Vanishing cycles and their algebraic computation (I)

Claude Sabbah

Centre de Mathématiques Laurent Schwartz

UMR 7640 du CNRS

École polytechnique, Palaiseau, France

Programme SEDIGA ANR-08-BLAN-0317-01

The $\mu = \mu$ theorem

- $f: (\mathbb{C}^{n+1}, 0) \longrightarrow (\mathbb{C}, 0)$ a germ of holom. funct. isol. sing., *F* = Milnor fibre.
- **•** THEOREM (Milnor):

 $\dim_{\mathbb{C}} \mathscr{O}_{\mathbb{C}^{n+1},0}/(\partial f) =: \overline{\mu_{\mathrm{alg}} = \mu_{\mathrm{top}}} := \dim_{\mathbb{C}} H^n(F,\mathbb{C})$

The $\mu = \mu$ theorem

- $f: (\mathbb{C}^{n+1}, 0) \longrightarrow (\mathbb{C}, 0)$ a germ of holom. funct. isol. sing.,
 F = Milnor fibre.
- **•** THEOREM (Milnor):

 $\dim_{\mathbb{C}} \mathscr{O}_{\mathbb{C}^{n+1},0}/(\partial f) =: \mu_{\mathrm{alg}} = \mu_{\mathrm{top}} := \dim_{\mathbb{C}} H^n(F,\mathbb{C})$

- Various proofs:
 - Use index of $\frac{\mathbf{grad}}{\mathbf{f}}$ on the Milnor sphere.
 - Deform the function $\longrightarrow \mu_{alg}$ nondeg. critical pts
 - etc.
- Brieskorn: algebraic formula for the monodromy.
- Important tool: the Brieskorn lattice.

Objective of the lectures

To extend these results to the case

$f:X\longrightarrow \mathbb{C}$

X smooth quasi-projective and f regular on X.

Local systems in dim. one

• Δ : disc with coord. $t, \Delta^* := \Delta \setminus \{0\}, \widetilde{\Delta}^*$: univ. cov.

$$\{0\} \stackrel{i_0}{\longleftrightarrow} \Delta \stackrel{j}{\longleftrightarrow} \Delta^* \stackrel{p}{\longleftarrow} \widetilde{\Delta}^*$$

Local systems in dim. one

• Δ : disc with coord. $t, \Delta^* := \Delta \setminus \{0\}, \widetilde{\Delta}^*$: univ. cov.

$$\{0\} \stackrel{i_0}{\longrightarrow} \Delta \stackrel{j}{\longleftarrow} \Delta^* \stackrel{p}{\longleftarrow} \widetilde{\Delta}^*$$

Local systems in dim. one

• Δ : disc with coord. $t, \Delta^* := \Delta \setminus \{0\}, \widetilde{\Delta}^*$: univ. cov.

$$\{0\} \stackrel{i_0}{\longleftrightarrow} \Delta \stackrel{j}{\longleftrightarrow} \Delta^* \stackrel{p}{\longleftarrow} \widetilde{\Delta}^*$$

- Answer:

• $p: \widetilde{\Delta}^* \longrightarrow \Delta^*$: univ. covering, $\Rightarrow p^{-1} \mathscr{L}$ trivial

• $L = \Gamma(\widetilde{\Delta}^*, p^{-1}\mathscr{L}), T$ induced by deck-transf.

$$L=i_0^{-1}j_*p_*p^{-1}\mathscr{L}$$

$$\{0\} \stackrel{i_0}{\longrightarrow} \Delta \stackrel{j}{\longleftarrow} \Delta^* \stackrel{p}{\longleftarrow} \widetilde{\Delta}^*$$

$$\{0\} \stackrel{i_0}{\longrightarrow} \Delta \stackrel{j}{\longleftrightarrow} \Delta^* \stackrel{p}{\longleftarrow} \widetilde{\Delta}^*$$

• $\mathscr{F} := j_* \mathscr{L}$: example of a constr. sheaf w.r.t. $(\Delta, 0)$

