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VANISHING CYCLES OF POLYNOMIAL MAPS
(TOPOLOGY, HODGE STRUCTURE, D-MODULES)

LECTURE NOTES (NICE, NOVEMBER 2008)

PRELIMINARY VERSION

Claude Sabbah

Abstract. In these lectures, I will emphasize the global aspect (in the affine case)
of the theory of singularities of holomorphic functions. I will focus on the case where
the function is tame, a property analogous to the property for a germ of holomorphic
function of having an isolated singularity. I will explain some recent results on the
“vanishing cycles at infinity” of such a function as well as some applications to the
supersymmetric index introduced by the physicists Cecotti and Vafa in 1991.

Résumé (Les cycles évanescents des applications polynomiales (topologie,
structure de Hodge, D-modules))

Dans ce cours, je mettrai l’accent sur l’aspect global (dans le cadre affine) de la
théorie des singularités de fonctions holomorphes. J’insisterai sur la propriété analogue
à celle de singularité isolée d’une fonction holomorphe (fonction modérée) et j’expli-
querai quelques résultats concernant les « cycles évanescents à l’infini » d’une telle
fonction. J’indiquerai aussi quelques résultats récents sur l’indice supersymétrique,
introduit par les physiciens Cecotti et Vafa en 1991.
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LECTURE 1

TOPOLOGY OF REGULAR FUNCTIONS ON
AN AFFINE MANIFOLD

1.1. Introduction

The main guiding line of these notes (but not the only one) is summarized in
the comparison table below. It consists in traducing properties known in the theory
of germs of holomorphic functions (Milnor fibration, vanishing cycles, local Hodge
theory, etc.) as similar properties of regular functions on an affine manifold. The
goal is to input in this setting the new properties due to the fact that the function is
algebraic. This setting is indeed more suitable to have comparison with (or to apply
techniques of) arithmetics, for instance.

Comparison table

Germ of holomorphic function Regular function
Germ f : (Cn, 0)→ (C, 0) Regular function f : U → A1

Milnor ball Bε (Stein) U smooth affine over C
Central fibre f−1(0) “fibre at infinity” f−1(∞) not specified
Crit(f) ⊂ f−1(0) Crit(f) ⊂

⋃
i f

−1(ti)
Milnor fibre Bε ∩ f−1(η), 0� η � ε f−1(t), |t| � 0
Vanishing cocycles H∗(Bε, Bε ∩ f−1(η)) H∗(U, f−1(t))
Vanishing cycles Lefschetz thimbles{Transversality with ∂Bε

and isolated singularity

}
Various notions of tameness

Gauss-Manin system Algebraic Gauss-Manin system
Microlocalization Fourier-Laplace transform
Regularity of the microlocal GM system Irregularity of the Laplace GM system
(Microlocal) Brieskorn lattice Brieskorn lattice
Microlocal duality Duality for the Laplace transform
Order-two pole of the connection Order-two pole of the connection
Varchenko-Steenbrink Hodge spectrum Spectrum at infinity
—————————— Semi-simplicity of the Laplace GM syst.
Germ of variation of twistor structure Variation of twistor structure
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1.2. Setting and examples

Throughout these notes, the notation will be as follows:
• U is a smooth affine complex variety of dimension n+ 1, and O(U) is its ring of

regular functions,
• f ∈ O(U) is also regarded as a map f : U → A1 (I always assume that f is not

constant),
• F : X → A1 is some partial compactification of f , i.e., X is quasi-projective (not

necessarily smooth) and contains U as a Zariski dense open subset, and F|U = f ; for
example, if Y is any projective closure of U , one can choose for X the closure of the
graph of f in Y × A1 and for F the second projection.

Examples 1.2.1

(1) X̃ is a compact Riemann surface (considered as smooth complex algebraic
curve), F̃ : X̃ → P1 is a meromorphic function on X̃, U = X̃ r F̃−1(∞) is the
complement of the poles of F̃ and f is the restriction of F̃ to U . Then X = U , F = f

and, in such a case, f is proper (more precisely, finite).
(2) U = Cn+1 and f is a complex polynomial map.
(3) U = (C∗)n+1 and f is a Laurent polynomial,
(4) U is the complement of an affine hypersurface D in Cn+1, e.g. an arrangement

of hyperplanes, and f is the restriction of a polynomial to U .

1.3. Topology of the general fibre of f

The critical set Crit(f) = {x ∈ U | df(x) = 0} is a closed algebraic subset of U
contained in a finite number of fibres f−1(tj) of critical values tj , whose set is denoted
by Cf . If t is not a critical value, that is, t 6∈ Cf , then f−1(t) is a smooth affine variety
of (complex) dimension n. Such a manifold is known ([1]) to have the homotopy type
of a CW-complex of dimension 6 n. In particular, Hk(f−1(t),Z) = 0 for k > n + 1,
and the same holds for Hk. By Poincaré duality, we get Hk

c (f−1(t),Z) = 0 for
k 6 n− 1. The long exact sequence

· · · −→ Hk
c (f−1(t),Z) −→ Hk(f−1(t),Z) −→ Ck

t −→ Hk+1
c (f−1(t),Z) −→ · · ·

reduces thus to the exact sequence

0 −→ Hn−1(f−1(t),Z) −→ Cn−1
t −→ Hn

c (f−1(t),Z) −→ Hn(f−1(t),Z)

−→ Cn
t −→ Hn+1

c (f−1(t),Z) −→ 0

and isomorphisms

Ck
t '

{
Hk(f−1(t),Z) if k 6 n− 2,

Hk
c (f−1(t),Z) if k > n+ 1.
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1.4. Topology of the map f

The first basic result, which is a consequence of Thom’s stratification theory of
maps to F : X → C is that there exists a finite set Bf ⊂ C (called the bifurcation
set, cf. [30]) such that f : U r f−1(Bf )→ C rBf is a C∞ locally trivial fibration.
As a consequence, as C r Bf is connected, the fibres f−1(t) (t ∈ C r Bf ) are all
diffeomorphic to a given one. The set Cf of critical values is contained in Bf (this
is not completely obvious), but Bf can be bigger than Cf . The difference(1) comes
from the critical points of F (in a suitable sense) which are not contained in U .

The cohomology sheaves Rkf∗ZU (k = 1, . . . ) are constructible sheaves of abelian
groups on A1. When restricted to U r Bf , each Rkf∗ZU is a locally constant sheaf
H k

f with germ (Rkf∗ZU )t = Hk(f−1(t),Z) for any t ∈ U r Bf . In particular,
Rkf∗ZU is supported on Bf for k > n (but such a sheaf can be nonzero). Note also
that, if t ∈ Bf , (Rkf∗ZU )t = Hk(f−1(Dt),Z), where Dt is a sufficiently small open
neighbourhood of t, but as f is not proper, this can be distinct from Hk(f−1(t),Z).

On the other hand, the direct image with proper support Rkf!ZU behaves well
by base change. There is a natural morphism of complexes Rf!ZU → Rf∗ZU whose
cone C fits into a long exact sequence of cohomology sheaves

· · · −→ Rkf!ZU −→ Rkf∗ZU −→ C k −→ Rk+1f!ZU −→ · · ·

Definition 1.4.1 (Weak tameness). The map f is weakly tame if each cohomology sheaf
C k

Q is a (locally) constant sheaf of Q-vector spaces on A1.

This property has been considered by N.Katz [21, Th. 14.13.3].

Example 1.4.2. Trivially, Example 1.2.1(1) is weakly tame, and the cone C is not only
constant, but even zero.

Remark 1.4.3. The cone C can be obtained in the following way. Let us choose an
embedding

U
� � j //

f   
@@

@@
@@

@@
X

F
��

X r U? _ioo

g
{{ww

ww
ww

ww
w

A1

where X is a locally compact topological space and F is proper. We have an exact
triangle

Rj!QU −→ Rj∗QU −→ Ri∗i
−1(Rj∗QU ) +1−−−→

and C is identified with Rg∗i
−1(Rj∗QU ). While C does not depend on the previous

embedding, Ri∗i
−1(Rj∗QU ) possibly depends on it.

(1)I will not be much precise on this matter, as the main subject of these lectures concerns tame
functions, for which such atypical values do not exist. See e.g., [42].
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1.5. Why is Laplace transform useful?

Considering the oscillatory integrals attached to f is a classical subject. This means
considering integrals ∫

Γτ

e−τfω,

where ω is an algebraic differential form of degree k + 1 on U and Γτ is a “Lefschetz
thimble” of dimension k + 1 attached to a critical point.

C
crit. value

crit. point

f

U

thimblefschetz: L eΓτ

Re (τf) > 0

sing. fibre

Such integrals satisfy linear differential equations with respect to the variable τ ,
and this defines the Laplace Gauss-Manin system of f . Classically, one relies the
behaviour of such integrals when τ →∞ with the critical values of f : this is called the
stationary phase approximation. More geometrically, this makes a relation between
the vanishing cycles of f at its critical values at finite distance and the nearby cycles
of the Laplace Gauss-Manin system when τ →∞.

On the other hand, one can consider the behaviour of such integrals when τ → 0.
This is not trivial as large values of f have to be taken into account. We have the
Laplace dual statement of the preceding one: nearby cycles of f when f → ∞ are
related with vanishing cycles of the Laplace Gauss-Manin system at τ = 0.

Correspondingly, vanishing cycles of f at infinity (as defined in the comparison
table of §1.1) are related to nearby cycles of the Laplace Gauss-Manin system at
τ = 0.

The Laplace Gauss-Manin system has singularities at τ = 0 and τ =∞ only, and
the interplay between both will be the main theme of these lectures. This is another
way of encoding part of the geometric information contained in the map f , e.g., the
monodromy representation on the cohomology of general fibres. It emphasizes the
vanishing cycles of f , while the usual Gauss-Manin connection emphasizes the nearby
cycles of f .

1.6. Topological Laplace transform

We look for a natural procedure to get rid of the constant sheaves which appear in
the definition of weak tameness. The topological localized Laplace transform will do
the job. In fact, the result of Proposition 1.6.1(1) below is similar to the well-known
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property that the Fourier transform of the constant function is a Dirac δ-function
supported at the origin, hence vanishes identically away from the origin.

Let F be a constructible complex on A1. The (localized) Laplace transform (with
kernel e−tτ ) will be a complex F̂ on the punctured affine line Â1∗ with coordinate τ .
For τo 6= 0, the germ F̂τo

is the complex of global sections RΓΦτo
(A1,F ) with support

in the family Φτo
defined as follows: a closed set in A1 belongs to Φτo

if it is contained
in an open angle of A1 of opening strictly less than π and with internal bisector
R+ · (−τo). In other words, let e : P̃1 → P1 be the real oriented blowing-up of∞ ∈ P1

(P̃1 is topologically a disc) and let L+
τo

be the closed subset {Re(τoei arg t) > 0} of
e−1(∞) ' S1. Then a closed set F ⊂ A1 belongs to Φτo iff its closure in P̃1 does not
meet L+

τo
.

The definition of F̂ can be given sheaf-theoretically (cf. [24]). We also denote
by e the induced map P̃1 × Â1∗ → P1 × Â1∗, by L+ ⊂ e−1(∞) ' S1 × Â1∗ the closed
subset Re(τei arg t) > 0 and by L− its complement in P̃1 × Â1∗. We will consider the
commutative diagram

A1 × Â1∗
76 54

˜̀
__________________________
��

� � α // L−
� � β

// P̃1 × Â1∗

e
��

q̃

��
==

==
==

==
==

==
==

==
==

p̃

����
��

��
��

��
��

��
��

��

P1 × Â1∗

p

xxpppppppppppp q

&&NNNNNNNNNNNN

P1 Â1∗

We then set
F̂ := Rq̃∗

[
β!Rα∗p

−1F
]
[1],

Proposition 1.6.1

(1) If F is a (locally) constant sheaf on A1, then F̂ = 0.
(2) If F is a perverse sheaf on A1, then F̂ is a local system (up to a shift) whose

germ at τo is H0
Φτo

(A1,F ), which has rank equal to dim H0(A1, t;F ).

