 = O|S1 ⊗L ∨ C' O|S1 ⊗ ι−1L = (σ∗H )|S1 .

Since this gluing is ∇-flat, it is compatible with the connections ∇ and σ∗∇ and

produces a connection ∇̃ on Ĥ with a pole at 0 and ∞ only..

Assume moreover that C : L ∨ ' ι−1L is ι-Hermitian. Then the construction

produces a natural σ-Hermitian isomorphism S : Ĥ ∨ → σ∗Ĥ and therefore, if we

set H := Γ(P1, Ĥ ), there is an isomorphism

h = Γ(P1,S ) : Γ(P1, Ĥ ∨)
∼−→ Γ(P1, σ∗Ĥ ) = Γ(P1, Ĥ ) = H.

If Ĥ is trivial, then Γ(P1, Ĥ ∨) = H∨, and H comes equipped with a non-degenerate

Hermitian for h.

Comparison. — Assume

• we are given a real structure L ' L on L ,
• we are given a non-degenenerate pairing QR : LR ⊗ ι−1LR → R, and a non-

degenenerate O-bilinear pairing Q : (H ,∇)⊗ ι∗(H ,∇)→ (z−wO,d) for some w ∈ Z,

so that QC corresponds to the restriction of Q to (G ,∇) by the Riemann-Hilbert

corresopndence.

Then, on the one hand, from the real structure on L we get H̃ . On the other

hand, Q defines a non-degenerate ι-sesquilinear pairing C, hence Ĥ .

Lemma (C. Hertling). Under these assumptions, Q induces an isomorphism

H̃
∼−→ ι∗Ĥ ⊗ OP1(w).

Consequence. H̃ ' OP1(w)rk H ⇐⇒ Ĥ ' Ork H
P1 .

In such a case, if the connection ∇ has a pole of order 6 2, it takes the form (∗).
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2.3. Pure non-commutative Hodge structures

2.3.1. Pure Hodge structures from the twistor point of view. — Let z be a

new variable. Then the decreasing filtration F •H defined by F pH =
⊕

p′>pH
p′,w−p′

allows one to define a free C[z]-module H =
⊕

p F
pHz−p, which satisfies

C[z, z−1]⊗C[z] H = C[z, z−1]⊗C H.

It is equipped with a connection ∇ (induced by the differential d) which has a pole of

order one at the origin. The local system ker∇ on C∗ = {z 6= 0} is trivial (monodromy

equal to identity) with fibre H, and it has a rational constant sub local system with

fibre HQ.

Let γ : P1 → P1 be as in §2.2. Then γ∗H =
∑
q F

qHzq is a C[z−1]-free module,

and C[z, z−1]⊗C[z] γ
∗H = C[z, z−1]⊗CH ' C[z, z−1]⊗CH, due to the real structure.

One can then glue the bundles H and γ∗H into a holomorphic bundle H̃ on P1.

The opposedness (or bi-grading) property is then equivalent to the property that H̃

is isomorphic to OP1(w)dimH .

We will follow this approach for defining a pure nc.Q-Hodge structure.

2.3.2. Definition of a polarized pure nc.Q-Hodge structure

Definition. Data:

• (H ,∇) having a pole of order two with no ramification,
• (LQ,LQ,•) a Stokes-filtered Q-local system on S1,
• a pairing

QB : (LQ,LQ,•)⊗ ι−1(LQ,LQ,•) −→ (QS1 ,QS1 , •)

((QS1 ,QS1 , •): trivial Stokes filtration on QS1).

We say that
(
(H ,∇), (LQ,LQ,•),QB

)
is a polarized pure nc.Q-Hodge structure of

weight w if it satisfies the following properties:

(1) QB is non-degenerate (−1)w-ι-symmetric (in particular, it induces a non-

degenerate (−1)w-ι-symmetric pairing on each local system grcLQ).

(2) The (−1)w-ι-symmetric pairing Q that QB induces on (G ,∇) = O(∗0)⊗(H ,∇)

through the RH correspondence, which takes values in OC(∗0) satisfies:

Q
(
H ⊗ ι∗H

)
⊂ z−wOC

and is non-degenerate as such.

