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Centre de Mathématiques Laurent Schwartz

UMR 7640 du CNRS
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Position of the problem

X: smooth quasi-projective /C (Zariski top.)

f : X −→ A1
t not necess. projective

PROBLEM: To compute in algebraic terms the
monodr. on Hk(f−1(c), φf−cCXan)
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Position of the problem

X: smooth quasi-projective /C (Zariski top.)

f : X −→ A1
t not necess. projective

PROBLEM: To compute in algebraic terms the
monodr. on Hk(f−1(c), φf−cCXan)

Recall: φf−cCXan is a constructible complex
supported on Sing(f−1(c)), equipped with

Tc : φf−cCXan −→ φf−cCXan

It induces

Tc : Hk(f−1(c), φf−cCXan) −→ Hk(f−1(c), φf−cCXan)
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C((z))-vect. spaces with connection
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C((z))-vect. spaces with connection
F : a finite dim. C((z))-vect. space, dimC((z)) F = µ,

∇ : F → F ⊗ dz a connection , i.e., ∇∂z
: F → F

is C-linear + Leibniz rule.
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C((z))-vect. spaces with connection
F : a finite dim. C((z))-vect. space, dimC((z)) F = µ,

∇ : F → F ⊗ dz a connection , i.e., ∇∂z
: F → F

is C-linear + Leibniz rule.

v = (v1, . . . , vµ): C((z))-basis of F ,

Matrix of ∇: ∇∂z
v = v ·Av(z)

Change of basis: w = v · P (z)⇒

Aw(z) = P (z)−1Av(z)P (z) + P (z)−1P ′z
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C((z))-vect. spaces with connection
F : a finite dim. C((z))-vect. space, dimC((z)) F = µ,

∇ : F → F ⊗ dz a connection , i.e., ∇∂z
: F → F

is C-linear + Leibniz rule.

v = (v1, . . . , vµ): C((z))-basis of F ,

Matrix of ∇: ∇∂z
v = v ·Av(z)

Change of basis: w = v · P (z)⇒

Aw(z) = P (z)−1Av(z)P (z) + P (z)−1P ′z

DEFINITION: (F,∇) has reg. sing. if ∃ a basis v s.t.
Av(z) = M/z, M cst. matrix. Set E = C · v.
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C((z))-vect. spaces with connection
F : a finite dim. C((z))-vect. space, dimC((z)) F = µ,

∇ : F → F ⊗ dz a connection , i.e., ∇∂z
: F → F

is C-linear + Leibniz rule.

v = (v1, . . . , vµ): C((z))-basis of F ,

Matrix of ∇: ∇∂z
v = v ·Av(z)

Change of basis: w = v · P (z)⇒

Aw(z) = P (z)−1Av(z)P (z) + P (z)−1P ′z

DEFINITION: (F,∇) has reg. sing. if ∃ a basis v s.t.
Av(z) = M/z, M cst. matrix. Set E = C · v.

T : exp(−2πiM) : E → E indept. of such choice:
Monodromy of (F,∇) (reg. sing. )

R̂H(F,∇) = (E,T)
Vanishing cycles and their algebraic computation (III) – p. 3/19



C((z))-vect. spaces with connection

E: finite dim. C-vect. space with autom. T : E
∼
−→ E

Choose M : E −→ E s.t. T = exp(−2πiM)
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C((z))-vect. spaces with connection

E: finite dim. C-vect. space with autom. T : E
∼
−→ E

Choose M : E −→ E s.t. T = exp(−2πiM)

R̂H−1(E,T) := (C((z))⊗C E,∇), ∇ = d + Mdz/z
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C((z))-vect. spaces with connection

E: finite dim. C-vect. space with autom. T : E
∼
−→ E

Choose M : E −→ E s.t. T = exp(−2πiM)

R̂H−1(E,T) := (C((z))⊗C E,∇), ∇ = d + Mdz/z

R̂H−1(E,T): C((z))-vect. space with reg. sing.
connection.