Proof. For the first point, one has to show that H∗
Φτo

(A1,Q) = 0. One uses the exact
sequence

· · · −→ Hk
Φτo

(A1,Q) −→ Hk(P̃1,Q) −→ Hk(L+,Q) −→ Hk+1
Φτo

(A1,Q) · · ·

and the fact that the restriction morphism H0(P̃1,Q) → H0(L+,Q) is an isomor-
phism.

For the second point, one reduces to the case where F = j∗V [1], with V a local
system on A1 r {p1, . . . , pr} (if F is supported on points, the result is easy). There is
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clearly no H0
Φτo

(A1,V ) hence no H−1
Φτo

(A1,F ). By duality (for perverse sheaves) one
gets H1

Φτo
(A1,F ).

Corollary 1.6.2. If f is weakly tame, then R̂f!QU → R̂f∗QU is an isomorphism.

Remark 1.6.3. The Laplace transform does not behave well with respect to ordinary

cohomology sheaves. That is, one should not expect R̂kf∗QU = [R̂f∗QU ]k+1 in
general. The right cohomology to be taken is the “perverse cohomology”. This will
be reflected in the next section by the fact that the Laplace transform of a holonomic
C[t]〈∂t〉-module is a holonomic C[τ ]〈∂τ 〉-module (not a complex).



LECTURE 2

TAME FUNCTIONS ON SMOOTH AFFINE VARIETIES

Tameness, or its various avatars, is a property which ensures week tameness of
Definition 1.4.1. One looks for a computable criterion. M-tameness is a property
analogous, in the affine case, to the existence of the Milnor fibration of hypersurface
singularities. It emphasizes the behaviour of f on the affine manifold U . Cohomo-
logical tameness is more algebraic and emphasizes the behaviour of f at infinity for
some compactification: there is only one “Milnor ball”, namely U itself. The latter
notion is only cohomological (with Q as coefficients) but the former is topological.

It is not clear whether one property is stronger than the other one. It is known that
for polynomials on Cn+1, cohomological tameness with respect to the standard pro-
jective compactification of the fibers is equivalent to the so called Malgrange condition
([28]), which in turn implies M-tameness. For instance, tame polynomials on Cn+1 in
the sense of Broughton [3] are both M-tame and cohomologically tame. Conversely,
there exist polynomials which are both M-tame and cohomologically tame (with re-
spect to some compactification) but do not satisfy the Malgrange condition (i.e., are
not cohomologically tame with respect to the standard projective compactification):
many examples of such polynomials have been constructed by L. Păunescu and A.
Zaharia. Nevertheless, our interest in these notes will not be in finding such examples.
We shall emphasize the common properties of various definitions of tameness.

2.1. A short reminder on perverse sheaves and nearby/vanishing cycles

This section only consists of directions for using perverse sheaves and I will not
recall the main definitions here. A good reference for this section is [9, Chap. 4 & 5].

2.1.a. Perverse sheaves. In this section, ‘sheaf’ will mean ‘sheaf of Q-vector spaces’
(or ‘sheaf of C-vector spaces’). On a complex algebraic variety or a complex analytic



8 LECTURE 2. TAME FUNCTIONS ON SMOOTH AFFINE VARIETIES

space X, one can define the notion of constructible sheaf (with respect to some alge-
braic or analytic stratification of X), as well as the notion of bounded complex with
constructible cohomology sheaves (constructible complexes, for short).

Perverse sheaves on X belong to the category of constructible complexes on X.
The following properties are useful:

(1) A perverse sheaf supported on a point is nothing other than a sky-scrapper
sheaf corresponding to a finite dimensional vector space on this point.

(2) On a complex manifold of dimension n, a smooth perverse sheaf F takes the
form L [n], where L is a locally constant sheaf. Hence H jF = 0 if j 6= −n and
H −nF = L .

(3) Let X be a Riemann surface, S a discrete set of points in X and consider the
inclusions

X r S ↪
j−−→ X

i←−−↩ S.

Let L be a local system on X r S. Then
(a) j!L [1] (extension by 0) is perverse and is a sheaf up to a shift by one,
(b) j∗L [1] (intermediate extension) is perverse and is a sheaf up to a shift

by one,
(c) Rj∗L [1] (maximal extension) is perverse but is in general not a sheaf up

to a shift by one: it has possibly two cohomology sheaves R−1j∗L [1] = j∗L

and R0j∗L [1] = H 1Rj∗L (the latter is supported on S).
(4) If X is a smooth complex algebraic/analytic variety of dimension n and S ⊂ X

is a divisor, then j!L [n] and Rj∗L [n] are perverse, but j∗L [n] not in general, and
it has to be replace with the intermediate extension ICX(L ) of Deligne-Goresky-
MacPherson.

(5) On the smooth affine manifold U considered in Lecture 1, the constant sheaf
shifted by dimU is denoted by pQU .

(6) Morphisms of perverse sheaves (considered as constructible complexes) have
kernels and cokernels in the category of perverse sheaves. Hence there is a notion
of exact sequence of perverse sheaves (although such a notion does not exist for
constructible complexes).

(7) Let h : Y → X be a morphism and let F be a perverse sheaf on Y . If h is
finite on the support of F , then Rh∗F is perverse on X.

2.1.b. Perverse cohomology. A constructible complex F has, by definition, con-
structible cohomology sheaves H kF . One can also define its perverse cohomology
sheaves pH kF : each pH kF is a perverse sheaf, and if one has a triangle of con-
structible complexes, one deduces a long exact sequence of their perverse cohomology
sheaves (as justified by the remark above).
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Lemma 2.1.1. Let F be a constructible complex. Assume that each pH kF has only
one nonzero cohomology sheaf. Then each cohomology sheaf of F is perverse, up to
a shift, and equal to some pH kF .

2.1.c. Nearby and vanishing cycles. Let f : X → C be a holomorphic function
and let F be a constructible complex on X. The complex of nearby cycles ψfF

is a constructible complex supported on f = 0 and equipped with a monodromy T .
For any x ∈ f−1(0), the cohomology H kψfFx of the germ ψfFx is the cohomology
of the Milnor fibre of f at x, with its monodromy. One can define a complex φfF ,
equipped with a monodromy T also, in such a way that we have a canonical morphism
ψfF → φfF giving rise to a triangle i−1F → ψfF → φfF

+1−→, where i : f−1(0) ↪→
X denotes the inclusion. It will be useful to shift these functors and set pψfF =
ψfF [−1], pφfF = φfF [−1].

If F is perverse (on X), then pψF and pφF are also perverse. It follows that the
functors pψ and pφ commute with taking perverse cohomology.

If h : Y → X is proper, pψ and pφ commute with taking direct image by h, that is,
if F is a constructible complex on Y , pψh◦fF ' pψfRh∗F , and similarly for pφ.

2.2. Various notions of tameness

A good reference for this section is [9, Chap. 6].

2.2.a. Tameness from inside. Let us choose a closed embedding of U in an affine
space AN and consider balls centered at some given point of AN and of arbitrary large
radius R (that is, consider the distance function δ(x) = ‖x− a‖2, a ∈ AN ). For any R
large enough, the ball B(a,R) intersects U transversally(1).

Definition 2.2.1 (M-tameness). We say that f : U → A1 is M-tame if, for some choice
of U ↪→ AN and δ, the following property is satisfied:

• for any η > 0, there exists Rη such that the ball B(a,R) is transversal to f−1(t)
for any |t| < η and any R > Rη.

Note that the difference with the previous transversality statement lies in the fact
that we are considering a family of affine submanifolds, not a single one.

Proposition 2.2.2. If f is M-tame, it is weakly tame.

(1)Assume there is a sequence xn ∈ U with Rn = ‖xn − a‖ → ∞ and B(a, Rn) 6t U at xn, that is,
(xn − a) ⊥ TxnU ; this is a real-analytic condition, and by the curve selection lemma, there exists a
real-analytic path x(t) → +∞ on which the same property holds; on this path, (x(t) − a) ⊥ x′(t)

implies ‖x(t)− a‖ constant, a contradiction.
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Sketch of proof. Indeed, M-tameness implies cohomological M-tameness, that is, for
any disc D ⊂ A1, there exists R0 such that, for any R > R0, the cone of the
restriction morphism Rf∗Qf−1(D) → Rf∗Qf−1(D)∩B(R) has constant cohomology
sheaves (hence has no vanishing cycles). This follows from the property that the map
f : f−1(D) r (f−1(D) ∩B(R))→ D is a locally trivial C∞ fibration (cf. [27]).

2.2.b. Tameness from outside. Instead of choosing a metric on U , let us choose
an embedding

(2.2.3)
U

� � j //

f   
@@

@@
@@

@@
X

F
��

X r U? _ioo

g
{{ww

ww
ww

ww
w

A1

as in Remark 1.4.3, insisting now that X is quasi-projective and F is projective.

Definition 2.2.4 (Cohomological tameness). We say that f is cohomologically tame if
there exists an embedding (2.2.3) such that, for any c ∈ A1, the function F − c has
no vanishing cycles with respect to the complex i−1Rj∗QU , that is, φF−cRj∗QU =
φf−cQU .

Proposition 2.2.5. If f is cohomologically tame, then f is weakly tame.

Proof. Since the functor φ commutes with direct images in a natural way, we deduce
from cohomological tameness that φt−cC = Rg∗φF−ci

−1Rj∗QU ' 0. So the result
follows from Lemma 2.1.1 and the following lemma.

Lemma 2.2.6. Let F be a bounded complex (of Q-vector spaces) on A1 with con-
structible cohomology. If φt−cF ' 0 for any c ∈ A1, then each perverse cohomology
sheaf of F is a constant sheaf shifted by one.

2.3. Examples

2.3.a. Polynomial functions. If U = An+1, there is a natural projectivization of f ,
obtained by taking the closure of the graph of f in Pn+1×A1. Cohomological tameness
with respect to this projectivization is equivalent to the Malgrange condition (cf. [28])
which implies also M-tameness.

A simple easy-to-check criterion has been given by Broughton [3]: If the total
Milnor number of any small linear perturbation of f is constant and finite, then the
previous condition holds (and even better). This shows in particular that polynomials
which are convenient and non degenerate with respect to their Newton polyhedron (in
the sense of Kouchnirenko, [23]) satisfy the previous property, as Broughton criterion
is easily seen to be satisfied in such a case.
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2.3.b. Laurent polynomials. The main example consists in convenient nondegen-
erate Laurent polynomials in the sense of Kouchnirenko [23]. They are shown (by
Denef-Loeser, [8]) to be cohomologically tame with respect to the projectivization
of f obtained by taking the closure of the graph of f in the toric projective variety
defined by the Newton polyhedron of f .

2.3.c. Thom-Sebastiani sums. Let f : U → A1 and g : V → A1 be two tame
functions and let f ⊕ g : U × V → A1 be their Thom-Sebastiani sum defined by
f ⊕ g(u, v) = f(u) + g(v). Then f ⊕ g is tame. (This is not completely obvious, see
[26] for a proof.)

2.3.d. Alternate Thom-Sebastiani. This is an example where it is useful to con-
sider tameness with respect to a perverse sheaf, not only the constant sheaf.