(3) Letting C be the ι-sesquilinear pairing associated to i−wQ (hence C is a nonde-

generate ι-Hermitian pairing), then

(a) Ĥ is trivial (i.e., H̃ ' OP1(w)d, opposedness),

(b) h := Γ(P1,S ) is positive definite on H := Γ(P1, Ĥ ) (polarisation).

2.3.3. Relation with the operator definition. — Let
(
(H ,∇), (LQ,LQ,•),QB

)
be a polarized pure nc.Q-Hodge structure of weight w. Since Ĥ is trivial, we can

choose a global basis of Ĥ and express the connection ∇ in this frame. Since ∇ has a

pole of order two at zero and infinity, and no other pole, its matrix takes the form (∗)
in this basis. One then checks that Q is self-adjoint and U † is the h-adjoint of U .
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2.3.4. Irregular Hodge numbers. — Let
(
(H ,∇), (LQ,LQ,•),QB

)
be a polar-

ized pure nc.Q-Hodge structure of weight w. For each α ∈ [0, 1), the irregular Hodge

numbers hp,w−p(α) are the numbers

hp,w−p(α) := rk grpFV
−αH ,

where F •V −αH is the restriction to H of the Harder-Narasimhan filtration of

V −αH (cf. §1.2).

2.4. A few words about variations of polarized pure nc.Q-Hodge structures

Let X be a complex manifold. A variation of polarized pure nc.Q-Hodge structure

of weight w parametrized by X consists of the following data:

• (H ,∇) a holomorphic bundle on X × C with a flat meromorphic connection ∇
having poles of Poincaré rank one along {z = 0} (i.e., z∇ is logarithmic) and no other

pole,
• A Stokes-filtered Q-local system (LQ,LQ,•) on X × S1,
• a pairing

QB : (LQ,LQ,•)⊗ ι−1(LQ,LQ,•) −→ (QX×S1 ,QX×S1 , •)

((QX×S1 ,QX×S1 , •): trivial Stokes filtration on QX×S1),

subject to the condition that, for each x ∈ X, the restriction to {x}×C is a polarized

pure nc.Q-Hodge structure of weight w.

Hodge structures Hodge structures (Nc) Nc. Hodge structures

Filtered vect. sp. (H,F •H) (H ,∇) = ⊕p(F pHz−p,d) H free OA1-mod.,

free C[z]-mod + connect. ∇: connect.,

0 = only pole, ord. 6 2, n.r.

H L = ker∇ on H|S1 idem

HQ LQ (cst Q-loc. syst. on S1) LQ,• (Stokes-filt. Q-loc. syst.)

F pH ∩ Fw−p+1H = 0 ∀ p H̃ ' OP1(w)rk H idem

Q: (−1)w-sym. Q : LQ ⊗ ι−1LQ → Q Q : LQ,• ⊗ ι−1LQ,• → Q•
non-deg. Q-bilin. form. (−1)w-ι-sym. non-deg. idem

s.t. Q(Hp,q, Hp′,q′) = 0 (H ,∇)⊗ ι∗(H ,∇)→(z−wO,d) idem

for p′ 6= w − p non-deg. idem

Q h Herm. form Q C: ι-Herm. on L idem

H Ĥ trivial, H := Γ(P1, Ĥ ) idem

h def.> 0 h def.> 0 on Γ(P1, Ĥ ) ' H idem

Table 1. Comparison table



LECTURE 3

PURE NC.Q-HODGE STRUCTURE THROUGH

FOURIER-LAPLACE

3.1. Producing a pure nc.Q-Hodge structure by Fourier-Laplace transfor-

mation

Let C ⊂ A1 be a finite set of points on the complex affine line with coordinate t. Let