⇒ R̂H(C((z))⊗C E,∇) = (E,T)
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C((z))-vect. spaces with connection
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C((z))-vect. spaces with connection

(F,∇) any C((z))-vect. space with connection.
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C((z))-vect. spaces with connection

(F,∇) any C((z))-vect. space with connection.

Look for an analogue of Jordan’s decomp. of A(z).
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C((z))-vect. spaces with connection

(F,∇) any C((z))-vect. space with connection.

Look for an analogue of Jordan’s decomp. of A(z).

Levelt-Turrittin decomp. (up to z  z1/e)

(F,∇) ≃
⊕

ϕ∈C((z))

(Fϕ,∇
reg + dϕ Id)

Moreover, [ϕ] ∈ C((z))/C[[z]] and (F[ϕ],∇
reg)

uniquely determined .
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C((z))-vect. spaces with connection

(F,∇) any C((z))-vect. space with connection.

Look for an analogue of Jordan’s decomp. of A(z).

Levelt-Turrittin decomp. (up to z  z1/e)

(F,∇) ≃
⊕

ϕ∈C((z))

(Fϕ,∇
reg + dϕ Id)

Moreover, [ϕ] ∈ C((z))/C[[z]] and (F[ϕ],∇
reg)

uniquely determined .

Write (Fϕ,∇
reg + dϕ Id) = Ê ϕ ⊗ (Fϕ,∇

reg).

(F,∇) of exponential type if any [ϕ] has simple
pole, i.e., [ϕ] = c/z for some c ∈ C.
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C((z))-vect. spaces with connection

EXAMPLE: Given (E,T, c ∈ C), consider

Ê−c/z ⊗ (E((z)),∇) :=
(
E((z)),∇− d(c/z)

)
.
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C((z))-vect. spaces with connection

EXAMPLE: Given (E,T, c ∈ C), consider

Ê−c/z ⊗ (E((z)),∇) :=
(
E((z)),∇− d(c/z)

)
.

Choose (Ekc ,T) =
(
Hk(f−1(c), φf−cCX),T

)

(c ∈ C.)

PROBLEM: To give an algebraic formula (in terms of f )
for

⊕
c∈C

(
Ê−c/z ⊗ R̂H−1(Ekc ,T)

)
.
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The Brieskorn complex
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The Brieskorn complex

X: smooth quasi-projective /C (Zariski top.)

f : X −→ A1
t not necess. projective

Vanishing cycles and their algebraic computation (III) – p. 7/19



The Brieskorn complex

X: smooth quasi-projective /C (Zariski top.)

f : X −→ A1
t not necess. projective

OX [[z]] := lim
←−ℓ

OX [z]/zℓOX [z]

OX((z)) := OX [z, z−1]⊗OX [z] OX [[z]]

(= lim
−→k

z−kOX [[z]])
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The Brieskorn complex

X: smooth quasi-projective /C (Zariski top.)

f : X −→ A1
t not necess. projective

OX [[z]] := lim
←−ℓ

OX [z]/zℓOX [z]

OX((z)) := OX [z, z−1]⊗OX [z] OX [[z]]

(= lim
−→k

z−kOX [[z]])

FORMAL BRIESKORN COMPLEX ATTACHED TO f :

0→ OX((z))
d−df/z
−→ Ω1

X((z))
d−df/z
−→ · · ·Ωn+1

X ((z))→ 0

Equipped with ∇∂z
:= ∂/∂z + f/z2

Vanishing cycles and their algebraic computation (III) – p. 7/19



Goal for today
THEOREM 3.3.2. For each k,

(
Hk

(
X, (Ω•

X((z)), d− df/z)
)
,∇∂z

)

≃
⊕
c∈C

Ê
−c/z ⊗ R̂H−1

(
Hk−1

(
f−1(c), φf−cCXan

)
,T

)
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Goal for today
THEOREM 3.3.2. For each k,

(
Hk

(
X, (Ω•

X((z)), d− df/z)
)
,∇∂z

)

≃
⊕
c∈C

Ê
−c/z ⊗ R̂H−1

(
Hk−1

(
f−1(c), φf−cCXan

)
,T

)

REMARKS.