Let f : U → A1 be a regular function on the affine manifold U . On the product Ur

consider the Thom-Sebastiani sum f⊕r = f ⊕ · · · ⊕ f (r > 2 times). On the other
hand, the quotient variety U (r) := Ur/Sr of Ur by the symmetric group is also affine
(but not smooth if dimU > 2). Let ρ be the quotient map. The function f⊕r descends
to a regular function f (⊕r) on U (r), i.e., f⊕r = f (⊕r) ◦ ρ.

The sheaf ρ∗pQUr is perverse on U (r) (cf. Property 2.1.a(7)) and it is equipped with
an action of Sr. Denote by pQ∧r

U its anti-invariant part (in the perverse sense). This
is a perverse subsheaf (in fact a direct summand) of ρ∗pQUr .

Let δ : ∆ ↪→ U (r) be the image by ρ of the diagonals {ui = uj} ↪→ Ur (i 6= j =
1, . . . , r) and let V be the complementary subset (which is smooth but not affine, in
general). We have the following properties:

• pQ∧r
U |V is a rank-one local system shifted by r dimU ,

• pQ∧r
U = δ!(pQ∧r

U |V ) = Rδ∗(pQ∧r
U |V ).

Proposition 2.3.1. If f is cohomologically tame, then f (⊕r) is cohomologically tame
on U (r) with respect to pQ∧r

U .

Clearly, cohomological tameness with respect to F means that there exists a pro-
jectivization F of f such that φF−cRj∗F = φf−cF for any c ∈ A1.





LECTURE 3

THE SPECTRUM AT INFINITY OF
A TAME FUNCTION

3.1. The Laplace Gauss-Manin systems

Let f : U → A1 be any regular function on a smooth affine variety U . The goal is
to construct algebraically the holomorphic (flat) connection whose sheaf of horizontal
sections is the topological Laplace transform R̂f∗QU . We look for various C[τ, τ−1]-
modules G(k) equipped with an algebraic connection. The construction is a variant
of the de Rham complex: G(k) is the k + 1-th cohomology of the complex

(3.1.1) 0→ O(U)[τ, τ−1]
df−−−→ Ω1(U)[τ, τ−1]

df−−−→ · · ·
df−−−→ Ωn+1(U)[τ, τ−1]→ 0,

where df = eτf ◦dU ◦e−τf = dU−τdf∧. Clearly, G(k) is a C[τ, τ−1]-module, equipped
with a connection ∇̂(k), such that ∇̂(k)

∂τ
is induced by eτf ◦ ∂τ ◦ e−τf = ∂τ − f .

Working in the coordinate θ = τ−1, we can also write this complex as

(3.1.2) 0→ O(U)[θ, θ−1]
d̃f−−−→ Ω1(U)[θ, θ−1]

d̃f−−−→ · · ·
d̃f−−−→ Ωn+1(U)[θ, θ−1]→ 0,

with d̃f = θdU − df∧ and ∇̂(k)
∂θ

= ef/θ ◦ ∂θ ◦ e−f/θ = ∂θ + f/θ2.

Theorem 3.1.3. Each G(k) is C[τ, τ−1]-free of finite rank. The connection ∇̂(k) has a
regular singularity at τ = 0, but possibly an irregular one at τ = ∞, and no other
singularity at finite distance. The sheaf of horizontal sections of ∇̂(k) is naturally
identified with the local system [R̂f∗QU ]k+1.

Sketch of proof.

(1) Each G(k) is holonomic as a C[τ, τ−1]〈τ∂τ 〉-module. On the affine variety
U × Â1∗, consider OU×bA1∗ with connection d − τdf . This connection is flat, and we
get a holonomic DU×bA1∗ -module, that we denote by OU×bA1∗e

−τf . By general results
on holonomic DU×bA1∗ -modules (Bernstein, cf. [15]), the push-forward of OU×bA1∗e

−τf

by the projection p : U × Â1∗ → Â1∗ has holonomic cohomologies. As we work on
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affine varieties, it is equivalent to consider global sections. The push-forward is then
by definition the complex (3.1.1). Therefore, each G(k) is holonomic.

(2) To prove that G(k) is C[τ, τ−1]-free, it is now enough to prove that the connec-
tion on G(k) has no singularity. One could try to argue as follows: one can consider
the parameter τ as a rescaling parameter, and as there is not much difference be-
tween f and τf for a fixed nonzero τ , one cannot create a singularity of G(k). The
gap in this reasoning is that it does not take into account the behaviour of f when
f → ∞. So one should be more precise. Likewise, it seems that, at τ = 0, tensoring
with e−τf does not introduce new singularity; but this argument forgets the behaviour
when f → ∞. It is therefore useful to consider a compactification F̃ : X̃ → P1 of
f : U → A1. By a local analysis at X̃ r U , one checks that OU×bA1∗e

−τf has regular
singularity along τ = 0 (but this connection does not have regular singularity in the
usual sense), and this remains true after push-forward by p.

(3) In any case, the arguments are easier if we first apply the push-forward by f , in
the sense of D-modules, to OU , getting a complex f+OU , and then apply the Laplace
transform (twist by e−tτ followed by integration along t) to f+OU for D-modules on
the affine line A1. The latter only amounts to changing names of variables, but is
better understood.

The push-forward by f of OU as a DU -module, denoted by f+OU , is the complex
of C[t]〈∂t〉-modules analogous to (3.1.1):

(3.1.4) 0→ O(U)[τ ]
df−−−→ Ω1(U)[τ ]

df−−−→ · · ·
df−−−→ Ωn+1(U)[τ ]→ 0,

with df as in (3.1.1). The left C[t]〈∂t〉-module structure is defined in the following
way: ∂t acts as the multiplication by τ , and t acts by multiplication by f on forms
not depending on ∂t and is extended on forms depending on ∂t by using the rule
[∂t, t] = 1. This action commutes with df (check it), hence each cohomology module
M (k) comes equipped with a left C[t]〈∂t〉-module structure i.e., is a C[t]-module with
a connection ∇, so that ∇∂t is the left action of ∂t. Note however that, in general,
M (k) does not have finite type over C[t].

Then, by general results on Gauss-Manin connection or systems, each M (k) is a
holonomic C[t]〈∂t〉-module with regular singularity. Its Laplace transform M̂ (k) is a
holonomic C[τ ]〈∂τ 〉-module, with singularities at 0 and ∞ at most, the singularity
at 0 being regular and the singularity at ∞ being in general irregular. Now, G(k) =
C[τ, τ−1]⊗C[τ ] M̂

(k).
(4) The last statement concerning the sheaf of horizontal sections of ∇̂(k) decom-

poses in two steps: firstly, one shows that taking the de Rham complex commutes
with taking the push-forward, so Rf∗QU is naturally interpreted as the de Rham
complex of f+OU ; secondly, one shows that taking the de Rham complex commutes
with taking the localized Laplace (or topological Laplace) transform. Only at the
very end, one takes the cohomology of the various complexes that one considers.
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3.2. The Brieskorn lattice

Let us keep the notation of §3.1. Set θ = τ−1 and consider the sub-complex of
(3.1.2)

(3.2.1) 0 −→ O(U)[θ]
d̃f−−−→ Ω1(U)[θ]

d̃f−−−→ · · ·
d̃f−−−→ Ωn+1(U)[θ] −→ 0,

with d̃f = θdU − df∧. Despite its apparent analogy with (3.1.4) (changing τ with
τ−1), this complex is not of the same kind. When f is tame, it has good finiteness
properties.

Theorem 3.2.2. If f is cohomologically tame (or M-tame), then this complex has coho-
mology in degree n+1 at most. Its cohomology module G0 := Ωn+1(U)[θ]/d̃fΩn(U)[θ]
is a free C[θ]-module whose rank is equal to the sum of the Milnor numbers of f at
its critical points. G0 is also equipped with a meromorphic connection having a pole
of order two at θ = 0 and a regular singularity at infinity. In particular, the fibre
G0/θG0 of G0 at θ = 0 is equal to the Jacobian module Ωn+1(U)/df ∧ Ωn(U).

Sketch of proof. One starts with a geometric finiteness argument, i.e., working in the
variable t. Let M0 be the image of Ωn+1

U in M = Ωn+1
U [τ ]/dfΩn

U [τ ].

Proposition 3.2.3. If f is cohomologically tame (or M-tame), then M0 is a free C[t]-
module of finite rank generating M as a C[t]〈∂t〉-module.

Indication for the proof (cf. [33, §10]). It is enough to show that M0 is contained in
some free C[t]-module of finite rank (the generating property is by construction). The
candidate is the Deligne lattice V >−1M , which is the unique free C[t]-submodule of M
on which the connection ∇∂t

has only logarithmic poles at Cf and the eigenvalues of
the residue belong to (−1, 0].

The proof is obtained by working locally analytically on X. In order to work with
D-modules, one embeds F : X → A1 into G : Y → A1 with Y smooth and G projective
(the dimension of Y can be much bigger than that of X, this does not matter). Let κ
denote the composed inclusion U ↪→ X ↪→ Y . The proof is first obtained for the
DY -module κ+OU , with its natural good filtration. One then argue using the direct
image by F (one knows that the V -filtration has a good behaviour by proper direct
image).

Remark 3.2.4. Dimca and Saito show in [11, Rem. 3.3] that this property charac-
terizes the cohomologically tame functions (with respect to X) among those func-
tions f which have only isolated singularities on X, that is, for which the support of
φF−cRj∗QU is discrete (or empty) for any c ∈ A1.

We conclude with the general result:
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Lemma 3.2.5 (cf. e.g., [31, Cor. V.2.9]). Let M be a holonomic C[t]〈∂t〉-module with reg-
ular singularities and let M0 be a finitely generated C[t]-submodule which generates M
over C[t]〈∂t〉. Then G0 = C[θ] · M̃0, with M̃0 := image(M0 → G), is a free C[θ]-
submodule of G of finite rank, and G = C[θ, θ−1]⊗C[θ] G0.

3.3. The spectrum

We shall denote U0 = Spec C[τ ] and U∞ = Spec C[θ] the two standard charts of
P1(C), where θ = 1/τ on U0 ∩ U∞. We shall denote 0 = {τ = 0} and ∞ = {θ = 0}.

Let G be a meromorphic bundle on P1, with a connection having singularities at 0
and ∞ only, the singularity at 0 being a regular singularity (but not necessarily the
one at infinity). Then G is a free C[τ, τ−1]-module of finite rank µ, equipped with a
derivation ∂τ which makes it a left C[τ, τ−1]〈∂τ 〉-module.

3.3.a. Lattices. A lattice L0 (resp. L∞) of G on U0 (resp. L∞) is a free C[τ ]
(resp. C[θ])-submodule of G such that C[τ, τ−1] ⊗C[τ ] L0 = G (resp. C[θ, θ−1] ⊗C[θ]

L∞ = G). Given such lattices L0 and L∞, we produce a vector bundle on P1 by
gluing them along the isomorphism L0|C∗ ' G ' L∞|C∗ .

Example 3.3.1. The Brieskorn lattice of a tame function is a U∞-lattice of the Laplace
Gauss-Manin system G of this function.

3.3.b. Deligne lattices on U0. Since the connection on G has a regular singularity
at τ = 0, there exist canonical lattices, called Deligne lattices, on the chart U0. For
any real number α, there exists a unique U0-lattice, denoted by V αG, satisfying the
following properties:

(1) V αG is logarithmic, that is, stable by τ∂τ ,
(2) The residue of the connection on V αG/τV αG has eigenvalues with real part in

[α, α+ 1).

In fact, we get a decreasing filtration (V αG ⊃ V >αG) by logarithmic lattices, and
V α+1G = τV αG for any α.

Assumption 3.3.2. From now on, we assume that the eigenvalues of the residue are
real or, what amounts to the same, that the action induced by τ∂τ −α is nilpotent on
grα

V G := V αG/V >αG, for any α ∈ R.

