Vanishing cycles and their algebraic computation (III)

Claude Sabbah

Centre de Mathématiques Laurent Schwartz
UMR 7640 du CNRS
École polytechnique, Palaiseau, France
Programme SEDIGA ANR-08-BLAN-0317-01

Position of the problem

Position of the problem

- X : smooth quasi-projective $/ \mathbb{C}$ (Zariski top.)
- $f: X \longrightarrow \mathbb{A}_{t}^{1}$ not necess. projective
- Problem: To compute in algebraic terms the monodr. on $H^{k}\left(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\text {an }}}\right)$

Position of the problem

- \boldsymbol{X} : smooth quasi-projective $/ \mathbb{C}$ (Zariski top.)
- $f: X \longrightarrow \mathbb{A}_{t}^{1}$ not necess. projective
- Problem: To compute in algebraic terms the monodr. on $H^{k}\left(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\text {an }}}\right)$
- Recall: $\phi_{f-c} \mathbb{C}_{X^{\text {an }}}$ is a constructible complex supported on $\operatorname{Sing}\left(f^{-1}(c)\right)$, equipped with

$$
\mathrm{T}_{c}: \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}} \longrightarrow \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}
$$

It induces

$$
\mathrm{T}_{c}: H^{k}\left(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}\right) \longrightarrow H^{k}\left(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}\right)
$$

$\mathbb{C}((z))$-vect. spaces with connection
$\mathbb{C}((z))$-vect. spaces with connection

- F : a finite dim. $\mathbb{C}((z))$-vect. space, $\operatorname{dim}_{\mathbb{C}((z))} F=\mu$,
- $\boldsymbol{\nabla}: \boldsymbol{F} \rightarrow \boldsymbol{F} \otimes \mathrm{d} z$ a connection, i.e., $\nabla_{\partial_{z}}: \boldsymbol{F} \rightarrow \boldsymbol{F}$ is \mathbb{C}-linear + Leibniz rule.
$\mathbb{C}((z))$-vect. spaces with connection
- F : a finite dim. $\mathbb{C}((z))$-vect. space, $\operatorname{dim}_{\mathbb{C}((z))} F=\mu$,
- $\boldsymbol{\nabla}: \boldsymbol{F} \rightarrow \boldsymbol{F} \otimes \mathrm{d} z$ a connection, i.e., $\nabla_{\partial_{z}}: \boldsymbol{F} \rightarrow \boldsymbol{F}$ is \mathbb{C}-linear + Leibniz rule.
- $v=\left(v_{1}, \ldots, v_{\mu}\right): \mathbb{C}((z))$-basis of F,
- Matrix of $\nabla: \nabla_{\partial_{z}} v=v \cdot A_{v}(z)$
- Change of basis: $w=v \cdot P(z) \Rightarrow$

$$
A_{w}(z)=P(z)^{-1} A_{v}(z) P(z)+P(z)^{-1} P_{z}^{\prime}
$$

$\mathbb{C}((z))$-vect. spaces with connection

- \boldsymbol{F} : a finite dim. $\mathbb{C}((z))$-vect. space, $\operatorname{dim}_{\mathbb{C}(z))} F=\mu$,
- $\boldsymbol{\nabla}: \boldsymbol{F} \rightarrow \boldsymbol{F} \otimes \mathrm{d} z$ a connection, i.e., $\nabla_{\partial_{z}}: \boldsymbol{F} \rightarrow \boldsymbol{F}$ is \mathbb{C}-linear + Leibniz rule.
- $v=\left(v_{1}, \ldots, v_{\mu}\right): \mathbb{C}((z))$-basis of F,
- Matrix of $\nabla: \nabla_{\partial_{z}} v=v \cdot A_{v}(z)$
- Change of basis: $w=v \cdot P(z) \Rightarrow$

$$
A_{w}(z)=P(z)^{-1} A_{v}(z) P(z)+P(z)^{-1} P_{z}^{\prime}
$$

- Definition: (F, ∇) has reg. sing. if \exists a basis v s.t. $A_{v}(z)=\mathrm{M} / z, \quad$ M cst. matrix. Set $E=\mathbb{C} \cdot v$.