(VQ, F
•V,∇, QB) be a variation of polarized pure Hodge structure of weight w ∈ Z

on X := A1 r C. Namely,

• (V,∇) is a holomorphic vector bundle with connection on X,
• F •V is a finite decreasing filtration of V by holomorphic sub-bundles satisfying

the Griffiths transversality property: ∇F pV ⊂ F p−1V ⊗OX Ω1
X ,

• VQ is a Q-local system on X with VQ ⊗Q C = V ∇,
• QB : VQ ⊗Q VQ → Q is a nondegenerate (−1)w-symmetric pairing,

all these data being such that the restriction at each x ∈ X is a polarized pure Hodge

structure of weight w. We denote by Q the nondegenerate flat pairing

Q : (V,∇)⊗ (V,∇) −→ (OX , d)

that we get from QB through the canonical isomorphism OX ⊗Q VQ = V . The

associated nondegenerate sesquilinear pairing is denoted by

k : (V,∇)⊗C (V,∇) −→ C∞X ,

which can also be obtained from kB : V⊗CV→ C similarly. It is (−1)w-Hermitian and

i−wk induces a flat Hermitian pairing on the C∞-bundle (C∞X ⊗OX V,∇+∂). We can

regard (V,∇, F •V, i−wk) as a variation of polarized complex pure Hodge structure of

weight 0.

Theorem. Let (VQ, F
•V,∇, QB) be a variation of polarized pure Q-Hodge structure of

weight w ∈ Z on X := A1 r C. Then its Fourier-Laplace transform

F(VQ, F
•
V,∇, QB) = ((H ,∇), (LQ,LQ,•),−F(j∗QB))

is a polarized pure nc.Q-Hodge structure of weight w + 1.

3.2. The Betti side

We denote by j : A1 r C ↪→ A1 the inclusion.

• Fix zo ∈ S1. Define Φzo as the family of closed sets S ⊂ A1 such that

S ∩ {(∞, eiθ) | Re(eiθ/zo) > 0} = ∅ in A1 ∪ S1
∞.
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We consider the inclusions (α is open and β is closed)

A1 ↪
α−−→ A1 ∪ {(∞, eiθ) | Re(eiθ/zo) < 0} ↪ β−−→ A1 ∪ S1

∞ =: P̃1.

• (LQ)zo = H1
Φzo

(A1, j∗VQ) = H1(P̃1, β!α∗j∗VQ):

c

β!α∗j∗L

c1

c2

cn

cij∗ QV

• (F(j∗QB))zo is the cup product followed by QB (note: Φzo ∩ Φ−zo = family of

compact sets in A1):

H1
Φzo

(A1, j∗VQ)⊗H1
Φ−zo

(A1, j∗VQ) −→ H2
c (A1,Q) ' Q,

c

β!α∗j∗L

c1

c2

cn

cij∗ QV

⊗

c1

c2

cn

cij∗ QV

−→ Q

Note that here appears the involution ι.
• For c ∈ C, we define LQ,6c,z and LQ,<c,z by using a picture similar to the above

one:

c1

c2

ci

c

β!α∗j∗ QV
c1

c2
c

ci

β!α∗j∗ QV

LQ,6c,z LQ,<c,z

3.3. De Rham side

3.3.1. De Rham side for the variation of pure Hodge structure. — The

bundle (V,∇) can be extended in a unique way as a free OP1(∗C ∪ {∞})-module

with a connection ∇ having a regular singularity at C ∪{∞} (Deligne’s meromorphic

extension). Taking global sections on P1 produces a left module M̃ on the Weyl

algebra C[t]〈∂t〉. The minimal extension (along C) of M̃ is the unique submodule M

of M̃ which coincides with M̃ after tensoring both by C(t), and which has no quotient

submodule supported in C (it is characterized by the property that DRanM = j∗V ).
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3.3.2. How to get (G ,∇): Laplace transform of M . — Set

G = C[t]〈∂t, ∂−1
t 〉 ⊗C[t]〈∂t〉M,

and define the action of C[z, z−1]〈∂z〉 on G as follows: z ·m = ∂−1
t m, z−1 ·m = ∂tm,

and z2∂zm = tm. One can show that G is a free C[z, z−1]-module, and the action

of ∂z is that of a connection (i.e., satisfies Leibniz rule). Its analytization as a free

O(∗0)-module with connection is denoted by (G ,∇).

Theorem. C⊗Q (LQ,LQ,•) is the Stokes-filtered local system attached to (G ,∇).