3.3.c. The vector bundles Gα. Let us fix α ∈ R. The locally free sheaf Gα is
obtained by gluing V αG on U0 and G0 on U∞ using the isomorphisms on U0 ∩ U∞

C[τ, τ−1]⊗C[τ ] V
αG = G = C[θ, θ−1]⊗C[θ] G0.

The following is easy to prove.
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Lemma 3.3.3. We have Gα ⊗ O(−`) ' Gα+` and H0(P1,Gα) = V αG ∩ G0, where the
intersection is taken in G.

As a consequence,
• for any α ∈ R, V αG ∩G0 is a finite dimensional vector space;
• for any fixed α and for ` � 0 we have V α+`G ∩G0 = 0, and for ` � 0 we have

G0 = (V α−`G ∩G0) + θG0.
This can also be stated as

(3.3.4) V α(G0/θG0) =

{
0 if α� 0,

G0/θG0 if α� 0.

3.3.d. The spectrum at infinity. According to Birkhoff-Grothendieck’s theorem,
each Gα decomposes as the sum of line bundles. Let vα denote the number (with
multiplicities) of such line bundles which are > 0, and by να the difference vα − v>α.

Lemma 3.3.5. For α ∈ R, we have

να = dim(V αG ∩G0)/(V α ∩ θG0 + V >α ∩G0).

Proof. Consider the natural morphism

(3.3.6) OP1 ⊗C Γ(P1,Gα) −→ Gα,

whose image is denoted by Vα. This is a subbundle, in the sense that Vα and Gα/Vα

are locally free. This property holds for any holomorphic bundle G on P1: indeed,
the natural morphism is compatible with the Birkhoff-Grothendieck decomposition,
so it suffices to prove it when G is a line bundle; in such a case, either G has global
sections, and (3.3.6) is onto, or G has no global section, and (3.3.6) is zero.

The previous argument shows that the rank of Vα is vα, that the quotient sheaves
Vα/V>α are locally free, and that να = rk Vα/V>α.

Tensoring with OP1(∗0) and taking global section, (3.3.6) is the morphism

C[θ]⊗C (G0 ∩ V αG) −→ G0,

and Γ(P1,Vα(∗0)) is the C[θ]-submodule of G0 generated by the subspace G0 ∩V αG,
that is, C[θ] · (G0 ∩ V αG). Then,

rkVα = dim
[
C[θ] · (G0 ∩ V αG) + θG0

]/
θG0 = dim

[
(G0 ∩ V αG) + θG0

]/
θG0

= dim(G0 ∩ V αG)
/
(θG0 ∩ V αG),

and
να = dim(G0 ∩ V αG)/(θG0 ∩ V αG+G0 ∩ V >αG).

Definition 3.3.7. The spectral polynomial of (G,G0) is

SPG0(S) :=
∏
α∈R

(S − α)να .
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Theorem 3.3.8. Let f : U → A1 be a tame function and let SP∞f (S) := SPG0(S) =∏
α∈R(S − α)να be the spectral polynomial of its Brieskorn lattice. Then,
(1) the polynomial

∏
α∈R(T − e2πiα)να is the characteristic polynomial of the mon-

odromy of Hn+1(U, f−1(t); Q) when t runs along a circle of big radius in the counter-
clockwise direction;

(2) we have να 6= 0 ⇒ (−α) ∈ [0, n + 1] ∩Q (and in (0, n + 1) ∩Q if U = Cn+1),
and να = ν−(n+1)−α;

(3) the spectral polynomial of the Brieskorn lattice is equal to the polyno-
mial attached to the Steenbrink spectrum of the limit mixed Hodge structure of
limt→∞Hn+1(U, f−1(t); C).

Theorem 3.3.9 (cf. [26]). Given a family fλ of regular functions on U parametrized by
a disc. If fλ is tame for any λ, then the spectrum at infinity of fλ is semi-continuous
in the sense of Varchenko. In particular, if the total Milnor number of fλ is constant,
the the spectral polynomial of the Brieskorn lattice of fλ is constant.



LECTURE 4

EXAMPLES

The following examples show two ways of approaching the spectrum at infinity of a
tame function. The first one is geometric, and relies on the singularities of the section
at infinity of the fibres of the function. The second one is more combinatorial.

4.1. García López-Némethi polynomials

Let f = fd+fd−1+· · ·+f0 be a polynomial of n+1 variables x0, . . . , xn decomposed
according to its homogeneous components. We assume that f has degree d, so that
fd 6≡ 0. The natural partial projectivization X of the graph of f is the closure of the
graph of f in Pn+1 × A1. If X0, . . . , Xn, Z are the projective coordinates on Pn+1,
X ⊂ Pn+1 × A1 is defined by the equation

fd(X0, . . . , Xn) + Zfd−1(X0, . . . , Xn) + · · ·+ Zdf0 = tZd.

A GL-N polynomial (also called (∗)-polynomial by these authors, [16, 17]) is poly-
nomial such that X is non-singular.

In general, the singular locus of X in Pn+1×A1 is given by the (X,Z)-homogeneous
equations

∂fd = 0, fd−1 = 0, Z = 0.

In particular, it takes the form Σ×A1. One also checks that the following properties
are equivalent:

(1) X is non-singular,
(2) Each fibre Xt is nonsingular at Xt ∩ {Z = 0}.

The latter property implies that, for any c ∈ A1, φF−cQX is supported in U . Moreover,
the restriction i−1QX = QX∞ to X∞ = X r U satisfies the same property: indeed,
X∞ is defined by the equations fd = Z = 0, hence takes the form Y∞ × A1, with
Y∞ = {fd = 0} ⊂ Pn. Consequently, j!QU satisfies the same property, and by Verdier
duality, so does Rj∗QU . So:
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Proposition 4.1.1. A GL-N polynomial is cohomologically tame.

The projective variety Y∞ defined by the homogenous part of f has singular lo-
cus S∞ defined by the equations ∂fd = 0. By assumption, this set is not met by the
projective hypersurface fd−1 = 0, hence has dimension 0 at most. In other words, Y∞
has at most isolated singularities.

Corollary 4.1.2. Let fd be a homogeneous polynomial of degree d defining a projective
hypersurface Y∞ ⊂ Pn having at most isolated singularities with respective Milnor
numbers µ1, . . . , µr. Then, for any choice of fd−1, . . . , f0, such that fd−1 = 0 does
not contain any singularity of Y∞, the polynomial f = fd + fd−1 + · · ·+ f0 is a GL-N
polynomial with total Milnor number (d− 1)n+1 −

∑
i µi. In particular, the spectrum

of f at infinity does not depend on such a choice of fd−1, . . . , f0.

Proof. It remains to compute the total Milnor number µ. In order to avoid any
computation, one can argue as follows. The Euler characteristic of a smooth fibre
f−1(t) of f is 1 + (−1)nµ. It is equal to χ(Xt) − χ(Y∞). One has χ(Xt) = χ(F d

n),
where F d

n is any smooth hypersurface of degree d in Pn+1. Similarly, χ(Y∞) =
χ(F d

n−1) + (−1)n−1
∑

i µi. So, 1 + (−1)n(µ +
∑

i µi) = χ(F d
n) − χ(F d

n−1). If we
had done the computation starting with f ′d defining a smooth Y ′∞, we would have
obtained 1 + (−1)nµ′ = χ(F d

n)− χ(F d
n−1). For example, taking f ′ = xd

1 + · · ·+ xd
n+1

we find µ′ = (d− 1)n+1. This gives the desired formula for µ.

García López & Némethi compute the limit mixed Hodge structure on the coho-
mology space Hn(f−1(t),C) = Hn+1(U, f−1(t),C) when t→∞ in terms of the mixed
Hodge structure of the (possibly) singular projective variety Y∞.

Around t = ∞, one can choose a good compactification of X after taking a d-th
root of 1/t. Let D′ be a disc with coordinate t′ and let X ′ ⊂ Pn+1 ×D′ defined by

(4.1.3) fd(X0, . . . , Xn) + t′Zfd−1(X0, . . . , Xn) + · · ·+ t′dZdf0 = Zd.

The map Pn+1 ×D′ → Pn+1 ×D given by (X,Z, t′) 7→ (X, t′dZ, t′d) sends X ′
|t′ 6=0 to

the restriction X of X to Pn+1×{|t| � 0}. In other words, X ′ is a nice model (after
ramification of t) of the behaviour of f near ∞. Moreover, the fibre of X ′ at t′ = 0
is the subvariety Y

(d)
∞ of Pn+1 having equation fd − Zd = 0, that is, a d-fold cyclic

cover of Pn along Y∞.
One can roughly summarize the results of [17]:

Theorem 4.1.4.
(1) The integral spectral numbers of f only depend on the Hodge numbers of Y∞.
(2) The spectral numbers in k/d + N, k = 1, . . . , d − 1, only depend on the Hodge

numbers of Y (d)
∞ .

(3) The other spectral numbers are determined by the spectral numbers of each
singular point of Y∞.
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4.2. Nondegenerate Laurent polynomials

In this section, the ambient affine variety U will be a torus (C∗)n+1 and f will be
a Laurent polynomial(1), if we fix global affine coordinates u0, . . . , un on U . One
attaches to this Laurent polynomial a Newton polyhedron Γ(f), obtained as the
convex hull in Rn+1 of the exponents of the monomial which effectively appear in f .
We say, after Kouchnirenko ([23]) that

• f is nondegenerate if, for each facet ∆ of the boundary of Γ(f), denoting by f∆
the corresponding part of f , then f∆ has no critical point,

• f is convenient if 0 belongs to the interior of Γ(f).

4.2.a. The Newton filtration. For any face σ of dimension n− 1 of the boundary
∂Γ(f), denote by Lσ the linear form with coefficients in Q such that Lσ ≡ 1 on σ.
For g ∈ C[u, u−1], put φσ(g) = maxa Lσ(a), where the max is taken on the exponents
of monomials appearing in g, and set φ(g) = maxσ φσ(g).

Remarks 4.2.1

(1) For g, h ∈ C[u, u−1], we have

φ(gh) 6 φ(g) + φ(h)

with equality if and only if there exists a face σ such that φ(g) = φσ(g) and φ(h) =
φσ(h).

(2) As 0 belongs to the interior of Γ(f), we have φ(g) > 0 for any g ∈ C[u, u−1]
and φ(g) = 0 if and only if g ∈ C. This would not remain true without this convenient
assumption.

(3) Set
du

u
=

du0

u0
∧ · · · ∧ dun

un
. If ω ∈ Ωn+1(U), write ω = gdu/u and define

φ(ω) := φ(g).

Consider the Newton increasing filtration N•Ωn+1(U) indexed by Q, defined by

NαΩn+1(U) := {gdu/u ∈ Ωn+1(U) | φ(g) 6 α}.

The previous remark shows that NαΩn+1(U) = 0 for α < 0 and N0Ωn+1(U) =
C · du/u.

Extend this filtration to Ωn+1(U)[θ] by setting

NαΩn+1(U)[θ] := NαΩn+1(U) + θNα−1Ωn+1(U) + · · ·+ θkNα−kΩn+1(U) + · · ·

and induce this filtration on G0:

(1)One could also take U = Cn+1 or U = Ck × (C∗)n+1−k and adapt the constructions made in this
section; in the polynomial case, for instance, the form ω to be considered is du0 ∧ · · · ∧ dun.
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Definition 4.2.2 (Newton filtration of the Brieskorn lattice). The Newton filtration of
the Brieskorn lattice is defined by

NαG0 := image
[
NαΩn+1(U)[θ] ↪→ Ωn+1(U)[θ]→ G0

]
= NαΩn+1(U)[θ]

/(
d̃fΩn(U)[θ] ∩NαΩn+1(U)[θ]

)
.