Conj. by Kontsevich. ( ?
=⇒ φf on formal schemes)
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Goal for today
THEOREM 3.3.2. For each k,

(
Hk

(
X, (Ω•

X((z)), d− df/z)
)
,∇∂z

)

≃
⊕
c∈C

Ê
−c/z ⊗ R̂H−1

(
Hk−1

(
f−1(c), φf−cCXan

)
,T

)

REMARKS.

Conj. by Kontsevich. ( ?
=⇒ φf on formal schemes)

For f : (Cn+1, 0)→ (C, 0) isol. sing., Brieskorn (’70)
⇒(

H
k
(
Ω•

Cn+1,0((z)), d−df/z
)
,∇∂z

)
=

{
0 if k 6= n+ 1

R̂H−1(H nφfC,T)
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Goal for today
THEOREM 3.3.2. For each k,

(
Hk

(
X, (Ω•

X((z)), d− df/z)
)
,∇∂z

)

≃
⊕
c∈C

Ê
−c/z ⊗ R̂H−1

(
Hk−1

(
f−1(c), φf−cCXan

)
,T

)

REMARKS.

Conj. by Kontsevich. ( ?
=⇒ φf on formal schemes)

For f : (Cn+1, 0)→ (C, 0) isol. sing., Brieskorn (’70)
⇒(

H
k
(
Ω•

Cn+1,0((z)), d−df/z
)
,∇∂z

)
=

{
0 if k 6= n+ 1

R̂H−1(H nφfC,T)

No Hodge theory needed, today, only resol. of sing.
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Assume f proper

THEOREM 3.2.1.(1) For each k,
(
C((z))⊗C[z,z−1] H

k
(
X, (Ω•

X [z, z−1], d− df/z)
)
,∇∂z

)

≃
⊕
c∈C

Ê
−c/z ⊗ R̂H−1

(
Hk−1

(
f−1(c), φf−cCXan

)
,T

)

Can prove: f is proper⇒ this is equiv. to Th. 3.3.2.
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Assume f proper

Proof: Reduction to dimension one .
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Assume f proper

Proof: Reduction to dimension one .

M a reg. hol. C[t]〈∂t〉-mod.⇒ G is C[z, z−1]-free of
finite rk =

∑
c dimφt−c

pDRanM ,

G := coker
[
C[z, z−1]⊗C M

z∂t−1
−→ C[z, z−1]⊗C M

]

equipped with ∇∂z
= ∂/∂z + t/z2.
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Assume f proper

Proof: Reduction to dimension one .

M a reg. hol. C[t]〈∂t〉-mod.⇒ G is C[z, z−1]-free of
finite rk =

∑
c dimφt−c

pDRanM ,

G := coker
[
C[z, z−1]⊗C M

z∂t−1
−→ C[z, z−1]⊗C M

]

equipped with ∇∂z
= ∂/∂z + t/z2.

Formal stationary phase formula gives

(C((z))⊗C[z]G,∇∂z
) ≃

⊕
c∈C

Ê
−c/z⊗R̂H−1(pφt−c

pDRMan,T).
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Assume f proper

Proof: Reduction to dimension one .

M a reg. hol. C[t]〈∂t〉-mod.⇒ G is C[z, z−1]-free of
finite rk =

∑
c dimφt−c

pDRanM ,

G := coker
[
C[z, z−1]⊗C M

z∂t−1
−→ C[z, z−1]⊗C M

]

equipped with ∇∂z
= ∂/∂z + t/z2.

Formal stationary phase formula gives

(C((z))⊗C[z]G,∇∂z
) ≃

⊕
c∈C

Ê
−c/z⊗R̂H−1(pφt−c

pDRMan,T).