• $j^{-1}\mathscr{F} = \mathscr{L}, \quad i_0^{-1}j_*\mathscr{L} = \ker\left[(\mathbf{T} - \mathrm{Id}): L \longrightarrow L\right]$ given by the adjunction

$$i_0^{-1}j_*\mathscr{L}=i_0^{-1}\mathscr{F}\longrightarrow i_0^{-1}(j\circ p)_*(j\circ p)^{-1}\mathscr{F}.$$

$$\{0\} \stackrel{i_0}{\longrightarrow} \Delta \stackrel{j}{\longleftrightarrow} \Delta^* \stackrel{p}{\longleftarrow} \widetilde{\Delta}^*$$

• $\mathscr{F} := j_* \mathscr{L}$: example of a constr. sheaf w.r.t. $(\Delta, 0)$

• $j^{-1}\mathscr{F} = \mathscr{L}, \quad i_0^{-1}j_*\mathscr{L} = \ker\left[(\mathbf{T} - \mathrm{Id}): L \longrightarrow L\right]$ given by the adjunction

$$i_0^{-1}j_*\mathscr{L} = i_0^{-1}\mathscr{F} \longrightarrow i_0^{-1}(j \circ p)_*(j \circ p)^{-1}\mathscr{F}.$$

• \mathscr{F} any constr. bounded complex on $(\Delta, 0)$. (1.1.1) $\psi_t \mathscr{F} := i_0^{-1} R(j \circ p)_* (j \circ p)^{-1} \mathscr{F}$

$$i_0^{-1}\mathscr{F}\longrightarrow \psi_t\mathscr{F} \xrightarrow{\operatorname{can}} \phi_t\mathscr{F} \xrightarrow{+1}$$

$$\{0\} \stackrel{i_0}{\longrightarrow} \Delta \stackrel{j}{\longleftarrow} \Delta^* \stackrel{p}{\longleftarrow} \widetilde{\Delta}^*$$

$$\psi_t \mathscr{F} := i_0^{-1} R(j \circ p)_* (j \circ p)^{-1} \mathscr{F}$$

$$i_0^{-1}\mathscr{F} \longrightarrow \psi_t \mathscr{F} \xrightarrow{\operatorname{can}} \phi_t \mathscr{F} \xrightarrow{+1}$$

$$\{0\} \stackrel{i_0}{\longrightarrow} \Delta \stackrel{j}{\longleftrightarrow} \Delta^* \stackrel{p}{\longleftarrow} \widetilde{\Delta}^*$$

(1.1.1)
$$\psi_t \mathscr{F} := i_0^{-1} R(j \circ p)_* (j \circ p)^{-1} \mathscr{F}$$

$$i_0^{-1}\mathscr{F} \longrightarrow \psi_t \mathscr{F} \xrightarrow{\operatorname{can}} \phi_t \mathscr{F} \xrightarrow{+1}$$

 \rightarrow Long exact sequence of \mathbb{C} -vect. spaces with autom. T

If $\mathscr{F} = j_*\mathscr{L}, i_0^{-1}\mathscr{F} \simeq \ker(T - Id) \Rightarrow$ $\phi_t\mathscr{F} \simeq \operatorname{Im}(T - Id)$ cohom. in *degree zero only*.

- If $\mathscr{F} = j_*\mathscr{L}, i_0^{-1}\mathscr{F} \simeq \ker(T Id) \Rightarrow$ $\phi_t\mathscr{F} \simeq \operatorname{Im}(T Id)$ cohom. in *degree zero only*.

 $\phi_t \mathscr{F} \stackrel{\mathrm{can}}{\simeq} \psi_t \mathscr{F}$ cohom. in *degree zero only*.

- If $\mathscr{F} = j_*\mathscr{L}, i_0^{-1}\mathscr{F} \simeq \ker(T Id) \Rightarrow$ $\phi_t\mathscr{F} \simeq \operatorname{Im}(T Id)$ cohom. in *degree zero only*.
- $If \mathscr{F} = Rj_*\mathscr{L}, i_0^{-1}\mathscr{F} = \{L \xrightarrow{\mathrm{T-Id}} L\} \Rightarrow$

 $\phi_t \mathscr{F} \stackrel{\mathrm{can}}{\simeq} \psi_t \mathscr{F}$ cohom. in *degree zero only*.