Lemma 4.2.3. The Newton filtration on G0 satisfies the following properties:

(1) θNαG0 ⊂ Nα+1G0,
(2) ∪αNαG0 = G0,
(3) NαG0 = 0 if α < 0 and dim N0G0 = 1.

Proof. (1) is clear, (2) follows from ∪αNαΩn+1(U) = Ωn+1(U), and (3) follows from
the similar statement for Ωn+1(U).

Definition 4.2.4 (The Newton filtration on the Gauss-Manin system)
For any α ∈ Q, we set

NαG := NαG0 + τNα+1G0 + · · ·+ τkNα+kG0 + · · · .

For instance, we have

N0G = image
[
(N0Ωn+1(U) + τN1Ωn+1(U) + · · ·+ τkNkΩn+1(U) + · · · )→ G

]
.

From the definition, we clearly get τNαG ⊂ Nα−1G, which implies that NαG is
a C[τ ]-module, and the Newton filtration on G is exhaustive. It will be useful to
consider the decreasing Newton filtration, defined by N α := N−α.

4.2.b. Newton filtration and Deligne filtration

Theorem 4.2.5 (cf. [13]). Assume that f is convenient and nondegenerate with respect
to its Newton polyhedron. Then the (decreasing) Newton filtration N •G0 on the
Brieskorn lattice coincides with the filtration G0∩V •G induced on G0 by the filtration
by Deligne lattices V •G.

Corollary 4.2.6 (The spectrum, cf. [13]). The spectrum (or the spectral polynomial) of
the Newton filtration on G0 is equal to the spectrum (or the spectral polynomial) of
the Brieskorn lattice (which is also the spectrum at infinity in the sense of Steenbrink
of the Laurent polynomial f).

Remark 4.2.7. This does not mean that the spectrum is combinatorially easy to com-
pute. A simple example has been computed in [14]. In mirror symmetry, the spectrum
corresponds to the “age” indexing the orbifold cohomology of the projective toric va-
riety having Γ(f) as Newton polyhedron.

Sketch of the proof of Theorem 4.2.5. The main argument is the strictness of the mor-
phism

C[u, u−1]n+1 −→ (u0∂f/∂u0, . . . , un∂f/∂un)
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with respect to the Newton filtration (cf. [23, Th. 4.1]). One deduces the strictness
result N αG0 ∩ θG0 = θN α+1G0 (cf. the decreasing version of Definition 4.2.2). One
then proves that N •G, as defined in Definition 4.2.4, coincides with the filtration
by Deligne lattices. The strictness result above is then used to identify N αG0 with
N αG ∩G0, hence with V αG ∩G0.





LECTURE 5

FOURIER-LAPLACE TRANSFORM OF
A VARIATION OF HODGE STRUCTURE

5.1. Introduction

Given a regular function f : U → A1, each cohomology space of fibres f−1(t)
underlies a mixed Hodge structure, after Deligne [7]. This mixed Hodge structure
varies with the same numerical data as long as t remains away from the bifurcation
set Bf . When t tends to to ∈ Bf or to ∞, this mixed Hodge structure has a limit,
called the limit mixed Hodge structure (a good general reference is [29]).

Such mixed Hodge structures may be quite involved and difficult to compute. Even
for a tame function, the general mixed Hodge structure is possibly not pure. Going to
the Laplace transform simplifies things and kills the constant Hodge structures which
occur as subquotients of the variation of mixed Hodge structure.

Here is an example of such a simplification produced by the Laplace transform.
Recall that, given a polarized variation of Hodge structure on A1 r {p1, . . . , pr}, the
corresponding monodromy representation is semisimple (if we were dealing with uni-
tary representations, the result would easy). Although the variation attached to a
tame function is usually not a polarized variation of pure Hodge structures, we have:

Theorem 5.1.1. Let f : U → A1 be a cohomologically tame function. Then the Laplace
Gauss-Manin system G is semisimple as a C[τ, τ−1]-module with connection.

Be careful that this does not mean that the monodromy of the corresponding
connection on Â1∗ is semisimple, because the connection usually has an irregular
singularity at infinity. A similar result had been proved by N.Katz in an arithmetic
setting [21]. However, the price to pay is the need to extend the notion of variation
of Hodge structure in order to take account the structure on G coming, by Fourier-
Laplace transform, of a variation of Hodge structure.

Proof. Let me first give the sketch of the proof. Consider a good compactification
of f (i.e., that coming in the definition of tameness):

U
� � j //

f   
@@

@@
@@

@ X

F
��

A1
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The fibres F−1(c) (for c ∈ A1 r Cf ) are smooth on U , but are possibly singular
on X r U , and X itself can be singular on some subset of X r U . If we look for
purity or semisimplicity, it is therefore natural to consider the intersection cohomology
IHn(F−1(c),Q) instead of the cohomology Hn(F−1(c),Q).(1)

The family of IHn(F−1(c),Q), when c ∈ A1rCf , forms a locally constant sheaf V!∗.
By a general result (the Decomposition Theorem, [2] and [37], cf. also the survey
article [4]), this locally constant sheaf is semisimple, that is, the corresponding mon-
odromy representation decomposes into direct sum of simple representations. I will
consider the (perverse) sheaf j∗V!∗ on A1. It is then semisimple as a perverse sheaf(2).
Via the Riemann-Hilbert correspondence, it corresponds to a C[t]〈∂t〉-module M!∗
with regular singularities at Cf and at ∞. This C[t]〈∂t〉-module is then semisimple.

The natural composed morphism

IHn(F−1(c),Q) −→ Hn(F−1(c),Q) −→ Hn(f−1(c),Q)

induces a morphism M!∗ → M , where M is the Gauss-Manin system of f (denoted
M (n+1) after (3.1.4)). The kernel and cokernel of this morphism are smooth, that is,
isomorphic to powers of (C[t], d). As a consequence, their localized Laplace transforms
G!∗ and G are isomorphic as C[τ, τ−1]-modules with connection. But M!∗ semisimple
as a C[t]〈∂t〉-module trivially implies that its Laplace transform M̂!∗ is semisimple as
a C[τ ]〈∂τ 〉-module. The following lemma shows that this implies that the localized
module G!∗ is so as a module with connection. Therefore, G = G!∗ is so as a module
with connection.

Lemma 5.1.2. Let N be a simple C[τ ]〈∂τ 〉-module with singularity at 0 only. Then the
localized module H = C[τ, τ−1]⊗C[τ ] N is a simple C[τ, τ−1]-module with connection.

Proof. Indeed, note first that H is also a C[τ ]〈∂τ 〉-module and that the map N → H

is injective. If H ′ ⊂ H is a strict C[τ, τ−1]-submodule with connection, it is also a
C[τ ]〈∂τ 〉-submodule. Therefore, H ′ ∩ N = 0. As τ acts bijectively on H ′, we also
have H ′ ∩ τ−kN = 0 for any k, hence 0 = H ′ ∩

⋃
k>0(τ

−kN) = H ′ ∩H = H ′.

I will now justify the previous statements sketched above. The main point is to
remark that the intersection complex ICX(Q) sits between j!QU and Rj∗QU :

j!QU −→ ICX(Q) −→ Rj∗QU ,

and that the cones of both morphisms do not have vanishing cycles either, so that
their direct images have constant perverse cohomology sheaves. Note that, in the
case of GL-N polynomials considered in §4.1, ICX(Q) reduces to QX , as X is smooth.
I will now use the perverse shift convention, as in §2.1. So the perverse cohomology of

(1)Of course, in the case of GL-N polynomials considered in §4.1, considering the cohomology is
enough.
(2)The proof goes the other way, by proving first that j∗V!∗ is a simple perverse sheaf.
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the cone of RF∗ ICX(pQ)→ Rf∗
pQU consists of constant sheaves shifted by one. On

the other hand, the absence of vanishing cycles above implies that pH `RF∗ ICX(pQ)
and pH `Rf∗

pQU are constant sheaves shifted by one if ` 6= 0. In the long exact
sequence of perverse cohomology

· · · −→ pH −1Rf∗
pQU −→ pH 0C

−→ pH 0RF∗ ICX(pQ) −→ pH 0Rf∗
pQU

−→ pH 1C −→ pH 1RF∗ ICX(pQ) −→ · · ·

all the terms but those in the middle are constant sheaves (shifted by one), hence we
get a short exact sequence

0 −→ F1 −→ pH 0RF∗ ICX(pQ) −→ pH 0Rf∗
pQU −→ F2 −→ 0

in the perverse category, where F1,F2 are constant sheaves shifted by 1. By the
Riemann-Hilbert correspondence, this gives the exact sequence

0 −→ N1 −→M!∗ −→M −→ N2 −→ 0,

with N1, N2 isomorphic to powers of (C[t], d).

Example 5.1.3. Consider the function f : Cn+1 → C given by f(x0, . . . , xn) =
∑
x2

i .
We have r = 1 and p1 = 0.

• If n = 1, then pH 0Rf∗
pQU = j!

pQA1r{p1,...,pr},
pH 0RF∗ ICX(pQ) = i0,∗Q0, so

V!∗ = 0, F1 = 0 and F2 = pQA1 .
• If n = 2, then pH 0Rf∗

pQU = j∗V , where V has rank one, pH 0RF∗ ICX(pQ) =
j∗V!∗, where V!∗ has rank two, F1 has rank one and F2 = 0.

5.2. Variation of Hodge structure

5.2.a. Definition. Let us fix a finite set of points {p1, . . . , pr} in A1, and let us set
X = A1 r {p1, . . . , pr}. Let V be a locally constant sheaf on X of rank d (i.e., a
representation of π1(X)→ GLd(C)). It defines a holomorphic vector bundle V on X,
equipped with a holomorphic connection ∇, such that V ∇ = V .

Let H = C∞
X ⊗OX

V be the associated C∞ bundle, equipped with the C∞ con-
nection D = ∇ + ∂. A polarized variation of Hodge structure of weight w ∈ Z on V

consists of the following data:

(1) a decomposition of the C∞ bundle H, usually denoted by H =
⊕

pH
p,w−p, by

C∞ subbundles,
(2) a Hermitian metric h on H,

subject to the following conditions:

(a) the decomposition is orthogonal with respect to h and the nondegenerate Her-
mitian form S = ⊕pi

w(−1)ph|Hp,w−p is D-flat,
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(b) (Griffiths’ transversality)

∇(Hp,w−p) ⊂ (Hp,w−p ⊕Hp−1,w−p+1)⊗OX
Ω1

X

∂(Hp,w−p) ⊂ (Hp,w−p ⊕Hp+1,w−p−1)⊗OX
Ω1

X
.

(5.2.1)

Given such a variation, we set F pH =
⊕

p′>pH
p′,w−p′ . This defines a holomorphic

subbundle of H (i.e., ∂F pH ⊂ F pH ⊗ Ω1
X

, and F pV := Ker ∂|F pH is a holomorphic
subbundle of V . Moreover, ∇F pV ⊂ F p−1V ⊗ Ω1

X .

5.2.b. Extension to P1. The previous data were holomorphic on A1 r {p1, . . . , pr}.
We wish to extend them to P1 and apply to them a GAGA theorem in order to get
algebraic objects.

Extension of (V,∇) as a meromorphic bundle. According to Deligne [6], there ex-
ists, up to isomorphism, a unique meromorphic bundle on P1 with poles at D =
{p1, . . . , pr,∞}, that I denote by M̃ , that is a locally free OP1(∗D)-module) equipped
with a meromorphic connection having regular singularities at D, which restricts to
(V,∇) on X = P1 rD.

According to a theorem of Schmid ([40]), M̃ is characterized as the subsheaf of
j∗V (j : X ↪→ P1) consisting of local sections whose h-norm has moderate growth
along D.