3.3.3. A direct definition of C: the Fourier transformation. — The pairing k

extends first (due to the regularity of the connection) as a pairing

k̃ : M̃ ⊗C M̃ −→ S ′(A1 r C),

where S ′(A1) denotes the Schwartz space of temperate distributions on A1 = R2, and

S ′(A1 r C) := C
[
t,
∏
c∈C(t− c)−1

]
⊗C[t] S ′(A1).

Then one shows that, when restricted to M ⊗C M , k̃ takes values in S ′(A1), and we

denote it by k.

Set z′ = z−1 (it corresponds to ∂t in the Laplace correspondence above). The

Fourier transformation Ft : S ′(A1
t)→ S ′(A1

z′) with kernel exp(tz′ − tz′) i
2π dt ∧ dt is

an isomorphism from the Schwartz space S ′(A1
t) considered as a C[t]〈∂t〉⊗CC[t]〈∂t〉-

module, to S ′(A1
z′) considered as a C[z′]〈∂z′〉 ⊗C C[z′]〈∂z′〉-module.

Composing k with Ft and restricting to C∗ produces a sesquilinear pairing Fk :

(G ,∇)⊗ ι∗(G ,∇)→ (C∞C∗ ,d), whose horizontal part restricted to S1 defines a pairing

C : L ⊗ ι−1L → CS1 as in §2.2.

The pairing Fk restricts to horizontal sections of (G ,∇) to produce a Betti

ι-sesquilinear pairing (Fk)B on L . It is defined only over C∗. On the other hand, in

a way similar to the definition of F(j∗QB), there is a topological Laplace transform
F(j∗kB), which is compatible with the Stokes filtration. In fact, F(j∗kB) is the

ι-sesquilinear pairing associated with the ι-bilinear pairing F(j∗QB) and the real

structure on L . The comparison between both is given by:

Theorem. Over C∗ we have (Fk)B = i
2π
F(j∗kB).

Remark. The change of weight from w to w+ 1 in the theorem follows from the i/2π

in this formula.

3.4. Hodge side: (H ,∇) as the Brieskorn lattice of the filtration F •M

The Hodge filtration F •V extends, according to a procedure due to M. Saito and

relying on Schmid’s theory of limits of variations of polarized pure Hodge structures,

to a good filtration F •M of M as a C[t]〈∂t〉-module.

We denote by l̂oc : M → G the natural morphism (the kernel and cokernel of which

are isomorphic to powers of C[t] with its natural structure of left C[t]〈∂t〉-module).
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For any lattice L of M , i.e., a C[t]-submodule of finite type such that M = C[∂t] · L,

we define the associated Brieskorn lattice as

G
(L)
0 =

∑
j>0

∂−jt l̂oc(L).

This is a C[∂−1
t ]-submodule of G. Moreover, because of the relation [t, ∂−1

t ] = (∂−1
t )2,

it is naturally equipped with an action of C[t]. If M has a regular singularity at

infinity, then G
(L)
0 has finite type over C[∂−1

t ]. We have G = C[∂t] ·G(L)
0 .

Let us now consider a filtered C[t]〈∂t〉-module. Let p0 ∈ Z. We say that F •M is

generated by F p0M if, for any ` > 0, we have F p0−`M = F p0M+ · · ·+∂`tF p0M . Then

F p0M is a lattice of M . Moreover, the C[∂−1
t ]-module ∂p0t G

(Fp0 )
0 does not depend on

the choice of the index p0, provided that the generating assumption is satisfied. We

thus define the Brieskorn lattice of the filtration F •M as

G
(F )
0 = ∂p0t G

(Fp0 )
0 for some (or any) index p0 of generation.

If we also set z = ∂−1
t , then one can show that G

(F )
0 is a free C[z]-module which

satisfies G = C[z, z−1] ⊗C[z] G
(F )
0 and which is stable by the action of z2∂z := t. Its

analytization H is a free O-module on which the connection has a pole of order 6 2.



LECTURE 4

STOKES MATRICES AND

PURE NC.HODGE STRUCTURES

4.1. Deligne-Malgrange lattices

We explain here an example of pairs (H ,∇) of nr. exponential type. It can be

obtained as the Brieskorn lattice of a natural filtration of M , namely the filtration by

Deligne lattices.