If $\mathscr{F} = i_{0,*}F$ (skyscrap. sheaf), $\psi_t \mathscr{F} = 0 \Rightarrow$ $\phi_t \mathscr{F} = F[1]$ cohom. in *degree* −1 *only*.

- If $\mathscr{F} = j_*\mathscr{L}, i_0^{-1}\mathscr{F} \simeq \ker(T \mathrm{Id}) \Rightarrow$ $\phi_t\mathscr{F} \simeq \mathrm{Im}(T - \mathrm{Id})$ cohom. in *degree zero only*.
- $If \mathscr{F} = Rj_*\mathscr{L}, i_0^{-1}\mathscr{F} = \{L \xrightarrow{\mathrm{T-Id}} L\} \Rightarrow$

 $\phi_t \mathscr{F} \stackrel{\mathrm{can}}{\simeq} \psi_t \mathscr{F}$ cohom. in *degree zero only*.

- If $\mathscr{F} = i_{0,*}F$ (skyscrap. sheaf), $\psi_t \mathscr{F} = 0 \Rightarrow$ $\phi_t \mathscr{F} = F[1]$ cohom. in *degree* −1 *only*.
- Set

 $(1.1.2) \quad {}^{p}\!\psi_{t}\mathscr{F} = \psi_{t}\mathscr{F}[-1], \quad {}^{p}\!\phi_{t}\mathscr{F} = \phi_{t}\mathscr{F}[-1].$

Then for $\mathscr{F} = j_* \mathscr{L}[\dim \Delta]$, $Rj_* \mathscr{L}[\dim \Delta]$ or $i_{0,*}F$,

$$\mathscr{H}^{j}({}^{p}\!\psi_{t}\mathscr{F})=0, \quad \mathscr{H}^{j}({}^{p}\!\phi_{t}\mathscr{F})=0, \quad \text{if } j \neq 0$$

- DEFINITION 1.1.3. A constr. complex on $(\Delta, 0)$ is **perverse** if
 - $j^{-1}\mathscr{F} = \mathscr{L}[1]$ for some local system \mathscr{L} on Δ^* ,
 - i₀⁻¹ ℱ has nonzero cohom. in deg. −1 and 0 at most,
 - $i_0^! \mathscr{F}$ has nonzero cohom. in deg. 0 and 1 at most.

- DEFINITION 1.1.3. A constr. complex on $(\Delta, 0)$ is perverse if
 - $j^{-1}\mathscr{F} = \mathscr{L}[1]$ for some local system \mathscr{L} on Δ^* ,
 - i₀⁻¹ ℱ has nonzero cohom. in deg. −1 and 0 at most,
 - $i_0^! \mathscr{F}$ has nonzero cohom. in deg. 0 and 1 at most.
- THEOREM 1.1.4. A constr. complex \mathscr{F} is perverse iff $\mathscr{H}^{j}({}^{p}\psi_{t}\mathscr{F}) = \mathscr{H}^{j}({}^{p}\phi_{t}\mathscr{F}) = 0$ for $j \neq 0$.

 ▲¹: affine line, coord. $t, C \subset A^1$: finite, *F*: constr. w.r.t. (A^1, C).

- ▲¹: affine line, coord. t, C ⊂ A¹: finite, \mathscr{F} : constr. w.r.t. (A¹, C).
- ▶ Δ : big open disc $\supset C$, *I*: closed $\neq \emptyset$ interval in $\partial \overline{\Delta}$.

- ▲¹: affine line, coord. $t, C \subset \mathbb{A}^1$: finite, \mathscr{F} : constr. w.r.t. (\mathbb{A}^1, C).
- Δ : big open disc $\supset C$, *I*: closed $\neq \emptyset$ interval in $\partial \overline{\Delta}$.