Extension of (V,∇) as a C[t]〈∂t〉-module. One can regard M̃ as a DP1-module. As
such, it contains a submodule M such that DR M = j∗V . We will consider its
localization at∞, denoted M (∗∞) (which coincides with M̃ near∞). By an analogue
of GAGA, M is algebraic, and M := Γ(P1,M (∗∞)) is a holonomic C[t]〈∂t〉-module.

Extension of the filtration. Schmid results ([40]) applied to the filtration F •V , to-
gether with the previous algebraization procedure, produce a good filtration (written
in a decreasing way) F •M of M as a C[t]〈∂t〉-module.

Extension of the flat sesquilinear pairing. Lastly, the flat sesquilinear pairing S ex-
tends as a sesquilinear pairing

M ⊗C M −→ S ′(A1)

which takes values in the space of temperate distributions (Schwartz space) and is
C[t]〈∂t〉 ⊗C C[t]〈∂t〉-linear.

5.3. Fourier-Laplace transform of the algebraic data

Given (M,F •M,S), where M is any regular holonomic C[t]〈∂t〉-module, F •M is a
good filtration of M (written in a decreasing way) and S : M ⊗C M → S ′(A1) is a
C[t]〈∂t〉 ⊗C C[t]〈∂t〉-linear morphism, we will define the Fourier-Laplace transform of
this set of data.



5.3. FOURIER-LAPLACE TRANSFORM OF THE ALGEBRAIC DATA 29

5.3.a. Laplace transform M̂ of M . This is very simple: using the identification
C[t]〈∂t〉 ' C[τ ]〈∂τ 〉 given by t 7→ −∂τ and ∂t → τ , we regard M as a C[τ ]〈∂τ 〉-module
and call it M̂ . Later, we will consider G := C[τ, τ−1] ⊗C[τ ] M̂ , equipped with its
natural connection.

5.3.b. Laplace transform of the good filtration F •M . The result of this Laplace
transform will be the Brieskorn lattice of the good filtration. This is a free C[θ]-module
G

(F
•
)

0 of G such that G = C[θ, θ−1]⊗C[θ] G
(F

•
)

0 . Let us explain its construction.
For any C[t]-submodule L of M of finite type, we regard it as a C[∂τ ]-submodule

of M̂ , and we denote by L′ its image in G via the natural morphism M̂ → G. We
then set

G
(L)
0 =

∑
j>0

θjL′ ⊂ G.

This is the C[θ]-submodule of G generated by L′. The action of ∂τ on L′ naturally
extends as an action of θ2∂θ on G

(L)
0 . Using that M has a regular singularity at

infinity, one proves that G(L)
0 is free of finite rank over C[θ].

We apply this to any F pM , and because F pM is good, we get θG(F p−1)
0 ⊃ G

(F p)
0

for any p, with equality for p� 0. it is therefore natural to apply a normalization:

G
(F

•
,p)

0 := θ−pG
(F p)
0

so that G(F
•
,p−1)

0 ⊃ G
(F

•
,p)

0 with equality for p � 0. We denote by G
(F

•
)

0 the
C[θ]-module G(F

•
,p)

0 for p � 0. It is equipped with an action of θ2∂θ and satisfies
C[θ, θ−1]⊗C[θ] G

(F
•
)

0 = G.

Example 5.3.1 (Relation with §3.2). Assume that f : U → A1 is tame. Let M =
M (n+1) be the Gauss-Manin system of f , as defined by (3.1.4). By the general
theory of mixed Hodge modules [38], M has a distinguished good filtration FH

• M ,
called its Hodge filtration, which restricts, for each t 6∈ Cf , to the Hodge filtration
(taken in an increasing way) of the mixed Hodge structure on Hn(f−1(t),C). Let us
set FpM = FH

p−(n+1)M for any p. Then,

G
(F

•
)

0 = G0.

This is not obvious, as the construction of FpM takes into account the behaviour near
X r U (e.g., the order of the pole along X r U of algebraic differential forms on U),
while that of G0 does not rely on any restriction along X r U .

5.3.c. Fourier transform of the flat sesquilinear pairing S. Note that tτ−tτ =
−2i Im(tτ) = −2i(Re t Im τ + Im tRe τ). Then the Fourier transform Ft with ker-
nel exp(tτ − tτ) i

2πdt ∧ dt is an isomorphism between S ′(A1) (t-plane) and S ′(Â1)
(τ -plane). Given a 2-form ψ in the Schwartz space S (Â1) (i.e., ψ = χ(τ)dτ ∧ dτ
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with χ C∞, rapidly decaying as well as all its derivatives when τ → ∞), we set, for
u ∈ S ′(A1),

〈Ftu, ψ〉 := 〈u,Fτψ
i

2πdt ∧ dt〉, with Fτψ =
∫
etτ−tτψ.

(Recall that Fτψ belongs to S (A1).) If S : M ⊗C M → S ′(A1) is a sesquilinear
pairing, we denote by Ŝ the composition Ft ◦ S of S with the Fourier transform of
temperate distributions. Then Ŝ becomes a C[τ ]〈∂τ 〉 ⊗C C[τ ]〈∂τ 〉-linear morphism
(that we call a sesquilinear pairing)

Ŝ : M̂ ⊗C ι+M̂ −→ S ′(Â1).

where ι is the map τ 7→ −τ (the ι+ is needed as we use the kernel etτ for the Laplace
transform of M , not e−tτ ). If we localize we respect to τ , we get a sesquilinear pairing

Ŝ : G⊗C ι+G −→ S ′(Â1∗),

where S ′(Â1∗) denotes the set of distributions on Â1∗ having moderate growth at
τ = 0 and τ =∞. In fact, the distributions which are in the image of Ŝ do not have
singularities on Â1∗, hence they are C∞ there.



LECTURE 6

THE ‘NEW SUPERSYMMETRIC INDEX’ OF
A TAME FUNCTION

We continue to investigate the Fourier-Laplace transform of a polarized variation of
Hodge structure on X = A1 r {p1, . . . , pr}. We keep the notation introduced in §5.2.
Starting from a polarized variation of Hodge structure (V, F •V, S) on X, we have
obtained in §5.3 a free C[θ, θ−1]-module G with connection, a C[θ]-lattice G(F

•
)

0 of it
on which the connection has a pole of order 2 at most, and a sesquilinear pairing Ŝ.

The ideas developed here come from various sources. The idea of the twistor con-
struction with metric goes back to C. Simpson [41]. Applying this to singularities
or tame functions goes back to the work of Cecotti and Vafa [5], and has been em-
phasized by C.Hertling [19], followed by his work with C. Sevenheck ([20] and recent
preprints). On the other hand, the application to tame functions has been developed
in [32, 34, 35]. However, this is the visible part of an iceberg (cf. [25], see also [36]).

6.1. Positivity property of the Fourier-Laplace transform

6.1.a. The twistor construction. In order to express the positivity property in
the Fourier-Laplace setting, which should be analogous to the positivity property
of the Hermitian metric h in the definition of §5.2.a, let us look more closely at Ŝ.
Working in the analytic topology on Â1∗, G becomes a holomorphic vector bundle G

with holomorphic connection, Ŝ becomes a sesquilinear pairing

Ŝ : G ⊗C ι∗G −→ C∞bA1∗ .

Let G denote the sheaf of horizontal sections of G . This is a local system on Â1∗,
and Ŝ, being compatible with the connection and its conjugate, induces a sesquilinear
pairing (of sheaves of C-vector spaces)

Ŝ : G⊗C ι−1G −→ CbA1∗ .

Let S denote the circle |θ| = 1. Clearly, giving Ŝ is equivalent to giving (Ŝ)|S. Now,
on S, the map ι is also equal to the restriction to S of the map σ : θ 7→ −1/θ. Taking
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the same way in the opposite direction, we find that Ŝ induces a pairing

(6.1.1) Ĉ : G ⊗ObA1∗ σ∗G −→ ObA1∗ ,

where now every term is holomorphic, and which is compatible with the holomorphic
connection.

Theorem 6.1.2. Assume, for simplicity, that the weight w of the given polarized vari-
ation of Hodge structure on A1 r {p1, . . . , pr} is zero. Then,

(1) Ĉ is nondegenerate, hence defines a gluing of G ∨
0 with σ∗G0 giving rise to a

holomorphic bundle H ∨ on P1; let H be the dual bundle;
(2) this holomorphic bundle H is trivializable, and we set H = Γ(P1,H ),
(3) the canonical identifications

G0/θG0
∼←− Γ(P1,H ) = H

∼−→ σ∗G0
∨
/τσ∗G ∨

0 = G0/θG0
∨

define a Hermitian form on the vector space G0/θG0 = G0/θG0, hence on H and on
any fibre G0/(θ − θo)G0, θo ∈ C,

(4) this Hermitian form is positive definite.

Exercise 6.1.3. This exercise shows that, in the case of a Hodge structure (cf. §5.2.a),
going from S to h can be regarded as a particular case of the construction used in
Theorem 6.1.2.

Let H be a complex vector space with a decomposition H =
⊕

pH
p,−p (we assume

here that the weight is zero) and a sesquilinear pairing S : H ⊗C H → C such that
the decomposition is S-orthogonal and the sesquilinear form h defined by h|Hp,−p =
(−1)pS|Hp,−p and h(Hp,−p,Hq,−q) = 0 if q 6= p, is Hermitian positive definite. Set
F pH =

⊕
p′>pH

p,−p. In other words, (H,F •H,S) is a polarized complex Hodge
structure of weight 0.

(1) Set G0 =
⊕

k(F pH)θ−p. Show that G0 is a free C[θ]-module isomorphic to⊕
r

(
θ−rC[θ]⊗C H

r,−r
)
.

(2) Show that G := C[θ, θ−1]⊗C[θ] G0 is isomorphic to C[θ, θ−1]⊗C H.
(3) Extend S in a C[θ, θ−1]-linear way to get

S : G⊗C[θ,θ−1] σ
∗G −→ C[θ, θ−1].

(4) Show that the bundle H defined (after duality) by the gluing S is trivializable.
(5) Identify H with Γ(P1,H ) and h with the Hermitian form of Theorem 6.1.2(3).
(6) Identify G0/θG0 with grFH.

6.1.b. Indication for the proof of Theorem 6.1.2. Let me clarify the meaning
of the theorem. Recall the construction of G: starting from the C[t]〈∂t〉-module
M constructed in §5.2.b, obtained from the DP1-module M (∗∞) whose de Rham
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complex is j∗V near p1, . . . , pr and Rj∗V near ∞, we can regard G as the cokernel
of the morphism

C[θ, θ−1]⊗C M
∂t − θ−1

−−−−−−−−→ C[θ, θ−1]⊗C M,

that we can also write as et/θ∂te
−t/θ, and so, for any θo 6= 0, the fibre G/(θ− θo)G is

the cokernel of

M
et/θo∂te

−t/θo

−−−−−−−−−−−→M.

In the theorem, we remark that G coincides with G0 away from θ = 0, so for any
θo 6= 0, G0/(θ − θo)G0 = Coker(et/θo∂te

−t/θo). In particular, for any such θo, we
should obtain a Hermitian metric on this cokernel. Moreover, we should have a
canonical identification of these cokernels with metric, when θo varies in C∗. Lastly,
this identification should extend to θo = 0, but now on G0/θG0 (because G is not
defined at θ = 0).

I will only explain how to get a Hermitian metric on the cokernel when θo = 1,
by comparing with the proof by Zucker [44] of the construction of a polarized Hodge
structure on the cohomology H1(P1, j∗V ) (cf. notation of §5.2.b). I will use the
abbreviation regular case for the case considered by Zucker, and exponentially twisted
case for the case considered in Theorem 6.1.2.

