Vanishing cycles and their algebraic computation (I)

Claude Sabbah

Centre de Mathématiques Laurent Schwartz

UMR 7640 du CNRS
École polytechnique, Palaiseau, France
Programme SEDIGA ANR-08-BLAN-0317-01

The $\mu=\mu$ theorem

- $f:\left(\mathbb{C}^{n+1}, 0\right) \longrightarrow(\mathbb{C}, 0)$ a germ of holom. funct. isol. sing., $\boldsymbol{F}=$ Milnor fibre.
- Theorem (Milnor):
$\operatorname{dim}_{\mathbb{C}} \mathscr{O}_{\mathbb{C}^{n+1}, 0} /(\partial f)=: \mu_{\text {alg }}=\mu_{\text {top }}:=\operatorname{dim}_{\mathbb{C}} \boldsymbol{H}^{n}(\boldsymbol{F}, \mathbb{C})$

The $\mu=\mu$ theorem

- $f:\left(\mathbb{C}^{n+1}, 0\right) \longrightarrow(\mathbb{C}, 0)$ a germ of holom. funct. isol. sing., $\boldsymbol{F}=$ Milnor fibre.
- Theorem (Milnor):
$\operatorname{dim}_{\mathbb{C}} \mathscr{O}_{\mathbb{C}^{n+1}, 0} /(\partial f)=: \mu_{\text {alg }}=\mu_{\text {top }}:=\operatorname{dim}_{\mathbb{C}} \boldsymbol{H}^{n}(F, \mathbb{C})$
- Various proofs:
- Use index of grad f on the Milnor sphere.
- Deform the function $\longrightarrow \mu_{\text {alg }}$ nondeg. critical pts
- etc.
- Brieskorn: algebraic formula for the monodromy.
- Important tool: the Brieskorn lattice.

Objective of the lectures

To extend these results to the case

$$
f: X \longrightarrow \mathbb{C}
$$

X smooth quasi-projective and f regular on X.

Local systems in dim. one

- Δ : disc with coord. $t, \Delta^{*}:=\Delta \backslash\{0\}, \widetilde{\Delta}^{*}$: univ. cov.

$$
\{0\} \stackrel{i_{0}}{\longleftrightarrow} \Delta \stackrel{j}{\longleftrightarrow} \Delta^{*} \stackrel{p}{\longleftrightarrow} \widetilde{\Delta}^{*}
$$

Local systems in dim. one

- Δ : disc with coord. $t, \Delta^{*}:=\Delta \backslash\{0\}, \widetilde{\Delta}^{*}$: univ. cov.

$$
\{0\} \stackrel{i_{0}}{\longleftrightarrow} \Delta \stackrel{j}{\longleftrightarrow} \Delta^{*} \stackrel{p}{\longleftrightarrow} \widetilde{\Delta}^{*}
$$

- \mathscr{L} : local system on $\Delta^{*}, \mathscr{L} \longleftrightarrow(L, T)$, L : finite dim. vect. space, T : autom. of L

How to get (L, T) from \mathscr{L} ?

Local systems in dim. one

- Δ : disc with coord. $t, \Delta^{*}:=\Delta \backslash\{0\}, \widetilde{\Delta}^{*}$: univ. cov.

$$
\{0\} \stackrel{i_{0}}{\longleftrightarrow} \Delta \stackrel{j}{\longleftrightarrow} \Delta^{*} \stackrel{p}{\leftrightarrows} \widetilde{\Delta}^{*}
$$

- \mathscr{L} : local system on $\Delta^{*}, \mathscr{L} \longleftrightarrow(L, T)$, L : finite dim. vect. space, T : autom. of L

How to get (L, T) from \mathscr{L} ?