Let (G ,∇) be a meromorphic connection of nr. exponential type (cf. §1.3). The

functor which associates to any lattice H of G (i.e., a C{z}-free submodule such that

C({z})⊗C{z}H = G ) its formalization C[[z]]⊗C{z}H is an equivalence between the

full subcategory of lattices of G and that of lattices of Ĝ (cf. [Mal96]). In particular,

let us consider for each c ∈ C and a ∈ R the Deligne lattices Ĝca (resp. Ĝc>a) of

the regular connection (Ĝc, ∇̂c) considered in §1.3, characterized by the property that

the connection ∇̂c on Ĝ a
c has a simple pole and the real parts of the eigenvalues

of its residue belong to [a, a + 1) (resp. to (a, a + 1]). Clearly, Ĝca+1 = zĜca and

Ĝc>a+1 = zĜc>a.

According to the previous equivalence, there exist unique lattices of G , denoted

by DMa(G ,∇) (resp. DM>a(G ,∇), which induce, by formalization, the decomposed

lattice
⊕

c(E
−c/z ⊗ Ĝca) (resp.

⊕
c(E
−c/z ⊗ Ĝc>a)). They are called the Deligne-

Malgrange lattices of (G ,∇). We regard them as defining a decreasing filtration of G .

Lemma. Any morphism (G ,∇) → (G ′,∇′) of meromorphic connections of nr. expo-

nential type is strictly compatible with the filtration by Deligne-Malgrange lattices.

Sketch of proof. The associated formal morphism is block-diagonal with respect to

the decomposition of §1.3, and each diagonal block induces a morphism between the

corresponding regular parts, which is known to be strict with respect to the filtration

by the Deligne lattices.

The behaviour by duality below is proved similarly by reducing to the regular

singularity case (cf. e.g., [Sab02, §III.1.b] or [Sab06, Lem. 3.2]).

Lemma. Let (G ,∇) be as above and let (G ,∇)∨ be the dual meromorphic connection.

Then there are canonical isomorphisms

[DMa(G ,∇)]∨ ' DM>−a−1[(G ,∇)∨],

[DM>a(G ,∇)]∨ ' DM−a−1[(G ,∇)∨].

We will use this lemma as follows.
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Corollary. Let (G ,∇) be of nr. exponential type, with associated Stokes structure

(L ,L•). Let

QB : (L ,L•)⊗C ι
−1(L ,L•) −→ C

be a nondegenerate bilinear pairing. Let

Q : (G ,∇)⊗C({z}) ι
∗(G ,∇) −→ (C({z}),d)

be the nondegenerate pairing corresponding to QB via the Riemann-Hilbert correspon-

dence. Then, for each a ∈ R, Q extends in a unique way as a nondegenerate pairing

DMa(G ,∇)⊗C{z} ι
∗DM>−a−1(G ,∇) −→ (C{z},d).

Corollary. With the previous assumptions, assume moreover that a is an integer.

Then,

(1) if none of the monodromies of the Ĝc has 1 as an eigenvalue, then DMa(G ,∇) =

DM>a(G ,∇) for each integer a, and Q induces a nondegenerate pairing

DMa(G ,∇)⊗C{z} ι
∗DMa(G ,∇) −→ (z2a+1C{z},d),

(2) if none of the monodromies of the Ĝc has −1 as an eigenvalue, then

DMa−1/2(G ,∇) = DM>a−1/2(G ,∇) for each integer a, and Q induces a nonde-

generate pairing

DMa−1/2(G ,∇)⊗C{z} ι
∗DMa−1/2(G ,∇) −→ (z2aC{z},d).

4.2. Pure nc. Hodge structures from Deligne-Malgrange lattices

Let C ⊂ C be a finite set, let θo ∈ R/2πZ be generic with respect to C (cf. §1.3)

defining thus a numbering {c1, . . . , cn} of the set C in strictly increasing order, and

let Σ be a block-lower triangular invertible square matrix of size d with entries in

Q ⊂ R, the blocks being indexed by C ordered by θo. Under some assumptions

on Σ, we will associate to these data and to each integer w a connection with a

pole of order two (H ,∇) with Q-Betti structure (LQ,LQ,•) and a nondegenerate

(−1)w-ι-symmetric nondegenerate Q-pairing Q as in §2.3.2, giving rise in particular

to a TERP(−w)-structure. We will denote these data by ncH(C, θo,Σ, w).