PROPOSITION 1.1.6. Assume \mathscr{F} perverse on $(\mathbb{A}^1, \mathbb{C})$. Then

• $H^k_{\mathbf{c}}(\overline{\Delta} \setminus I, \mathscr{F}) = 0$ for $k \neq 0$, and

(1.1.6*)

$$\dim H^0_{\mathbf{c}}(\overline{\Delta}\smallsetminus I,\mathscr{F}) = \sum_{c\in C}\dim {}^p\!\phi_{t-c}\mathscr{F}.$$

- ▲¹: affine line, coord. $t, C \subset \mathbb{A}^1$: finite, \mathscr{F} : constr. w.r.t. (\mathbb{A}^1, C).
- Δ : big open disc $\supset C$, *I*: closed $\neq \emptyset$ interval in $\partial \overline{\Delta}$.

PROPOSITION 1.1.6. Assume \mathscr{F} perverse on $(\mathbb{A}^1, \mathbb{C})$. Then

• $H^k_c(\overline{\Delta} \setminus I, \mathscr{F}) = 0$ for $k \neq 0$, and

$$(1.1.6*) \qquad \dim H^0_{\mathbf{c}}(\overline{\Delta} \smallsetminus I, \mathscr{F}) = \sum_{c \in C} \dim {}^p \phi_{t-c} \mathscr{F}.$$

• PROOF. Need only consider $\mathscr{F} = i_{c,*}F$ ($c \in C$) and $\mathscr{F} = j_*\mathscr{L}[1]$ ($j : \mathbb{A}^1 \smallsetminus C \hookrightarrow \mathbb{A}^1$).

(1.1.6*)

$$\dim H^0_{\operatorname{c}}(\overline{\Delta}\smallsetminus I,\mathscr{F}) = \sum_{c\in C}\dim {}^p\!\phi_{t-c}\mathscr{F}.$$

Perversity on \mathbb{A}^1

$$(1.1.6*) \qquad \dim H^0_{\mathbf{c}}(\overline{\Delta}\smallsetminus I,\mathscr{F}) = \sum_{c\in C}\dim {}^p\!\phi_{t-c}\mathscr{F}.$$

 $\ \, {\pmb H}_{\bf c}^{-1}(\overline{\Delta}\smallsetminus I,j_*\mathscr{L}[1])={\pmb H}_{\bf c}^0(\overline{\Delta}\smallsetminus I,j_*\mathscr{L})=0 : {\rm clear}.$

Perversity on \mathbb{A}^{1}

$$(1.1.6*) \qquad \dim H^0_c(\overline{\Delta} \smallsetminus I,\mathscr{F}) = \sum_{c \in C} \dim {}^p \phi_{t-c} \mathscr{F}.$$

 $\ \, {\pmb H}_{\bf c}^{-1}(\overline{\Delta}\smallsetminus I,j_*\mathscr{L}[1])={\pmb H}_{\bf c}^0(\overline{\Delta}\smallsetminus I,j_*\mathscr{L})=0 : {\rm clear}.$

• $H^1_c(\overline{\Delta} \setminus I, j_*\mathscr{L}[1]) = H^2_c(\overline{\Delta} \setminus I, j_*\mathscr{L}) = 0$: by duality, non degen. pairing

 $H^0_{\mathrm{c}}(\overline{\Delta}\smallsetminus I, j_*\mathscr{L}^{\vee}) \otimes H^2_{\mathrm{c}}(\overline{\Delta}\smallsetminus I^c, j_*\mathscr{L}) \longrightarrow H^2_{\mathrm{c}}(\Delta, \mathbb{C}) \simeq \mathbb{C}$

Perversity on \mathbb{A}^{1}

$$(1.1.6*) \qquad \dim H^0_{\mathbf{c}}(\overline{\Delta}\smallsetminus I,\mathscr{F}) = \sum_{c\in C}\dim {}^p\!\phi_{t-c}\mathscr{F}.$$

- $\ \, {\pmb H}_{\bf c}^{-1}(\overline{\Delta}\smallsetminus I,j_*{\mathscr L}[1])={\pmb H}_{\bf c}^0(\overline{\Delta}\smallsetminus I,j_*{\mathscr L})=0 : {\rm clear}.$
- $H^1_c(\overline{\Delta} \setminus I, j_*\mathscr{L}[1]) = H^2_c(\overline{\Delta} \setminus I, j_*\mathscr{L}) = 0$: by duality, non degen. pairing