Apply to M = H kf+OX (⇒ pφt−c
pDRMan = Ekc )
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Example with f non proper
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Example with f non proper

f ∈ C[t], X = A1
t r {f ′ = 0}, f|X : X → C,

G := coker
(
C[t, 1/f ′][z, z−1]

z∂t−f
′

−→ C[t, 1/f ′][z, z−1]
)

(and ker = 0 easy).
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Example with f non proper

f ∈ C[t], X = A1
t r {f ′ = 0}, f|X : X → C,

G := coker
(
C[t, 1/f ′][z, z−1]

z∂t−f
′

−→ C[t, 1/f ′][z, z−1]
)

(and ker = 0 easy).

G is C[z, z−1]-free of rank deg f ·#Crit f

⇒ C((z))⊗C[z,z−1] G does not give the right answer (= 0)
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Example with f non proper

Ĝ = 0 with

Ĝ := coker
(
C[t, 1/f ′]((z))

z∂t−f
′

−→ C[t, 1/f ′]((z))
)
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Example with f non proper

Ĝ = 0 with

Ĝ := coker
(
C[t, 1/f ′]((z))

z∂t−f
′

−→ C[t, 1/f ′]((z))
)

Proof:
ker = 0 easy
Given ψko

, ψko+1, · · · ∈ C[t, 1/f ′], can find
ϕko

, ϕko+1, · · · ∈ C[t, 1/f ′] s.t.

ψko
= −f ′ϕko

, . . . , ψk+1 = ∂tϕk − f
′ϕk+1, . . . ,

(solve induct. with f ′ invertible in C[t, 1/f ′]).
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Strategy of the proof
THEOREM 3.3.2. For each k,

(
Hk

(
X, (Ω•

X((z)), d− df/z)
)
,∇∂z

)

≃
⊕
c∈C

Ê
−c/z ⊗ R̂H−1

(
Hk−1

(
f−1(c), φf−cCXan

)
,T

)
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Strategy of the proof
THEOREM 3.3.2. For each k,

(
Hk

(
X, (Ω•

X((z)), d− df/z)
)
,∇∂z

)

≃
⊕
c∈C

Ê
−c/z ⊗ R̂H−1

(
Hk−1

(
f−1(c), φf−cCXan

)
,T

)

Introduce an intermediate term(
Hk

(
Xan, (Ω•

Xan((z)), d− df/z)
)
,∇∂z

)
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Strategy of the proof
THEOREM 3.3.2. For each k,

(
Hk

(
X, (Ω•

X((z)), d− df/z)
)
,∇∂z

)

≃
⊕
c∈C

Ê
−c/z ⊗ R̂H−1

(
Hk−1

(
f−1(c), φf−cCXan

)
,T

)

Introduce an intermediate term(
Hk

(
Xan, (Ω•

Xan((z)), d− df/z)
)
,∇∂z

)

Choose a comm. diag.

(3.3.4)

X

f

j
Y

F

Y : smooth proj.

C P1 D := Y rX: ncd
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Strategy of the proof
GAGA type thm by standard methods:

(
Hk

(
X, (Ω•

X((z)), d− df/z)
)
,∇∂z

)

≃
(
Hk

(
Y, (Ω•

Y (∗D)((z)), d− dF/z)
)
,∇∂z

)

≃
(
Hk

(
Y an, (Ω•

Y an(∗D)((z)), d− dF/z)
)
,∇∂z

)
.
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Strategy of the proof
GAGA type thm by standard methods:

(
Hk

(
X, (Ω•

X((z)), d− df/z)
)
,∇∂z

)

≃
(
Hk

(
Y, (Ω•

Y (∗D)((z)), d− dF/z)
)
,∇∂z

)

≃
(
Hk

(
Y an, (Ω•

Y an(∗D)((z)), d− dF/z)
)
,∇∂z

)
.

Local statement on Y an:

(Ω•

Y an(∗D)((z)), d− dF/z)
)
≃ Rj∗(Ω

•

Xan((z)), d− df/z)
)
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Strategy of the proof
GAGA type thm by standard methods:

(
Hk

(
X, (Ω•

X((z)), d− df/z)
)
,∇∂z

)

≃
(
Hk

(
Y, (Ω•

Y (∗D)((z)), d− dF/z)
)
,∇∂z

)

≃
(
Hk

(
Y an, (Ω•

Y an(∗D)((z)), d− dF/z)
)
,∇∂z

)
.