The matrix Σ determines Stokes data ((Lc,1, Lc,2), S, S′) of type (C, θo) (cf. §1.5)

by setting L1 = L2 = Qd, and Lc,j (c ∈ C, j = 1, 2) correspond to the blocks of Σ,

which defines a linear morphism S : L1 → L2, and we define S′ as the linear morphism

attached to Σ′ := (−1)w ·tΣ. These Stokes data in turn correspond to a Stokes filtered

local system (LQ,LQ,•). The underlying local system LQ is completely determined

by the Q-vector space L1 = Qd together with (the conjugacy class of) its monodromy,

whose matrix is (−1)wΣ−1 · tΣ. On the other hand, each diagonal block Σci of Σ gives

rise to an invertible matrix (−1)wΣ−1
ci ·

tΣci , which represents the monodromy of the

meromorphic connection corresponding to Ĝci in the decomposition of §1.3.

A nondegenerate ι-pairing QB on (LQ,LQ,•) with values in Q is determined by a

pair of nondegenerate pairings Q12 : L1,Q ⊗ L2,Q → Q and Q21 : L2,Q ⊗ L1,Q → Q
which satisfy Q21(x2, x1) = Q12(S−1x2, S

′x1), and the (−1)w-ι-symmetry amounts to

Q21(x2, x1) = (−1)wQ12(x1, x2) (cf. [HS11, (3.3) & (3.4)]). In the fixed bases of L1

and L2, we define Q21(x2, x1) = tx2 · x1, so that Q12(x1, x2) = tx1
tΣ · Σ′−1x2; the
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(−1)w-symmetry follows from Σ′ = (−1)w · tΣ. From the Riemann-Hilbert correspon-

dence we finally obtain a nondegenerate (−1)w-ι-symmetric pairing

QB : ((G ,∇), (LQ,LQ,•))⊗ ι∗((G ,∇), (LQ,LQ,•)) −→ (C({z}), d,QS1).

We will set (using the notation of §4.1, and stressing upon the fact that the con-

struction of (G ,∇) and (L ,L•) above depends on the parity of w):

ncH(C, θo,Σ, w) = (DM−(w+1)/2(G ,∇), (LQ,LQ,•),QB).

Let us note that the last corollary of §4.1 reads as follows:

Corollary. Let (C, θo,Σ, w) be as above. Assume that ker(Σci + tΣci) = 0 for all i.

Then DM>−(w+1)/2 = DM−(w+1)/2 and the pairing QB above induces a nondegenerate

(−1)w-ι-symmetric pairing, also denoted by QB:

DM−(w+1)/2(G ,∇)⊗C{z} ι
∗DM−(w+1)/2(G ,∇) −→ (z−wC{z},d).

Theorem (cf. [HS11]). Let (C, θo,Σ, w) be as above. We moreover assume the follow-

ing:

(1) for each c∈C, the diagonal block Σc of Σ satisfies ker(Σc + tΣc) = 0,

(2) the quadratic form Σ + tΣ is positive semi-definite.

Then ncH(C, θo,Σ, w) is a polarized pure nc.Q-Hodge structure of weight w.

Sketch of proof. Although the data are clearly defined, a direct proof starting from

these data is not known. The problem is to relate the positivity property of the

Stokes matrix with the existence of a metric of a certain kind, and to prove that

H̃ ' OP1(w)d. The way to construct H̃ by the gluing procedure of §2.2 is difficult

to relate with the Deligne-Malgrange lattices.

The proof exhibits ncH(C, θo,Σ, w) as obtained by Laplace transform from a uni-

tary flat bundle on CrC, regarded as a variation of polarized pure Hodge structure

of type (0, 0). More precisely, the C[t]〈∂t〉-module M is the regular holonomic module

obtained as the intermediate (or middle) extension of the corresponding flat bundle

from CrC to C = A1, and the lattice L considered in §3.4 is the Deligne lattice of M

which is equal to V >−1 at each c ∈ C.
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