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The µ = µ theorem

f : (Cn+1, 0) −→ (C, 0) a germ of holom. funct. isol.
sing., F = Milnor fibre.

THEOREM (Milnor):

dimC OCn+1,0/(∂f) =: µalg = µtop := dimCH
n(F,C)
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The µ = µ theorem

f : (Cn+1, 0) −→ (C, 0) a germ of holom. funct. isol.
sing., F = Milnor fibre.

THEOREM (Milnor):

dimC OCn+1,0/(∂f) =: µalg = µtop := dimCH
n(F,C)

Various proofs:
Use index of grad f on the Milnor sphere.
Deform the function −→ µalg nondeg. critical pts
etc.

Brieskorn: algebraic formula for the monodromy.

Important tool: the Brieskorn lattice.
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Objective of the lectures

To extend these results to the case

f : X −→ C

X smooth quasi-projective and f regular on X.
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Local systems in dim. one

∆: disc with coord. t, ∆∗ := ∆ r {0}, ∆̃∗: univ. cov.

{0} ֒
i0
−→ ∆

j
←−֓ ∆∗

p
←− ∆̃∗
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Local systems in dim. one

∆: disc with coord. t, ∆∗ := ∆ r {0}, ∆̃∗: univ. cov.

{0} ֒
i0
−→ ∆

j
←−֓ ∆∗

p
←− ∆̃∗

L : local system on ∆∗, L ←→ (L,T),
L: finite dim. vect. space, T: autom. of L

How to get (L,T) from L ?
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Local systems in dim. one

∆: disc with coord. t, ∆∗ := ∆ r {0}, ∆̃∗: univ. cov.

{0} ֒
i0
−→ ∆

j
←−֓ ∆∗

p
←− ∆̃∗

L : local system on ∆∗, L ←→ (L,T),
L: finite dim. vect. space, T: autom. of L

How to get (L,T) from L ?

Answer:
p : ∆̃∗ −→ ∆∗: univ. covering,⇒ p−1L trivial

L = Γ(∆̃∗, p−1L ), T induced by deck-transf.

L = i−1
0 j∗p∗p

−1L
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Constructible sheaves in dim. one

{0} ֒
i0
−→ ∆

j
←−֓ ∆∗

p
←− ∆̃∗
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Constructible sheaves in dim. one

{0} ֒
i0
−→ ∆

j
←−֓ ∆∗

p
←− ∆̃∗

F := j∗L : example of a constr. sheaf w.r.t. (∆, 0)

j−1F = L , i−1
0 j∗L = ker

[
(T− Id) : L −→ L

]

given by the adjunction

i−1
0 j∗L = i−1

0 F −→ i−1
0 (j ◦ p)∗(j ◦ p)

−1
F .
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Constructible sheaves in dim. one

{0} ֒
i0
−→ ∆

j
←−֓ ∆∗

p
←− ∆̃∗

F := j∗L : example of a constr. sheaf w.r.t. (∆, 0)

j−1F = L , i−1
0 j∗L = ker

[
(T− Id) : L −→ L

]

given by the adjunction

i−1
0 j∗L = i−1

0 F −→ i−1
0 (j ◦ p)∗(j ◦ p)

−1
F .

F any constr. bounded complex on (∆, 0).

(1.1.1) ψtF := i−1
0 R(j ◦ p)∗(j ◦ p)

−1
F

i−1
0 F −→ ψtF

can
−→ φtF

+1
−→
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Constructible sheaves in dim. one

{0} ֒
i0
−→ ∆

j
←−֓ ∆∗

p
←− ∆̃∗

(1.1.1) ψtF := i−1
0 R(j ◦ p)∗(j ◦ p)

−1
F

i−1
0 F −→ ψtF

can
−→ φtF

+1
−→
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Constructible sheaves in dim. one

{0} ֒
i0
−→ ∆

j
←−֓ ∆∗

p
←− ∆̃∗

(1.1.1) ψtF := i−1
0 R(j ◦ p)∗(j ◦ p)

−1
F

i−1
0 F −→ ψtF

can
−→ φtF

+1
−→

→ Long exact sequence of C-vect. spaces with autom. T

→ H
j(i−1

0 F )

	
Id

→ H
jψtF

	
T

H
j can
−→ H

jφtF

	
T

→ H
j+1(i−1

0 F )

	
Id

→
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Perversity in dim. one
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Perversity in dim. one

If F = j∗L , i−1
0 F ≃ ker(T− Id)⇒

φtF ≃ Im(T− Id) cohom. in degree zero only.
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Perversity in dim. one

If F = j∗L , i−1
0 F ≃ ker(T− Id)⇒

φtF ≃ Im(T− Id) cohom. in degree zero only.