Local statement on Y an:

(Ω•

Y an(∗D)((z)), d− dF/z)
)
≃ Rj∗(Ω

•

Xan((z)), d− df/z)
)

Assume that (D ∪ crit. fibres ) is ncd . Then local
computations⇒ OK.
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Strategy of the proof
GAGA type thm by standard methods:

(
Hk

(
X, (Ω•

X((z)), d− df/z)
)
,∇∂z

)

≃
(
Hk

(
Y, (Ω•

Y (∗D)((z)), d− dF/z)
)
,∇∂z

)

≃
(
Hk

(
Y an, (Ω•

Y an(∗D)((z)), d− dF/z)
)
,∇∂z

)
.

Local statement on Y an:

(Ω•

Y an(∗D)((z)), d− dF/z)
)
≃ Rj∗(Ω

•

Xan((z)), d− df/z)
)

Assume that (D ∪ crit. fibres ) is ncd . Then local
computations⇒ OK.
Need a decomposition thm for proper
modifications to reduce to the ncd case.
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Strategy of the proof
From

(Ω•

Y an(∗D)((z)), d−dF/z)
)
≃ Rj∗(Ω

•

Xan((z)), d−df/z)
)
,

we get

(
Hk

(
X, (Ω•

X((z)), d− df/z)
)
,∇∂z

)

≃
(
Hk

(
Xan, (Ω•

Xan((z)), d− df/z)
)
,∇∂z

)
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Strategy of the proof
From

(Ω•

Y an(∗D)((z)), d−dF/z)
)
≃ Rj∗(Ω

•

Xan((z)), d−df/z)
)
,

we get

(
Hk

(
X, (Ω•

X((z)), d− df/z)
)
,∇∂z

)

≃
(
Hk

(
Xan, (Ω•

Xan((z)), d− df/z)
)
,∇∂z

)

We now focus on Xan. Try to relate

(Ω•

Xan((z)), d− df/z)|f−1(c) with φf−cCXan

⇒ local statement on Xan.
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Strategy of the proof

Would like to compare

(Ω•

Xan((z)), d− df/z)

with

C((z))⊗C[z−1] (Ω
•

Xan[z
−1], d− df/z)
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Strategy of the proof

Would like to compare

(Ω•

Xan((z)), d− df/z)

with

C((z))⊗C[z−1] (Ω
•

Xan[z
−1], d− df/z)

More useful: ∂t ↔ z−1, compare with

ÊC ⊗DC
(Ω•

Xan[z
−1], d− df/z)
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Strategy of the proof

Comparison OK (loc. comput. on resol. of sing. +
come back)
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Strategy of the proof

Comparison OK (loc. comput. on resol. of sing. +
come back)

Use previous results of M. Saito and M. Kapranov to
conclude

(
Hk

(
Xan, (Ω•

Xan((z)), d− df/z)
)
,∇∂z

)

≃
(
Hk

(
Xan, ÊC ⊗DC

(Ω•

Xan[z−1], d− df/z),∇∂z

)

⊕
c∈C

Ê
−c/z ⊗ R̂H−1

(
Hk−1

(
f−1(c), φf−cCXan

)
,T

)
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Conclusion for the 3 lectures
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Conclusion for the 3 lectures

The case f proper is more comfortable and brings
more info.

If f not proper, consider a diagram

X κ

f

X ′

g

A1

⇒ (ΩX •[z, z−1], d− df/z) captures info for
φg−cRκ∗CX .

But in general φg−cRκ∗CX 6=Rκc∗φf−cCX .
(κc : f−1(c) −֒→ g−1(c))
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Tame case
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Tame case

However, if tameness assumption :

∀c ∈ C, Suppφg−cRκ∗CX ∩ (X ′ rX) = ∅

⇒ can work with f “as if ” it were proper.

Useful in Mirror Symmetry for Fano manifolds (or
Fano orbifolds).
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