- Answer:
- $p: \widetilde{\Delta}^{*} \longrightarrow \Delta^{*}$: univ. covering, $\Rightarrow p^{-1} \mathscr{L}$ trivial
- $L=\Gamma\left(\widetilde{\Delta}^{*}, p^{-1} \mathscr{L}\right)$, T induced by deck-transf.

$$
L=i_{0}^{-1} j_{*} p_{*} p^{-1} \mathscr{L}
$$

Constructible sheaves in dim. one

$$
\{0\} \stackrel{i_{0}}{\hookrightarrow} \Delta \stackrel{j}{\leftrightarrows} \Delta^{*} \stackrel{p}{\stackrel{1}{4}} \tilde{\Delta}^{*}
$$

Constructible sheaves in dim. one

$$
\{0\} \stackrel{i_{0}}{\longleftrightarrow} \Delta \stackrel{j}{\longleftrightarrow} \Delta^{*} \stackrel{p}{\longleftrightarrow} \widetilde{\Delta}^{*}
$$

- $\mathscr{F}:=j_{*} \mathscr{L}$: example of a constr. sheaf w.r.t. $(\Delta, 0)$
- $j^{-1} \mathscr{F}=\mathscr{L}, \quad i_{0}^{-1} j_{*} \mathscr{L}=\operatorname{ker}[(\mathrm{T}-\mathrm{Id}): L \longrightarrow L]$ given by the adjunction

$$
i_{0}^{-1} j_{*} \mathscr{L}=i_{0}^{-1} \mathscr{F} \longrightarrow i_{0}^{-1}(j \circ p)_{*}(j \circ p)^{-1} \mathscr{F} .
$$

Constructible sheaves in dim. one

$$
\{0\} \stackrel{i_{0}}{\longleftrightarrow} \Delta \stackrel{j}{\longleftrightarrow} \Delta^{*} \stackrel{p}{\longleftrightarrow} \widetilde{\Delta}^{*}
$$

- $\mathscr{F}:=j_{*} \mathscr{L}$: example of a constr. sheaf w.r.t. $(\Delta, 0)$
- $j^{-1} \mathscr{F}=\mathscr{L}, \quad i_{0}^{-1} j_{*} \mathscr{L}=\operatorname{ker}[(\mathrm{T}-\mathrm{Id}): L \longrightarrow L]$ given by the adjunction

$$
i_{0}^{-1} j_{*} \mathscr{L}=i_{0}^{-1} \mathscr{F} \longrightarrow i_{0}^{-1}(j \circ p)_{*}(j \circ p)^{-1} \mathscr{F} .
$$

- \mathscr{F} any constr. bounded complex on $(\Delta, 0)$.
(1.1.1)

$$
\psi_{t} \mathscr{F}:=i_{0}^{-1} R(j \circ p)_{*}(j \circ p)^{-1} \mathscr{F}
$$

$$
i_{0}^{-1} \mathscr{F} \longrightarrow \psi_{t} \mathscr{F} \xrightarrow{\text { can }} \phi_{t} \mathscr{F} \xrightarrow{+1}
$$

Constructible sheaves in dim. one

$$
\{0\} \stackrel{i_{0}}{\longleftrightarrow} \Delta \stackrel{j}{\longleftrightarrow} \Delta^{*} \stackrel{p}{\longleftrightarrow} \widetilde{\Delta}^{*}
$$

(1.1.1)

$$
\psi_{t} \mathscr{F}:=i_{0}^{-1} R(j \circ p)_{*}(j \circ p)^{-1} \mathscr{F}
$$

$$
i_{0}^{-1} \mathscr{F} \longrightarrow \psi_{t} \mathscr{F} \xrightarrow{\text { can }} \phi_{t} \mathscr{F} \xrightarrow{+1}
$$

Constructible sheaves in dim. one

$$
\{0\} \stackrel{i_{0}}{\longleftrightarrow} \Delta \stackrel{j}{\longleftrightarrow} \Delta^{*} \stackrel{p}{\leftrightarrows} \widetilde{\Delta}^{*}
$$

(1.1.1)

$$
\psi_{t} \mathscr{F}:=i_{0}^{-1} R(j \circ p)_{*}(j \circ p)^{-1} \mathscr{F}
$$

$$
i_{0}^{-1} \mathscr{F} \longrightarrow \psi_{t} \mathscr{F} \xrightarrow{\text { can }} \phi_{t} \mathscr{F} \xrightarrow{+1}
$$

\rightarrow Long exact sequence of \mathbb{C}-vect. spaces with autom. T

Perversity in dim. one

Perversity in dim. one

- If $\mathscr{F}=j_{*} \mathscr{L}, i_{0}^{-1} \mathscr{F} \simeq \operatorname{ker}(\mathrm{~T}-\mathrm{Id}) \Rightarrow$ $\phi_{t} \mathscr{F} \simeq \operatorname{Im}(\mathrm{~T}-\mathrm{Id})$ cohom. in degree zero only.