$\mathbb{C}((z))$-vect. spaces with connection

- \boldsymbol{F} : a finite dim. $\mathbb{C}((z))$-vect. space, $\operatorname{dim}_{\mathbb{C}(z))} \boldsymbol{F}=\mu$,
- $\boldsymbol{\nabla}: \boldsymbol{F} \rightarrow \boldsymbol{F} \otimes \mathrm{d} z$ a connection, i.e., $\nabla_{\partial_{z}}: \boldsymbol{F} \rightarrow \boldsymbol{F}$ is \mathbb{C}-linear + Leibniz rule.
- $v=\left(v_{1}, \ldots, v_{\mu}\right): \mathbb{C}((z))$-basis of F,
- Matrix of $\nabla: \nabla_{\partial_{z}} v=v \cdot A_{v}(z)$
- Change of basis: $w=v \cdot P(z) \Rightarrow$

$$
A_{w}(z)=P(z)^{-1} A_{v}(z) P(z)+P(z)^{-1} P_{z}^{\prime}
$$

- Definition: (F, ∇) has reg. sing. if \exists a basis v s.t. $A_{v}(z)=\mathrm{M} / z, \quad$ M cst. matrix. Set $E=\mathbb{C} \cdot v$.
- T $: \exp (-2 \pi i \mathrm{M}): \boldsymbol{E} \rightarrow \boldsymbol{E}$ indept. of such choice: Monodromy of $(\boldsymbol{F}, \boldsymbol{\nabla})$ (reg. sing.)
$\widehat{\mathrm{RH}}(\boldsymbol{F}, \boldsymbol{\nabla})=(\boldsymbol{E}, \mathbf{T})$

$\mathbb{C}((z))$-vect. spaces with connection

- \boldsymbol{E} : finite dim. \mathbb{C}-vect. space with autom. $\mathrm{T}: \boldsymbol{E} \xrightarrow{\sim} \boldsymbol{E}$
- Choose M : $E \longrightarrow E$ s.t. $T=\exp (-2 \pi i \mathrm{M})$

$\mathbb{C}((z))$-vect. spaces with connection

- \boldsymbol{E} : finite dim. \mathbb{C}-vect. space with autom. $\mathrm{T}: E \xrightarrow{\sim} \boldsymbol{E}$
- Choose M : $E \longrightarrow E$ s.t. $T=\exp (-2 \pi i \mathrm{M})$

$$
\widehat{R H}^{-1}(E, T):=\left(\mathbb{C}((z)) \otimes_{\mathbb{C}} E, \nabla\right), \nabla=\mathrm{d}+\operatorname{Md} z / z
$$

$\mathbb{C}((z))$-vect. spaces with connection

- \boldsymbol{E} : finite dim. \mathbb{C}-vect. space with autom. $\mathrm{T}: \boldsymbol{E} \xrightarrow{\sim} \boldsymbol{E}$
- Choose M : $E \longrightarrow E$ s.t. $T=\exp (-2 \pi i \mathrm{M})$
$\widehat{\mathrm{RH}}^{-1}(E, \mathrm{~T}):=\left(\mathbb{C}((z)) \otimes_{\mathbb{C}} E, \nabla\right), \nabla=\mathrm{d}+\mathrm{Md} z / z$
- $\widehat{\mathrm{RH}}^{-1}(\boldsymbol{E}, \mathrm{~T}): \mathbb{C}((z))$-vect. space with reg. sing. connection.
- $\Rightarrow \widehat{\mathrm{RH}}\left(\mathbb{C}((z)) \otimes_{\mathbb{C}} \boldsymbol{E}, \nabla\right)=(E, T)$
$\mathbb{C}((z))$-vect. spaces with connection

$\mathbb{C}((z))$-vect. spaces with connection

- (F, ∇) any $\mathbb{C}((z))$-vect. space with connection.

$\mathbb{C}((z))$-vect. spaces with connection

- (F, ∇) any $\mathbb{C}((z))$-vect. space with connection.
- Look for an analogue of Jordan's decomp. of $A(z)$.

$\mathbb{C}((z))$-vect. spaces with connection

- (F, ∇) any $\mathbb{C}((z))$-vect. space with connection.
- Look for an analogue of Jordan's decomp. of $A(z)$.
- Levelt-Turrittin decomp. (up to $z \rightsquigarrow z^{1 / e}$)

$$
(F, \nabla) \simeq \underset{\varphi \in \mathbb{C}((z))}{\bigoplus}\left(F_{\varphi}, \nabla^{\mathrm{reg}}+\mathrm{d} \varphi \mathrm{Id}\right)
$$

Moreover, $[\varphi] \in \mathbb{C}((z)) / \mathbb{C} \llbracket z \rrbracket$ and $\left(F_{[\varphi]}, \nabla^{\mathrm{reg}}\right)$ uniquely determined.

$\mathbb{C}((z))$-vect. spaces with connection

- (F, ∇) any $\mathbb{C}((z))$-vect. space with connection.
- Look for an analogue of Jordan's decomp. of $A(z)$.
- Levelt-Turrittin decomp. (up to $z \rightsquigarrow z^{1 / e}$)

$$
(F, \nabla) \simeq \underset{\varphi \in \mathbb{C}((z))}{\bigoplus}\left(F_{\varphi}, \nabla^{\mathrm{reg}}+\mathrm{d} \varphi \mathrm{Id}\right)
$$

Moreover, $[\varphi] \in \mathbb{C}((z)) / \mathbb{C} \llbracket z \rrbracket$ and $\left(F_{[\varphi]}, \nabla^{\mathrm{reg}}\right)$ uniquely determined.