Step zero: the metric and the connection
• Regular case. On the bundle V we consider the metric h and the connection ∇.

Note that ∇ is not a metric connection. This is related to the fact that ∇ does not
preserve the Hodge filtration F pV .

• Exponentially twisted case. We now twist the connection ∇ and consider F∇ :=
et∇e−t = ∇ − dt. Correspondingly, we change the metric near ∞ and consider
Fh := e2 Re th.

Step one: the meromorphic L2 complex and Poincaré lemma
• Regular case. Considering the meromorphic de Rham complex (Ω•

P1(M̃ ),∇), we
get a resolution of the complex Rj∗V (by construction). Among the meromorphic
sections, let us consider those which are locally L2 (on P1): in order to define such a
notion, we need a metric on V (take h) and a metric on forms (take a complete metric
on X locally equivalent to the Poincaré metric at p1, . . . , pr,∞). We then denote by
Ω1

P1(M̃ )(2) these L2-forms, and by M̃(2) the sections of M̃ whose restrictions to
A1 r {p1, . . . , pr} are L2 near the punctures, and whose ∇-derivative is L2, i.e., lies in
Ω1

P1(M̃ )(2). Therefore we get the meromorphic L2 de Rham complex

DR(M̃ )(2) = {0 −→ M̃(2)
∇−−−→ Ω1

P1(M̃ )(2) −→ 0}.
• Exponentially twisted case. Same construction with Fh instead of h and F∇

instead of ∇. Note that the only difference is at infinity, as et is holomorphic and
invertible at finite distance, and the twist is inessential there. We get DR(FM̃ )(2).
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Lemma 6.1.4 (Meromorphic L2 Poincaré lemma)
• Regular case. The complex DR(M̃ )(2) is a resolution of j∗V , i.e., is quasi-

isomorphic to DR M
• Exponentially twisted case. The complex DR(FM̃ )(2) is quasi-isomorphic to

DR(M (∗∞),∇− dt).

Taking global hypercohomology we get:
• Regular case. H∗(P1,DR(M̃ )(2)) = H∗(P1, j∗V ),
• H1(P1,DR(FM̃ )(2)) = G/(θ − 1)G.

Step two: the L2 complex and Poincaré lemma
• Regular case. We now work in the C∞, and even distributional, context. We

consider the bundle H = C∞
X ⊗ V (X = A1 r {p1, . . . , pr}) with its flat connection

D := ∇+∂ and its metric h. The L2 complex L(2)(H,D, h) on P1 is made of sections
of H (or H ⊗ dt, H ⊗ dt, H ⊗ (dt ∧ dt)) which are L2 as well as their D-derivative,
with respect to the metric h and the Poincaré metric. It is quite clear that we have
an inclusion of complexes DR(M̃ )(2) ↪→ L(2)(H,D, h).

• Same construction with Fh and F∇, to get L(2)(H, FD, Fh) and an inclusion
DR(FM̃ )(2) ↪→ L(2)(H, FD, Fh).

Lemma 6.1.5 (L2 Poincaré lemma). Both inclusions are quasi-isomorphisms.

Step three: conclusion. By the two Poincaré lemmas, we conclude that the L2 coho-
mology is finite dimensional. It is then possible to apply Hodge Theory to the Laplace
operator attached to (H,D, h) (resp. (H, FD, Fh)) and the chosen complete metric
on X. This gives representatives of cohomology classes in H∗(P1, j∗V ) (resp. elements
of G/(θ−1)G) which are harmonic. The L2 metric on the L2 spaces (the terms of the
L2 complexes) induces a metric on the harmonic sections: this is the desired metric.

Idea for the end of the proof. Such an argument can be extended to any θo, provided
θo 6= 0. The identification of the spaces and metrics for various θo comes from the
fact that the L2 complexes have the same terms (but not the same differentials) and
the corresponding Laplacians are positively proportional, hence give rise to the same
harmonic sections.

At θo = 0, this argument breaks down and one has to invoke another argument,
called the L2 Dolbeault lemma.

6.1.c. Application to tame functions. Recall the philosophy developed up to
now: although the cohomology H∗(f−1(t),C) of a generic fibre of a tame function
f : U → A1 is equipped with a mixed Hodge structure, and more precisely although
the Gauss-Manin system M underlies a mixed Hodge module, its Laplace transforms
behaves as if M were a pure Hodge module. This also holds for the polarization.
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Therefore, by the general result above we get a positive definite Hermitian form on
G0/θG0 = Ωn+1(U)/df ∧ Ωn(U). This form should have a geometric expression.

For any t ∈ A1 r Cf , the fibre f−1(t) is smooth, hence there exists a canonical
duality pairing

Hn
c (f−1(t),C)⊗C H

n(f−1(t),C) −→ C,
that we can make sesquilinear:

Pt : Hn
c (f−1(t),C)⊗C Hn(f−1(t),C) −→ C.

This pairing is realized at the level of differential forms: if α, β are C∞ forms of degree
n on f−1(t), and if α has compact support, then

Pt([α], [β]) =
∫

f−1(t)

α ∧ β.

This is the restriction of a duality at the level of complexes (sesquilinear Poincaré-
Verdier duality)

P : Rf!
pCU ⊗C Rf∗pCU −→ CA1 [2].

Let us apply the topological Laplace transform of §1.6. Both complexes Rf!
pCU and

Rf∗
pCU have the same transform, which is identified with G[1] (where G is defined in

§6.1.a). Because of the conjugation, the Laplace transform of Rf∗pCU is ι−1G, and
we get a nondegenerate sesquilinear pairing

P̂ : G⊗ ι−1G −→ CbA1∗ .

Notice that P̂ can be computed from the restriction

P! : Rf!
pCU ⊗C Rf!pCU −→ CA1 [2].

One can also give the following more concrete interpretation of P̂ . Let us fix θo ∈ Â1∗.
Then the stalk

P̂θo
: Gθo

⊗C G−θo
−→ C

is identified with the natural duality pairing

Hn+1
Φf∗,θo

(U,C)⊗C H
n+1
Φf!,−θo

(U,C) −→ H2n+2
c (U,C)

∫
[U ]−−−−→ C,

where Φf∗,θo denotes the family of closed sets of U which are contained in f−1(F ),
F ∈ Φθo , and Φf!,−θo is the subfamily of Φf∗,−θo consisting of those sets on which f

is proper. In particular, Φf∗,θo
∩ Φf!,−θo

consists of closed sets on which f is proper
and whose image by f is compact, hence is the family of compact sets.

Set Ŝ = [(−1)n(n+1)/2/(2πi)n+1]P̂ , let Ĉ : G ⊗ObA1∗ σ∗G → ObA1∗ be the sesquilinear
pairing given by (6.1.1). Using the Brieskorn lattice G0 of f , we construct, as in
Theorem 6.1.2, a holomorphic bundle H .

Theorem 6.1.6 (Positivity theorem for tame functions). The conclusion of Theorem
6.1.2 applies to H .
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6.2. The ‘new supersymmetric index’

6.2.a. The self-adjoint operator Q. Recall that the pairing (6.1.1) is compatible
with the connections. This is equivalent to saying that the meromorphic connections
on G ∨

0 and that on σ∗G0 glue together as a meromorphic connection on H , with a
pole of order two at θ = 0 and a pole of order two at θ =∞, and no other pole.

As H is trivial, we can write H ∨ = H ⊗ OP1 , and using this trivialization, the
connection has to be written in the following form:

∇∂θ
= ∂θ + U /θ2 −Q/θ −U †,

where U ,Q,U † are endomorphisms of H. Moreover, U † is the h-adjoint of U and
Q is self-adjoint. This operator, which was first introduced by Cecotti and Vafa, is
called the ‘new supersymmetric index’ of the variation of Hodge structure. In the
case of the Brieskorn lattice of a tame function, as in §6.1.c, it is called the ‘new
supersymmetric index’ of f .

The spectrum of Q consists of real numbers. It is in general difficult to compute
explicitly. I denote its characteristic polynomial by Susy.

6.2.b. Limits of the characteristic polynomial of Q by rescaling f . Instead
of computing the polynomial Susyf for a given tame function, one may try to compute
the polynomial Susyτf for any rescaling parameter τ ∈ C∗. One can show that the
coefficients of this polynomial are real-analytic with respect to τ . The following was
conjectured by C.Hertling:

Theorem 6.2.1. Assume f : U → C is cohomologically tame. Then,

lim
τ→0

Susyτf (T ) = SP∞f (T − (n+ 1)/2),

lim
τ→∞

Susyτf (T ) = SP0
f (T − (n+ 1)/2),

where SP∞f is the spectral polynomial of the Brieskorn lattice of f as in Definition
3.3.7, and SP0

f is the product of all spectral polynomials of f at its critical points.

Varchenko-
Steenbrink
spectrum
at crit f

mspectru
at f = ∞

τ0 ∞

Sp Qτ



LECTURE 7

MONODROMY AT INFINITY

In this lecture, I will consider the properties of the monodromy at infinity of a
function f : U → A1 which is not supposed to be tame. More precisely, I will consider
the monodromy around a circle with |t| large of Hk(U, f−1(t),Q). It is denoted by
T

(k)
∞ .

7.1. The monodromy at infinity is important

Let us start with a general result. Let F be a Q-constructible sheaf (not a complex)
on A1, with singular points p1, . . . , pr, so that F|A1r{p1,...,pr} is a locally constant sheaf
of Q-vector spaces.

Proposition 7.1.1. For such a sheaf, the property that Hk(A1,F ) = 0 for all k (that is,
for k = 0, 1, 2) is equivalent to the property that, for |po| � 0 and a suitable system
of paths [po, pi] (e.g., a star centered at po), the natural morphism Fpi → Fpo is
injective and the “diagonal” map Fpo

→
⊕r

i=1 Fpo
/Fpi

is an isomorphism.

The proof is done by using a Mayer-Vietoris presentation of the cohomology of F

(cf. [22, Th. 2.29]). Notice that the proof, being purely topological, applies to con-
structible sheaves of Z-modules. Notice also that a sheaf satisfying the property of
the proposition is a perverse complex, when shifted by one (cf. loc. cit.).

Corollary 7.1.2. Let F be a constructible sheaf with no cohomology on A1 and let
ρ : π1(A1 r {p1, . . . , pr}) → Aut(Fpo

) be the monodromy representation attached to
the local system F|A1r{p1,...,pr}. Then the following are equivalent:

(1) ρ is trivial, i.e., image(ρ) = {Id},
(2) T∞ = Id.

Proof. For the given system of paths, consider the monodromy Ti along a loop follow-
ing the path [po, pi − ε], winding once around pi and going back along the same path
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to po. Then Fpi
⊂ Ker(Ti − Id). On the other hand, using the decomposition above,

Fpi
'

⊕
j 6=i Fpo

/Fpj
. Moreover, T∞ decomposes as T∞ = T1 · · ·Tr (cf. [22]). From

this presentation one deduces that the monodromy representation ρ is determined
from the Ti. Then the proof follows from Lemma 7.1.3 below.

Lemma 7.1.3. Let F be a vector space having a decomposition F =
⊕r

i=1 Fi and let
T1, . . . , Tr be automorphisms such that Ti = Id+Vi and ∀ i, KerVi ⊃

⊕
j 6=i Fj. Set

T∞ = T1 · · ·Tr. Then T∞ = Id⇔ ∀ i, Ti = Id.

Proof. For any v ∈ F1, T∞(v) = T1(v). So the assumption T∞ = Id implies that
T1 = Id on F1. As T1 = Id on

⊕
j 6=1 Fj , it follows that T1 = Id and the lemma follows

by induction.