Perversity in dim. one

- If $\mathscr{F}=j_{*} \mathscr{L}, i_{0}^{-1} \mathscr{F} \simeq \operatorname{ker}(\mathrm{~T}-\mathrm{Id}) \Rightarrow$ $\phi_{t} \mathscr{F} \simeq \operatorname{Im}(\mathrm{~T}-\mathrm{Id})$ cohom. in degree zero only.
- If $\mathscr{F}=R j_{*} \mathscr{L}, i_{0}^{-1} \mathscr{F}=\{L \xrightarrow{\mathrm{~T}-\mathrm{Id}} L\} \Rightarrow$ $\phi_{t} \mathscr{F} \stackrel{\text { can }}{\simeq} \psi_{t} \mathscr{F}$ cohom. in degree zero only.

Perversity in dim. one

- If $\mathscr{F}=j_{*} \mathscr{L}, i_{0}^{-1} \mathscr{F} \simeq \operatorname{ker}(\mathrm{~T}-\mathrm{Id}) \Rightarrow$ $\phi_{t} \mathscr{F} \simeq \operatorname{Im}(\mathrm{~T}-\mathrm{Id})$ cohom. in degree zero only.
- If $\mathscr{F}=R j_{*} \mathscr{L}, i_{0}^{-1} \mathscr{F}=\{L \xrightarrow{\text { T-Id }} L\} \Rightarrow$ $\phi_{t} \mathscr{F} \stackrel{\text { can }}{\simeq} \psi_{t} \mathscr{F}$ cohom. in degree zero only.
- If $\mathscr{F}=i_{0, *} \boldsymbol{F}$ (skyscrap. sheaf), $\psi_{t} \mathscr{F}=0 \Rightarrow$ $\phi_{t} \mathscr{F}=F[1]$ cohom. in degree -1 only.

Perversity in dim. one

- If $\mathscr{F}=j_{*} \mathscr{L}, i_{0}^{-1} \mathscr{F} \simeq \operatorname{ker}(\mathrm{~T}-\mathrm{Id}) \Rightarrow$ $\phi_{t} \mathscr{F} \simeq \operatorname{Im}(\mathrm{~T}-\mathrm{Id})$ cohom. in degree zero only.
- If $\mathscr{F}=R j_{*} \mathscr{L}, i_{0}^{-1} \mathscr{F}=\{L \xrightarrow{\text { T-Id }} L\} \Rightarrow$
$\phi_{t} \mathscr{F} \stackrel{\text { can }}{\simeq} \psi_{t} \mathscr{F}$ cohom. in degree zero only.
- If $\mathscr{F}=i_{0, *} \boldsymbol{F}$ (skyscrap. sheaf), $\psi_{t} \mathscr{F}=0 \Rightarrow$ $\phi_{t} \mathscr{F}=F[1]$ cohom. in degree -1 only.
- Set
(1.1.2) $\quad{ }^{p} \psi_{t} \mathscr{F}=\psi_{t} \mathscr{F}[-1], \quad{ }^{p} \phi_{t} \mathscr{F}=\phi_{t} \mathscr{F}[-1]$.

Then for $\mathscr{F}=j_{*} \mathscr{L}[\operatorname{dim} \Delta], R j_{*} \mathscr{L}[\operatorname{dim} \Delta]$ or $i_{0, *} \boldsymbol{F}$,

$$
\mathscr{H}^{j}\left({ }^{p} \psi_{t} \mathscr{F}\right)=0, \quad \mathscr{H}^{j}\left({ }^{p} \phi_{t} \mathscr{F}\right)=0, \quad \text { if } j \neq 0
$$

Perversity in dim. one

- Definition 1.1.3. A constr. complex on $(\Delta, 0)$ is perverse if
- $j^{-1} \mathscr{F}=\mathscr{L}[1]$ for some local system \mathscr{L} on Δ^{*},
- $i_{0}^{-1} \mathscr{F}$ has nonzero cohom. in deg. -1 and 0 at most,
- $i_{0}^{!} \mathscr{F}$ has nonzero cohom. in deg. 0 and 1 at most.