- Write $\left(F_{\varphi}, \nabla^{\mathrm{reg}}+\mathrm{d} \varphi \mathrm{Id}\right)=\widehat{\mathscr{E} \varphi} \otimes\left(F_{\varphi}, \nabla^{\mathrm{reg}}\right)$.
- (F, ∇) of exponential type if any $[\varphi]$ has simple pole, i.e., $[\varphi]=c / z$ for some $c \in \mathbb{C}$.

$\mathbb{C}((z))$-vect. spaces with connection

- EXAMPLE: Given $(\boldsymbol{E}, \mathrm{T}, \boldsymbol{c} \in \mathbb{C})$, consider

$$
\widehat{\mathscr{E}}-c / z \otimes(E((z)), \nabla):=(E((z)), \nabla-\mathrm{d}(c / z))
$$

$\mathbb{C}((z))$-vect. spaces with connection

- Example: Given $(\boldsymbol{E}, \mathrm{T}, \boldsymbol{c} \in \mathbb{C})$, consider

$$
\widehat{\mathscr{E}}^{-c / z} \otimes(E((z)), \nabla):=(E((z)), \nabla-\mathrm{d}(c / z)) .
$$

- Choose $\left(E_{c}^{k}, \mathrm{~T}\right)=\left(H^{k}\left(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X}\right), \mathrm{T}\right)$ ($c \in \mathbb{C}$.)

Problem: To give an algebraic formula (in terms of f) for $\bigoplus_{c \in \mathbb{C}}\left(\widehat{\mathscr{E}}^{-c / z} \otimes \widehat{\mathbf{R H}}^{-1}\left(E_{c}^{k}, \mathrm{~T}\right)\right)$.

The Brieskorn complex

The Brieskorn complex

- \boldsymbol{X} : smooth quasi-projective $/ \mathbb{C}$ (Zariski top.)
- $f: X \longrightarrow \mathbb{A}_{t}^{1}$ not necess. projective

The Brieskorn complex

- \boldsymbol{X} : smooth quasi-projective $/ \mathbb{C}$ (Zariski top.)
- $f: X \longrightarrow \mathbb{A}_{t}^{1}$ not necess. projective
- $\mathscr{O}_{X} \llbracket z \rrbracket:=\lim _{\ell} \mathscr{O}_{X}[z] / z^{\ell} \mathscr{O}_{X}[z]$
- $\mathscr{O}_{X}((z)):=\mathscr{O}_{X}\left[z, z^{-1}\right] \otimes_{\mathscr{O}_{X}[z]} \mathscr{O}_{X} \llbracket z \rrbracket$

$$
\left(=\lim _{\longrightarrow} z^{-k} \mathscr{O}_{X} \llbracket z \rrbracket\right)
$$

The Brieskorn complex

- \boldsymbol{X} : smooth quasi-projective $/ \mathbb{C}$ (Zariski top.)
- $f: X \longrightarrow \mathbb{A}_{t}^{1}$ not necess. projective
- $\mathscr{O}_{X} \llbracket z \rrbracket:=\lim _{\ell} \mathscr{O}_{X}[z] / z^{\ell} \mathscr{O}_{X}[z]$
- $\mathscr{O}_{X}((z)):=\mathscr{O}_{X}\left[z, z^{-1}\right] \otimes_{\mathscr{O}_{X}[z]} \mathscr{O}_{X} \llbracket z \rrbracket$

$$
\left(=\lim _{\longrightarrow} z^{-k} \mathscr{O}_{X} \llbracket z \rrbracket\right)
$$

Formal Brieskorn complex attached to f :

$$
0 \rightarrow \mathscr{O}_{X}((z)) \xrightarrow{\mathrm{d}-\mathrm{d} f / z} \Omega_{X}^{1}((z)) \xrightarrow{\mathrm{d}-\mathrm{d} f / z} \cdots \Omega_{X}^{n+1}((z)) \rightarrow 0
$$

Equipped with $\nabla_{\partial_{z}}:=\partial / \partial z+f / z^{2}$

Goal for today

Theorem 3.3.2. For each \boldsymbol{k},

$$
\begin{aligned}
& \left(H^{k}\left(X,\left(\Omega_{X}^{\cdot}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \simeq \underset{c \in \mathbb{C}}{ } \widehat{\mathscr{E}}^{-c / z} \otimes \widehat{\mathrm{RH}}^{-1}\left(H^{k-1}\left(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}\right), \mathrm{T}\right)
\end{aligned}
$$

Goal for today

Theorem 3.3.2. For each \boldsymbol{k},

$$
\begin{aligned}
& \left(H^{k}\left(X,\left(\Omega_{X}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \simeq \underset{c \in \mathbb{C}}{ } \widehat{\mathscr{E}}^{-c / z} \otimes \widehat{\mathrm{RH}}^{-1}\left(H^{k-1}\left(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}\right), \mathrm{T}\right)
\end{aligned}
$$

Remarks.