If F = Rj∗L , i−1
0 F = {L

T−Id
−→ L} ⇒

φtF
can
≃ ψtF cohom. in degree zero only.
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Perversity in dim. one

If F = j∗L , i−1
0 F ≃ ker(T− Id)⇒

φtF ≃ Im(T− Id) cohom. in degree zero only.

If F = Rj∗L , i−1
0 F = {L

T−Id
−→ L} ⇒

φtF
can
≃ ψtF cohom. in degree zero only.

If F = i0,∗F (skyscrap. sheaf), ψtF = 0⇒
φtF = F [1] cohom. in degree −1 only.
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Perversity in dim. one

If F = j∗L , i−1
0 F ≃ ker(T− Id)⇒

φtF ≃ Im(T− Id) cohom. in degree zero only.

If F = Rj∗L , i−1
0 F = {L

T−Id
−→ L} ⇒

φtF
can
≃ ψtF cohom. in degree zero only.

If F = i0,∗F (skyscrap. sheaf), ψtF = 0⇒
φtF = F [1] cohom. in degree −1 only.

Set

(1.1.2) pψtF = ψtF [−1], pφtF = φtF [−1].

Then for F = j∗L [dim∆], Rj∗L [dim ∆] or i0,∗F ,

H j(pψtF ) = 0, H j(pφtF ) = 0, if j 6= 0

Vanishing cycles and their algebraic computation (I) – p. 7/17



Perversity in dim. one

DEFINITION 1.1.3. A constr. complex on (∆, 0) is
perverse if
j−1F = L [1] for some local system L on ∆∗,

i−1
0 F has nonzero cohom. in deg. −1 and 0 at

most,
i!0F has nonzero cohom. in deg. 0 and 1 at most.
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Perversity in dim. one

DEFINITION 1.1.3. A constr. complex on (∆, 0) is
perverse if
j−1F = L [1] for some local system L on ∆∗,

i−1
0 F has nonzero cohom. in deg. −1 and 0 at

most,
i!0F has nonzero cohom. in deg. 0 and 1 at most.

THEOREM 1.1.4. A constr. complex F is perverse iff
H j(pψtF ) = H j(pφtF ) = 0 for j 6= 0.

Vanishing cycles and their algebraic computation (I) – p. 8/17



Perversity on A
1
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Perversity on A
1

A1: affine line, coord. t, C ⊂ A1: finite, F : constr.
w.r.t. (A1, C).
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Perversity on A
1

A1: affine line, coord. t, C ⊂ A1: finite, F : constr.
w.r.t. (A1, C).

∆: big open disc ⊃ C, I: closed 6= ∅ interval in ∂∆.
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Perversity on A
1

A1: affine line, coord. t, C ⊂ A1: finite, F : constr.
w.r.t. (A1, C).

∆: big open disc ⊃ C, I: closed 6= ∅ interval in ∂∆.

PROPOSITION 1.1.6. Assume F perverse on (A1, C).
Then

Hk
c(∆ r I,F ) = 0 for k 6= 0, and

(1.1.6∗) dimH0
c(∆ r I,F ) =

∑

c∈C

dim pφt−cF .
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Perversity on A
1

A1: affine line, coord. t, C ⊂ A1: finite, F : constr.
w.r.t. (A1, C).

∆: big open disc ⊃ C, I: closed 6= ∅ interval in ∂∆.

PROPOSITION 1.1.6. Assume F perverse on (A1, C).
Then

Hk
c(∆ r I,F ) = 0 for k 6= 0, and

(1.1.6∗) dimH0
c(∆ r I,F ) =

∑

c∈C

dim pφt−cF .

PROOF. Need only consider F = ic,∗F (c ∈ C) and
F = j∗L [1] (j : A1 r C −֒→ A1).
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Perversity on A
1

(1.1.6∗) dimH0
c(∆ r I,F ) =

∑

c∈C

dim pφt−cF .
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Perversity on A
1

(1.1.6∗) dimH0
c(∆ r I,F ) =

∑

c∈C

dim pφt−cF .

H−1
c (∆ r I, j∗L [1]) = H0

c (∆ r I, j∗L ) = 0: clear.
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Perversity on A
1

(1.1.6∗) dimH0
c(∆ r I,F ) =

∑

c∈C

dim pφt−cF .

H−1
c (∆ r I, j∗L [1]) = H0

c (∆ r I, j∗L ) = 0: clear.

H1
c (∆ r I, j∗L [1]) = H2

c (∆ r I, j∗L ) = 0: by
duality, non degen. pairing

H0
c (∆rI, j∗L

∨)⊗H2
c (∆rIc, j∗L ) −→ H2

c (∆,C) ≃ C
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Perversity on A
1

(1.1.6∗) dimH0
c(∆ r I,F ) =

∑

c∈C

dim pφt−cF .