Perversity in dim. one

- Definition 1.1.3. A constr. complex on $(\Delta, 0)$ is perverse if
- $j^{-1} \mathscr{F}=\mathscr{L}[1]$ for some local system \mathscr{L} on Δ^{*},
- $i_{0}^{-1} \mathscr{F}$ has nonzero cohom. in deg. -1 and 0 at most,
- $i_{0}^{!} \mathscr{F}$ has nonzero cohom. in deg. 0 and 1 at most.
- Theorem 1.1.4. A constr. complex \mathscr{F} is perverse iff $\mathscr{H}^{j}\left({ }^{p} \psi_{t} \mathscr{F}\right)=\mathscr{H}^{j}\left({ }^{p} \phi_{t} \mathscr{F}\right)=0$ for $j \neq 0$.

Perversity on \mathbb{A}^{1}

Perversity on \mathbb{A}^{1}

- \mathbb{A}^{1} : affine line, coord. $t, C \subset \mathbb{A}^{1}$: finite, \mathscr{F} : constr. w.r.t. ($\left.\mathbb{A}^{1}, C\right)$.

Perversity on \mathbb{A}^{1}

- \mathbb{A}^{1} : affine line, coord. $t, C \subset \mathbb{A}^{1}$: finite, \mathscr{F} : constr. w.r.t. ($\left.\mathbb{A}^{1}, C\right)$.
- Δ : big open disc $\supset C, I$: closed $\neq \varnothing$ interval in $\partial \bar{\Delta}$.

Perversity on \mathbb{A}^{1}

- \mathbb{A}^{1} : affine line, coord. $t, C \subset \mathbb{A}^{1}$: finite, \mathscr{F} : constr. w.r.t. $\left(\mathbb{A}^{1}, C\right)$.
- Δ : big open disc $\supset C, I$: closed $\neq \varnothing$ interval in $\partial \bar{\Delta}$.

Proposition 1.1.6. Assume \mathscr{F} perverse on $\left(\mathbb{A}^{1}, C\right)$. Then

- $H_{\mathrm{c}}^{k}(\bar{\Delta} \backslash I, \mathscr{F})=0$ for $k \neq 0$, and
(1.1.6*)

$$
\operatorname{dim} H_{\mathrm{c}}^{0}(\bar{\Delta} \backslash I, \mathscr{F})=\sum_{c \in C} \operatorname{dim}^{p} \phi_{t-c} \mathscr{F} .
$$

Perversity on \mathbb{A}^{1}

- \mathbb{A}^{1} : affine line, coord. $t, C \subset \mathbb{A}^{1}$: finite, \mathscr{F} : constr. w.r.t. ($\left.\mathbb{A}^{1}, C\right)$.
- Δ : big open disc $\supset C, I$: closed $\neq \varnothing$ interval in $\partial \bar{\Delta}$.

Proposition 1.1.6. Assume \mathscr{F} perverse on $\left(\mathbb{A}^{1}, C\right)$.
Then

- $H_{\mathrm{c}}^{k}(\bar{\Delta} \backslash I, \mathscr{F})=0$ for $k \neq 0$, and
(1.1.6*)

$$
\operatorname{dim} H_{\mathrm{c}}^{0}(\bar{\Delta} \backslash I, \mathscr{F})=\sum_{c \in C} \operatorname{dim}^{p} \phi_{t-c} \mathscr{F} .
$$

- Proof. Need only consider $\mathscr{F}=i_{c, *} \boldsymbol{F}(c \in C)$ and $\mathscr{F}=j_{*} \mathscr{L}[1]\left(j: \mathbb{A}^{1} \backslash C \longrightarrow \mathbb{A}^{1}\right)$.