 $H^0_{\mathrm{c}}(\overline{\Delta} \smallsetminus I, j_* \mathscr{L}^{\vee}) \otimes H^2_{\mathrm{c}}(\overline{\Delta} \smallsetminus I^c, j_* \mathscr{L}) \longrightarrow H^2_{\mathrm{c}}(\Delta, \mathbb{C}) \simeq \mathbb{C}$

 $\blacksquare \ \beta: \overline{\Delta} \smallsetminus I \longrightarrow \overline{\Delta}, \text{ then}$

 $\dim H^0_{\mathbf{c}}(\overline{\Delta}\smallsetminus I, j_*\mathscr{L}[1]) = -\chi(\overline{\Delta}, \beta_!\beta^{-1}j_*\mathscr{L})$

 $=-\chi(\overline{\Delta}\smallsetminus (I\cup C))\cdot \mathrm{rk}\,\mathscr{L} - \sum_{c\in C}\dim(j_*\mathscr{L})_c$

 $= \# C \cdot \operatorname{rk} \mathscr{L} - \sum_{c \in C} (\operatorname{rk} \mathscr{L} - \dim \phi_{t-c}(j_* \mathscr{L}))$

Nearby and vanishing cycles

- X: cplx manifold, $f : X \longrightarrow \mathbb{C}$ holom. function, $X_0 := f^{-1}(0)$.
- Goal: to glue as a *cplx of sheaves* the Milnor fibres of f at each $x \in X_0$.

Nearby and vanishing cycles for \mathbb{C}_X

$$\psi_f \mathbb{C}_X := i_0^{-1} R(j \circ p)_* (j \circ p)^{-1} \mathbb{C}_X$$

$$\mathbb{C}_{X_0} = i_0^{-1} \mathbb{C}_X \longrightarrow \psi_f \mathbb{C}_X$$

$$\mathbb{C}_{X_0} = i_0^{-1} \mathbb{C}_X \longrightarrow \psi_f \mathbb{C}_X \xrightarrow{\operatorname{can}} \phi_f \mathbb{C}_X \xrightarrow{+1}.$$

- $\psi_f \mathbb{C}_X$ supported on X_0 ,
- $\phi_f \mathbb{C}_X$ supported on $\operatorname{Crit}(f) \cap X_0$,
- **•** Both equipped with monodromy T.

Proper push-forward

THEOREM 1.3.1.

Assume that π proper. \mathscr{F} bounded cplx. Then

 $\left| R\pi_{*}\psi_{f}\mathscr{F}\simeq\psi_{f'}R\pi_{*}\mathscr{F}
ight| \quad \left| R\pi_{*}arphi
ight|$

 $R\pi_*\phi_f\mathscr{F}\simeq \phi_{f'}R\pi_*\mathscr{F}$

EXAMPLE. If $f: X \longrightarrow \Delta$ proper, then

(1.3.2) $\begin{aligned} Rf_*\psi_f\mathbb{C}_X \simeq \psi_t Rf_*\mathbb{C}_X, \\ Rf_*\phi_f\mathbb{C}_X \simeq \phi_t Rf_*\mathbb{C}_X. \end{aligned}$

Non proper push-forward

If π not proper, we may have

 $R\pi_*\psi_f\mathscr{F} \not\simeq \psi_{f'}R\pi_*\mathscr{F}, \quad R\pi_*\phi_f\mathscr{F} \not\simeq \phi_{f'}R\pi_*\mathscr{F}$

EXAMPLE: $X = B_{\varepsilon} \subset \mathbb{C}^{n+1}$, $f : X \longrightarrow \mathbb{C}$ isol. sing. at $0, \pi : U = X \setminus \{0\} \hookrightarrow X$.