H−1
c (∆ r I, j∗L [1]) = H0

c (∆ r I, j∗L ) = 0: clear.

H1
c (∆ r I, j∗L [1]) = H2

c (∆ r I, j∗L ) = 0: by
duality, non degen. pairing

H0
c (∆rI, j∗L

∨)⊗H2
c (∆rIc, j∗L ) −→ H2

c (∆,C) ≃ C

β : ∆ r I −֒→ ∆, then

dimH0
c (∆ r I, j∗L [1]) = −χ(∆, β!β

−1j∗L )

= −χ(∆ r (I ∪ C)) · rk L −
∑
c∈C dim(j∗L )c

= #C · rk L −
∑
c∈C

(
rk L − dimφt−c(j∗L )

)
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Nearby and vanishing cycles

X: cplx manifold, f : X −→ C holom. function,
X0 := f−1(0).

Goal: to glue as a cplx of sheaves the Milnor fibres
of f at each x ∈ X0.

X0
i0

f

X

f

X∗
j

�f

X̃∗
p

{0}
i0

∆ ∆∗
j ∆̃∗p
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Nearby and vanishing cycles for CX

ψfCX := i−1
0 R(j ◦ p)∗(j ◦ p)

−1CX

CX0
= i−1

0 CX −→ ψfCX

CX0
= i−1

0 CX −→ ψfCX
can
−→ φfCX

+1
−→.

ψfCX supported on X0,

φfCX supported on Crit(f) ∩X0,

Both equipped with monodromy T.
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Proper push-forward

THEOREM 1.3.1.

X
π

f

X ′

f ′

∆

Assume that π proper. F bounded cplx. Then

Rπ∗ψfF ≃ ψf ′Rπ∗F Rπ∗φfF ≃ φf ′Rπ∗F

EXAMPLE. If f : X −→ ∆ proper, then

(1.3.2)
Rf∗ψfCX ≃ ψtRf∗CX ,

Rf∗φfCX ≃ φtRf∗CX .
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Non proper push-forward

X
π

f

X ′

f ′

∆

If π not proper, we may have

Rπ∗ψfF 6≃ψf ′Rπ∗F , Rπ∗φfF 6≃φf ′Rπ∗F

EXAMPLE: X = Bε ⊂ Cn+1, f : X −→ C isol. sing. at
0, π : U = X r {0} −֒→ X.

φf |UCU = 0⇒ π!φf |UCU = 0.

0→ π!CU → CX → C0 → 0⇒

Hnφfπ!CX ≃ H
nφfCX 6= 0 (n > 1)
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Constructibility
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Constructibility
THEOREM 1.3.3. ψfCX and φfCX have C-constr.
cohomol. (i.e., ∃ a Whitney stratif. of X0 s.t. H kψfCX

and H kφfCX are loc. const. sheaves of f.d. C-vect.
spaces on each stratum).
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Constructibility
THEOREM 1.3.3. ψfCX and φfCX have C-constr.
cohomol. (i.e., ∃ a Whitney stratif. of X0 s.t. H kψfCX

and H kφfCX are loc. const. sheaves of f.d. C-vect.
spaces on each stratum).

COMPLEMENT. Moreover, ∀x ∈ X0 and ∀k ∈ N,

H
k(ψfCX)x ≃ H

k(Fε,η,C),

Bε: closed ball centered at x,
∆η: small disc centered at f(x),

f : Bε ∩ f
−1(∆∗η)→ (∆∗η): Milnor-Lê fibr. at x

(0 < η ≪ ε≪ 1),

Fε,η := f−1(η) ∩Bε : Milnor fibre of f at x.
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Perversity

THEOREM 1.3.4.
pψf

pCX and pφf
pCX are perverse (on X0),

i.e., Ri0,∗pψf pCX and Ri0,∗pφf pCX are perverse
(on X).

COROLLARY 1.3.5. Assume f : X → ∆ proper. Then
∀j ∈ Z,

(pH j Rf∗)(
pψf

pCX)≃ pψt(
pH

j Rf∗)
pCX ,

(pH j Rf∗)(
pφf

pCX)≃ pφt(
pH

j Rf∗)
pCX .
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Other approaches

ψfF := i−1
0 Rj∗Rp∗(j ◦ p)

−1
F

Replace with the Alexander complex

AψfF := i−1
0 Rj∗Rp!(j ◦ p)

−1
F

L (T) = p!C e∆∗
: local syst. on ∆∗ with fibre C[T,T−1]

and monodromy = mult. by T.

AψfF = i−1
0 Rj∗(f

−1
L (T)⊗ j−1

F )

object in Db(C[T,T−1]).

F constructible⇒ AψfF ≃ pψfF .
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