Perversity on \mathbb{A}^{1}

(1.1.6*)

Perversity on \mathbb{A}^{1}

$(1.1 .6 *) \quad \operatorname{dim} H_{\mathrm{c}}^{0}(\bar{\Delta} \backslash I, \mathscr{F})=\sum_{c \in C} \operatorname{dim}^{p} \phi_{t-c} \mathscr{F}$.

- $H_{\mathrm{c}}^{-1}\left(\bar{\Delta} \backslash I, j_{*} \mathscr{L}[1]\right)=H_{\mathrm{c}}^{0}\left(\bar{\Delta} \backslash I, j_{*} \mathscr{L}\right)=0$: clear.

Perversity on \mathbb{A}^{1}

$$
(1.1 .6 *) \quad \operatorname{dim} H_{\mathrm{c}}^{0}(\bar{\Delta} \backslash I, \mathscr{F})=\sum_{c \in C} \operatorname{dim}^{p} \phi_{t-c} \mathscr{F} .
$$

- $H_{\mathrm{c}}^{-1}\left(\bar{\Delta} \backslash I, j_{*} \mathscr{L}[1]\right)=H_{\mathrm{c}}^{0}\left(\bar{\Delta} \backslash I, j_{*} \mathscr{L}\right)=0$: clear.
- $H_{\mathrm{c}}^{1}\left(\bar{\Delta} \backslash I, j_{*} \mathscr{L}[1]\right)=H_{\mathrm{c}}^{2}\left(\bar{\Delta} \backslash I, j_{*} \mathscr{L}\right)=0$: by duality, non degen. pairing
$H_{\mathrm{c}}^{0}\left(\bar{\Delta} \backslash I, j_{*} \mathscr{L}^{\vee}\right) \otimes H_{\mathrm{c}}^{2}\left(\bar{\Delta} \backslash I^{c}, j_{*} \mathscr{L}\right) \longrightarrow H_{\mathrm{c}}^{2}(\Delta, \mathbb{C}) \simeq \mathbb{C}$

Perversity on \mathbb{A}^{1}

(1.1.6*) $\operatorname{dim} H_{\mathrm{c}}^{0}(\bar{\Delta} \backslash I, \mathscr{F})=\sum_{c \in C} \operatorname{dim}^{p} \phi_{t-c} \mathscr{F}$.

- $H_{\mathrm{c}}^{-1}\left(\bar{\Delta} \backslash I, j_{*} \mathscr{L}[1]\right)=H_{\mathrm{c}}^{0}\left(\bar{\Delta} \backslash I, j_{*} \mathscr{L}\right)=0$: clear.
- $H_{\mathrm{c}}^{1}\left(\bar{\Delta} \backslash I, j_{*} \mathscr{L}[1]\right)=H_{\mathrm{c}}^{2}\left(\bar{\Delta} \backslash I, j_{*} \mathscr{L}\right)=0$: by duality, non degen. pairing
$H_{\mathrm{c}}^{0}\left(\bar{\Delta} \backslash I, j_{*} \mathscr{L}^{\vee}\right) \otimes H_{\mathrm{c}}^{2}\left(\bar{\Delta} \backslash I^{c}, j_{*} \mathscr{L}\right) \longrightarrow H_{\mathrm{c}}^{2}(\Delta, \mathbb{C}) \simeq \mathbb{C}$
- $\beta: \bar{\Delta} \backslash I \longleftrightarrow \bar{\Delta}$, then
$\operatorname{dim} H_{\mathrm{c}}^{0}\left(\bar{\Delta} \backslash I, j_{*} \mathscr{L}[1]\right)=-\chi\left(\bar{\Delta}, \beta_{!} \beta^{-1} j_{*} \mathscr{L}\right)$

$$
\begin{aligned}
& =-\chi(\bar{\Delta} \backslash(I \cup C)) \cdot \operatorname{rk} \mathscr{L}-\sum_{c \in C} \operatorname{dim}\left(j_{*} \mathscr{L}\right)_{c} \\
& =\# C \cdot \operatorname{rk} \mathscr{L}-\sum_{c \in C}\left(\operatorname{rk} \mathscr{L}-\operatorname{dim} \phi_{t-c}\left(j_{*} \mathscr{L}\right)\right)
\end{aligned}
$$

Nearby and vanishing cycles

- \boldsymbol{X} : cplx manifold, $f: X \longrightarrow \mathbb{C}$ holom. function, $X_{0}:=f^{-1}(0)$.
- Goal: to glue as a cplx of sheaves the Milnor fibres of f at each $x \in X_{0}$.