 $H^n \phi_f \pi_! \mathbb{C}_X \simeq H^n \phi_f \mathbb{C}_X
eq 0 \quad (n \geqslant 1)$

Constructibility

Constructibility

THEOREM 1.3.3. $\psi_f \mathbb{C}_X$ and $\phi_f \mathbb{C}_X$ have \mathbb{C} -constr. cohomol. (*i.e.*, \exists a Whitney stratif. of X_0 s.t. $\mathscr{H}^k \psi_f \mathbb{C}_X$ and $\mathscr{H}^k \phi_f \mathbb{C}_X$ are loc. const. sheaves of f.d. \mathbb{C} -vect. spaces on each stratum).

Constructibility

THEOREM 1.3.3. $\psi_f \mathbb{C}_X$ and $\phi_f \mathbb{C}_X$ have \mathbb{C} -constr. cohomol. (*i.e.*, \exists a Whitney stratif. of X_0 s.t. $\mathscr{H}^k \psi_f \mathbb{C}_X$ and $\mathscr{H}^k \phi_f \mathbb{C}_X$ are loc. const. sheaves of f.d. \mathbb{C} -vect. spaces on each stratum).

• COMPLEMENT. Moreover, $\forall x \in X_0$ and $\forall k \in \mathbb{N}$,

$$\mathscr{H}^k(\psi_f\mathbb{C}_X)_x\simeq H^k(F_{\varepsilon,\eta},\mathbb{C}),$$

- B_{ε} : closed ball centered at x,
- Δ_{η} : small disc centered at f(x),
- $f: B_{\varepsilon} \cap f^{-1}(\Delta_{\eta}^{*}) \to (\Delta_{\eta}^{*})$: Milnor-Lê fibr. at x $(0 < \eta \ll \varepsilon \ll 1),$

• $F_{\varepsilon,\eta} := f^{-1}(\eta) \cap B_{\varepsilon}$: Milnor fibre of f at x.

Perversity

THEOREM 1.3.4.

- ${}^{p}\psi_{f}{}^{p}\mathbb{C}_{X}$ and ${}^{p}\phi_{f}{}^{p}\mathbb{C}_{X}$ are **perverse** (on X_{0}),
- *i.e.*, $Ri_{0,*}{}^{p}\psi_{f}{}^{p}\mathbb{C}_{X}$ and $Ri_{0,*}{}^{p}\phi_{f}{}^{p}\mathbb{C}_{X}$ are *perverse* (on X).

COROLLARY 1.3.5. Assume $f: X \to \Delta$ proper. Then $\forall j \in \mathbb{Z}$,

 $({}^{p}\mathscr{H}^{j}Rf_{*})({}^{p}\psi_{f}{}^{p}\mathbb{C}_{X})\simeq {}^{p}\psi_{t}({}^{p}\mathscr{H}^{j}Rf_{*}){}^{p}\mathbb{C}_{X},$

 $({}^{p}\mathscr{H}^{j}Rf_{*})({}^{p}\phi_{f}{}^{p}\mathbb{C}_{X}) \simeq {}^{p}\phi_{t}({}^{p}\mathscr{H}^{j}Rf_{*}){}^{p}\mathbb{C}_{X}.$

Other approaches

$$\psi_f\mathscr{F} := i_0^{-1} R j_* R p_* (j \circ p)^{-1} \mathscr{F}$$

Replace with the Alexander complex

$${}^A\psi_f\mathscr{F}:=i_0^{-1}Rj_*Rp_!(j\circ p)^{-1}\mathscr{F}$$

 $\mathscr{L}(\mathbf{T}) = p_! \mathbb{C}_{\widetilde{\Delta}^*}$: local syst. on Δ^* with fibre $\mathbb{C}[\mathbf{T}, \mathbf{T}^{-1}]$ and monodromy = mult. by **T**.

$${}^{A}\psi_{f}\mathscr{F}=i_{0}^{-1}Rj_{*}(f^{-1}\mathscr{L}(\mathbf{T})\otimes j^{-1}\mathscr{F})$$

object in $D^{\mathbf{b}}(\mathbb{C}[\mathbf{T},\mathbf{T}^{-1}])$.

•
$$\mathscr{F}$$
 constructible $\Rightarrow {}^{A}\psi_{f}\mathscr{F} \simeq {}^{p}\psi_{f}\mathscr{F}$.