Example 7.1.4. Let f : U → A1 be a regular function on a smooth affine variety.
Let p : A1 → Spec C be the constant map to a point. There is a natural morphism
p−1RΓ(U,Q)→ Rf∗QU whose cone C has cohomology sheaves H k(C ) with stalk at
t 6∈ Bf given by Hk(U, f−1(t)). Taking global sections over A1 gives an isomorphism
(in the derived category of vector spaces) RΓ(U,Q) ∼−→ Rp∗Rf∗QU (because p ◦ f is
the constant map U → Spec C). This implies RΓ(A1,C ) = 0, i.e., the complex C has
no global hypercohomology on A1.

If moreover f is tame then, as Rf∗QU is compatible with base change (cf. e.g., [9,
Th. 6.2.15]), the stalk of H k(C ) at any t ∈ A1 is equal to Hk(U, f−1(t)). But the
tameness condition implies that, for k 6= n+1, Hk(U, f−1(t)) = 0 (cf. [33, Th. 8.1] or
[9, Cor. 6.2.16]). Therefore the sheaf H n+1(C ) satisfies the property of Proposition
7.1.1, and therefore the monodromy at infinity is equal to identity if and only if the
representation ρ : π1(A1 r Cf )→ Aut

(
Hn+1(U, f−1(to))

)
is trivial.

Example 7.1.5 (Dimca-Némethi [10]). Assume now that U = Cn+1, but f is any
polynomial (possibly not tame). Consider the various representations ρ(k) :
π1(A1rBf , po)→ Aut

(
Hk(U, f−1(po),Q)

)
. Notice that, if k > 1,Hk(U, f−1(po),Q) =

H̃k−1(f−1(po),Q) (reduced cohomology).

Theorem (Dimca-Némethi [10]). Fix k > 1. The following are equivalent:

(1) T (k)
∞ = Id,

(2) image(ρ(k)) = {Id}.

Proof. The proof is first done in homology. One shows that a decomposition exists on
the relative homology (i.e., the reduced homology), by using a star with center po and
with ends the points of Bf . Taking benefit of the representation of homology classes
by cycles in the fibres of f , one shows that the homological monodromy Ti satisfies a
property dual of that of Lemma 7.1.3, namely, image(Ti − Id) ⊂ Fi. Corollary 7.1.2
applies then in the same way and the result follows by duality on cohomology.
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7.2. Size of the Jordan blocks of T∞, examples in the tame case

In this section, I will assume that f is cohomologically tame.

7.2.a. Multiplication by f and monodromy at infinity. Recall that multipli-
cation by f on its Brieskorn lattice G0 is interpreted as the action of the differen-
tial operator θ2∂θ. When induced on the finite dimensional vector space G0/θG0 =
Ωn+1(U)/df ∧ Ωn(U), it defines an endomorphism having Cf as its eigenvalues.

On the other hand, f acts on the Laplace Gauss-Manin system as −∂τ , and thus
shifts by −1 the Deligne filtration V •G, that is,

f · V αG = (−∂τ )V αG ⊂ V α−1G.

We can then consider the graded action of f :

[f ] : grα
V (G0/θG0) −→ grα−1

V (G0/θG0)

which is a nilpotent endomorphism on the graded space

gr•V (G0/θG0) :=
⊕
α

grα
V (G0/θG0).

Example 7.2.1 (Convenient and nondegenerate Laurent polynomials)
If U = (C∗)n+1 with coordinates u0, . . . , un, let ω be the differential form

du0

u0
∧ · · · ∧ dun

un
. Then the identification Ωn+1(U) = O(U) · ω gives an algebra

structure on Ωn+1(U)/df ∧ Ωn(U) ' O(U)/(∂f) (the Jacobian algebra). The
Newton filtration is compatible with this structure, and we get a graded algebra
grN [O(U)/(∂f)]. By definition, f has degree one with respect to the Newton
filtration (considered in an increasing way), and induces by multiplication a nilpotent
endomorphism on this graded algebra.

Such an algebra occurs in a completely different framework. Let X(Γ) be the
toric variety defined by the polyhedron Γ, together with its embedding in a projective
space with associated canonical bundle O(1). Then, in many examples, this algebra is
interpreted as the orbifold cohomology of X(Γ) and [f ] is the cup product by c1(O(1)).

Theorem 7.2.2 (Varchenko [43]). Let T∞ be the monodromy of Hn+1(U, f−1(t)) along
a circle of big radius positively oriented. Then the Jordan structure of the nilpotent
part of T∞ relative to an eigenvalue λ is the same as the Jordan structure of [f ] acting
on

⊕
α|e2πiα=λ grα

V (G0/θG0).

The proof of the theorem in the global setting follows the same lines as in the local
setting, cf. [39, Th. 7.1].

Remark 7.2.3. Recall that the spectrum is contained in [0, n + 1] (or (0, n + 1) if
U = Cn+1). This description makes then clear that the maximal possible size of a
Jordan block of T∞ is n + 1 if λ 6= 1. However, if λ = 1, we expect in general a



40 LECTURE 7. MONODROMY AT INFINITY

possible maximal size equal to n+ 2, while, when U = Cn+1, this can be at most n.
This difference is produced by the cohomology of U .

One could expect that, nevertheless, the size of the Jordan blocks of the monodromy
at infinity on Hn+1(f−1(t)) is n. The example below shows that this is not to be
expected (see also Remark 7.3.3).

Example 7.2.4. Assume n = 1 and f : (C∗)2 → C is defined by f(u0, u1) = u0 +
u1 + 1/u0u1. Then f has three nondegenerate critical points, with critical values
3ζ (ζ3 = 1), and if t is a regular value, dimH2(U, f−1(t)) = 3. We have the exact
sequence

0 −→ H1(U) −→ H1(f−1(t)) δ−−→ H2(U, f−1(t)) −→ H2(U) −→ 0,

showing that dimH1(f−1(t)) = 4. The monodromy at infinity on H2(U, f−1(t)) has
a Jordan block of size 3 = n+ 2 (cf. the computation in [14]).

On the other hand, one can check that the monodromy at infinity on H1(f−1(t))
has a Jordan block of size 2 = n + 1. This is done by showing that there exists a
variation map v : H2(U, f−1(t))→ H1(f−1(t)) such that vδ and δv are T∞−Id on the
corresponding spaces. Therefore, if ω ∈ H2(U, f−1(t))1 is such that (T∞ − Id)3ω = 0
and (T∞ − Id)2ω 6= 0, then (T∞ − Id)2v(ω) = 0 and (T∞ − Id)v(ω) 6= 0 (apply δ on
the left).

7.2.b. Monodromy at infinity of GL-N polynomials. I keep the notation of
§4.1. García López & Némethi [18] compute the number of Jordan blocks of a given
size for any eigenvalue of the monodromy at infinity of a GL-N polynomial. As one
may expect from the computation of the spectrum, whether an eigenvalue is a dth
root of unity or not will have influence on the answer, in the sense that, for dth roots
of unity, the result depends on global invariants of Y∞, while for other eigenvalues, it
only depends on the local monodromies of the singularities of Y∞.

Let D be a disc centered at ∞ in P1 and let D′ → D be the ramified covering
t′ 7→ t′d. Recall that we have implicitly used in §4.1 the diagram

X ′ //

F ′
��

X

F
��

D′ // D

We denote with a ∗ the effect of restricting away from ∞ (e.g., t′ 6= 0). On the
one hand, the map X|D∗ → D∗ is a smooth proper fibration (provided Cf does not
intersect D) and we are interested in the monodromy of the restriction U|D∗ → D∗.
We also know that X∞|D∗ → D∗ is a trivial fibration. Therefore, for what concerns
eigenvalues not equal to 1, there is no difference in considering the proper fibration
or the open fibration. For the eigenvalue 1, the main argument uses Hodge theory
to show that Hn

Y∞
(Xt) is a direct summand in Hn(Xt), in a way compatible to the
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monodromy. Setting #`T for the number of Jordan blocks of size ` of the operator T
with respect to the eigenvalue 1, this leads to

Theorem 7.2.5 (García López & Némethi [16])
• #2(T∞(f)) = #1(T∞(F ))− bn(Y∞),
• #`(T∞(f)) = #`−1(T∞(F )) (` > 3),

and dim Ker(T∞(f)− Id) = pn−1(Y∞) := bn−1(Y∞)− bn−1(Pn).

The next step consists in analyzing TF ′ and then go from TF ′ to TF . Firstly, notice
that TF ′ is identified with T d

F .
The singularities of X ′ are easily analyzed from Equation (4.1.3): they are located

on {t′ = 0}, hence on Y
(d)
∞ := {fd − Zd = 0}, and are defined by the supplementary

equations ∂fd/∂Xi = 0, Z = 0. Hence these are the isolated singular points of
Y∞ = Y

(d)
∞ ∩ {Z = 0}. With a similar computation, one shows that, away from

these points, the map F ′ is smooth. It follows that, when considering the nearby
cycle complex ψF ′QX ′ , the subcomplex ψF ′QX ′,λ corresponding to an eigenvalue
λ 6= 1 is supported at the singular points. On the other hand, ψF ′QX ′,1 has support
equal to Y

(d)
∞ . This leads to the precise expression of #`(T∞(f)) in terms of the

corresponding #` of the monodromies of the local singularities of Y∞ and global
invariants of Y∞ (cf. [18]).

7.3. Weights and the monodromy at infinity

The function f : U → A1 is not supposed to be tame anymore. A.Dimca and
M.Saito have emphasized in [12] the relationship between the weights of the general
fibre of f , that of U , and the size of the Jordan block of the monodromy with respect
to the eigenvalue 1. This relation applies in fact to a very general framwork.

Given any complex algebraic variety Y , the cohomology Hj(Y,C) is equipped,
according to Deligne (cf. [29]), with a canonical mixed Hodge structure, from which
we only retain the weight filtration, which already exists on Hj(Y,Q) and which we
denote by W•H

j(Y,Q). It has the following properties:
• If Y is smooth and compact, Hj(Y,Q) is pure of weight j, that is, grW

k Hj(Y,Q) =
0 if k 6= j.

• If Y is smooth (but not compact), let Y be a smooth projective compactification
of Y such that D := Y r Y is a divisor with normal crossings. Denote by m(D) the
maximal number of local smooth components ofD which have a nonempty intersection
(hence 1 6 m(D) 6 dimY and bym(Y ) the smallest possiblem(D) for various choices
of Y . Then the weights of Hj(Y,Q) belong to [j, j +m(Y )].

• If Y is smooth and affine, then the weights are leq than 2j, so they belong to
[j, j + min(m(Y ), j)].
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Theorem 7.3.1 (Dimca & Saito, [12]). Let f : X → S be a morphism of complex al-
gebraic varieties such that dimX = n + 1 and S is a smooth curve. Let S be the
smooth compactification of S. Let j be a positive integer, and r, r′ be integers such
that r′ < r. Assume that, for a general s ∈ S, Hj(Xs,Q) has weights in [j+ r′, j+ r]
(i.e., grW

k Hj(Xs,Q) = 0 if k 6∈ [j + r′, j + r]), and Hj+1(X,Q) has weights 6 j + r.
Then the Jordan blocks of the monodromies of Hj(Xs,Q) around s∞ ∈ S r S for the
eigenvalue 1 have size 6 r − r′.

Corollary 7.3.2 (Dimca & Saito, [12]). Let f : Cn+1 → C be a polynomial function.
Then the Jordan blocks of the monodromies of Hj(f−1(t),Q) around ∞ for the eigen-
value 1 have size 6 min(m(f−1(t)), j).

Remark 7.3.3. If U = (C∗)n+1, then Hj+1(U) has weight 2(j + 1) = j + (j + 2), and
the bound for the size of the Jordan blocks is j + 2.
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