Nearby and vanishing cycles for \mathbb{C}_{X}

$$
\psi_{f} \mathbb{C}_{X}:=i_{0}^{-1} R(j \circ p)_{*}(j \circ p)^{-1} \mathbb{C}_{X}
$$

$$
\mathbb{C}_{X_{0}}=i_{0}^{-1} \mathbb{C}_{X} \longrightarrow \psi_{f} \mathbb{C}_{X}
$$

$$
\mathbb{C}_{X_{0}}=i_{0}^{-1} \mathbb{C}_{X} \longrightarrow \psi_{f} \mathbb{C}_{X} \xrightarrow{\text { can }} \phi_{f} \mathbb{C}_{X} \xrightarrow{+1}
$$

- $\psi_{f} \mathbb{C}_{X}$ supported on X_{0},
- $\phi_{f} \mathbb{C}_{X}$ supported on $\operatorname{Crit}(f) \cap X_{0}$,
- Both equipped with monodromy T.

Proper push-forward

THEOREM 1.3.1.

Assume that π proper. \mathscr{F} bounded cplx. Then

$$
R \pi_{*} \psi_{f} \mathscr{F} \simeq \psi_{f^{\prime}} R \pi_{*} \mathscr{F} \quad R \pi_{*} \phi_{f} \mathscr{F} \simeq \phi_{f^{\prime}} R \pi_{*} \mathscr{F}
$$

EXAMPLE. If $f: X \longrightarrow \Delta$ proper, then
(1.3.2)

$$
\begin{aligned}
R f_{*} \psi_{f} \mathbb{C}_{X} & \simeq \psi_{t} R f_{*} \mathbb{C}_{X}, \\
R f_{*} \phi_{f} \mathbb{C}_{X} & \simeq \phi_{t} R f_{*} \mathbb{C}_{X} .
\end{aligned}
$$

Non proper push-forward

If π not proper, we may have

$$
R \pi_{*} \psi_{f} \mathscr{F} \not \not 二 \psi_{f^{\prime}} R \pi_{*} \mathscr{F}, \quad R \pi_{*} \phi_{f} \mathscr{F} \nsucceq \phi_{f^{\prime}} R \pi_{*} \mathscr{F}
$$

EXAMPLE: $\boldsymbol{X}=\boldsymbol{B}_{\varepsilon} \subset \mathbb{C}^{n+1}, f: \boldsymbol{X} \longrightarrow \mathbb{C}$ isol. sing. at $0, \pi: U=X \backslash\{0\} \longleftrightarrow \boldsymbol{X}$.

- $\phi_{f \mid U} \mathbb{C}_{U}=0 \Rightarrow \pi!\phi_{f \mid U} \mathbb{C}_{U}=0$.
- $0 \rightarrow \pi!\mathbb{C}_{U} \rightarrow \mathbb{C}_{X} \rightarrow \mathbb{C}_{0} \rightarrow 0 \Rightarrow$

$$
H^{n} \phi_{f} \pi!\mathbb{C}_{X} \simeq H^{n} \phi_{f} \mathbb{C}_{X} \neq 0 \quad(n \geqslant 1)
$$

Constructibility

Constructibility

THEOREM 1.3.3. $\psi_{f} \mathbb{C}_{X}$ and $\phi_{f} \mathbb{C}_{X}$ have \mathbb{C}-constr. cohomol. (i.e., \exists a Whitney stratif. of X_{0} s.t. $\mathscr{H}^{k} \psi_{f} \mathbb{C}_{X}$ and $\mathscr{H}^{k} \phi_{f} \mathbb{C}_{X}$ are loc. const. sheaves of f.d. \mathbb{C}-vect. spaces on each stratum).

Constructibility

THEOREM 1.3.3. $\psi_{f} \mathbb{C}_{X}$ and $\phi_{f} \mathbb{C}_{X}$ have \mathbb{C}-constr. cohomol. (i.e., \exists a Whitney stratif. of \boldsymbol{X}_{0} s.t. $\mathscr{H}^{k} \psi_{f} \mathbb{C}_{\boldsymbol{X}}$ and $\mathscr{H}^{k} \phi_{f} \mathbb{C}_{X}$ are loc. const. sheaves of f.d. \mathbb{C}-vect. spaces on each stratum).

- Complement. Moreover, $\forall x \in X_{0}$ and $\forall k \in \mathbb{N}$,

$$
\mathscr{H}^{k}\left(\psi_{f} \mathbb{C}_{X}\right)_{x} \simeq \boldsymbol{H}^{k}\left(\boldsymbol{F}_{\varepsilon, \eta}, \mathbb{C}\right)
$$

- B_{ε} : closed ball centered at x,
- Δ_{η} : small disc centered at $f(x)$,
- $f: B_{\varepsilon} \cap f^{-1}\left(\Delta_{\eta}^{*}\right) \rightarrow\left(\Delta_{\eta}^{*}\right)$: Milnor-Lê fibr. at x $(0<\eta \ll \varepsilon \ll 1)$,
- $F_{\varepsilon, \eta}:=f^{-1}(\eta) \cap B_{\varepsilon}$: Milnor fibre of f at x.

Perversity

THEOREM 1.3.4.

- ${ }^{p} \psi_{f}{ }^{p_{\mathbb{C}_{X}}}$ and ${ }^{p} \phi_{f}{ }^{p} \mathbb{C}_{X}$ are perverse (on X_{0}),
- i.e., $R i_{0, *}{ }^{p} \psi_{f}{ }^{p} \mathbb{C}_{X}$ and $R i_{0, *}{ }^{p} \phi_{f}{ }^{p} \mathbb{C}_{X}$ are perverse (on X).

Corollary 1.3.5. Assume $\boldsymbol{f}: \boldsymbol{X} \rightarrow \boldsymbol{\Delta}$ proper. Then $\forall j \in \mathbb{Z}$,

$$
\begin{aligned}
& \left({ }^{\mathscr{H}^{j}} R f_{*}\right)\left({ }^{p} \psi_{f}{ }^{p} \mathbb{C}_{X}\right) \simeq{ }^{p} \psi_{t}\left({ }^{p_{\mathscr{H}}}{ }^{j} R f_{*}\right)^{p} \mathbb{C}_{X}, \\
& \left({ }^{p} \mathscr{H}^{j} R f_{*}\right)\left({ }^{p} \phi_{f}{ }^{p} \mathbb{C}_{X}\right) \simeq{ }^{p} \phi_{t}\left({ }^{p_{\mathscr{H}}^{j}} \boldsymbol{R} f_{*}\right)^{p} \mathbb{C}_{X} .
\end{aligned}
$$

Other approaches

$$
\psi_{f} \mathscr{F}:=i_{0}^{-1} R j_{*} R p_{*}(j \circ p)^{-1} \mathscr{F}
$$

Replace with the Alexander complex

$$
{ }^{A} \psi_{f} \mathscr{F}:=i_{0}^{-1} R j_{*} R p_{!}(j \circ p)^{-1} \mathscr{F}
$$

$\mathscr{L}(\mathrm{T})=p_{!} \mathbb{C}_{\widetilde{\Delta}^{*}}$: local syst. on Δ^{*} with fibre $\mathbb{C}\left[\mathrm{T}, \mathrm{T}^{-1}\right]$ and monodromy $=$ mult. by T .

$$
{ }^{A} \psi_{f} \mathscr{F}=i_{0}^{-1} R j_{*}\left(f^{-1} \mathscr{L}(\mathrm{~T}) \otimes j^{-1} \mathscr{F}\right)
$$

object in $D^{\mathrm{b}}\left(\mathbb{C}\left[\mathrm{T}, \mathrm{T}^{-1}\right]\right)$.

- \mathscr{F} constructible $\Rightarrow{ }^{A} \psi_{f} \mathscr{F} \simeq{ }^{p} \psi_{f} \mathscr{F}$.