- Conj. by Kontsevich. $\left(\stackrel{?}{\Longrightarrow} \phi_{f}\right.$ on formal schemes)

Goal for today

Theorem 3.3.2. For each k,

$$
\begin{aligned}
& \left(H^{k}\left(X,\left(\Omega_{X}^{\bullet}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \simeq \bigoplus_{c \in \mathbb{C}} \widehat{\mathscr{E}}^{-c / z} \otimes \widehat{\mathrm{RH}}^{-1}\left(H^{k-1}\left(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}\right), \mathrm{T}\right)
\end{aligned}
$$

Remarks.

- Conj. by Kontsevich. $\left(\stackrel{?}{\Longrightarrow} \phi_{f}\right.$ on formal schemes)
- For $f:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$ isol. sing., Brieskorn ('70)
$\left.\left.\underset{\left(\mathscr{H}^{k}\left(\Omega_{\mathbb{C}^{n+1}, 0}^{\cdot}\right.\right.}{\Rightarrow}((z)), \mathrm{d}-\mathrm{d} f / z\right), \nabla_{\partial_{z}}\right)=\left\{\begin{array}{l}0 \text { if } k \neq n+1 \\ \widehat{\mathrm{RH}^{-1}\left(\mathscr{H}^{n} \phi_{f} \mathbb{C}, \mathrm{~T}\right)}\end{array}\right.$

Goal for today

Theorem 3.3.2. For each k,

$$
\begin{aligned}
& \left(H^{k}\left(X,\left(\Omega_{X}^{\cdot}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \simeq \bigoplus_{c \in \mathbb{C}} \widehat{\mathscr{E}}^{-c / z} \otimes \widehat{\mathrm{RH}}^{-1}\left(\boldsymbol{H}^{k-1}\left(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}\right), \mathrm{T}\right)
\end{aligned}
$$

Remarks.

- Conj. by Kontsevich. $\left(\stackrel{?}{\Longrightarrow} \phi_{f}\right.$ on formal schemes)
- For $f:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$ isol. sing., Brieskorn ('70)
$\quad\left(\mathscr{H}^{k}\left(\Omega_{\mathbb{C}^{n+1}, 0}^{\cdot}((z)), \mathrm{d}-\mathrm{d} f / z\right), \nabla_{\partial_{z}}\right)=\left\{\begin{array}{l}0 \text { if } k \neq n+1 \\ \widehat{\operatorname{RH}}^{-1}\left(\mathscr{H}^{n} \phi_{f} \mathbb{C}, \mathrm{~T}\right)\end{array}\right.$
- No Hodge theory needed, today, only resol. of sing.

Assume f proper

Theorem 3.2.1.(1) For each k,

$$
\begin{aligned}
& \left(\mathbb{C}((z)) \otimes_{\mathbb{C}\left[z, z^{-1}\right]} H^{k}\left(X,\left(\Omega_{X}^{\cdot}\left[z, z^{-1}\right], \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \simeq \bigoplus_{c \in \mathbb{C}} \widehat{\mathscr{E}}^{-c / z} \otimes \widehat{\mathrm{RH}}^{-1}\left(H^{k-1}\left(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}\right), \mathrm{T}\right)
\end{aligned}
$$

Can prove: f is proper \Rightarrow this is equiv. to Th. 3.3.2.

Assume f proper

Proof: Reduction to dimension one.

Assume f proper

Proof: Reduction to dimension one.

- M a reg. hol. $\mathbb{C}[t]\left\langle\partial_{t}\right\rangle$-mod. $\Rightarrow G$ is $\mathbb{C}\left[z, z^{-1}\right]$-free of finite rk $=\sum_{c} \operatorname{dim} \phi_{t-c}{ }^{p} \mathrm{DR}^{\mathrm{an}} M$,
$G:=\operatorname{coker}\left[\mathbb{C}\left[z, z^{-1}\right] \otimes_{\mathbb{C}} M \xrightarrow{z \partial_{t}-1} \mathbb{C}\left[z, z^{-1}\right] \otimes_{\mathbb{C}} M\right]$ equipped with $\nabla_{\partial_{z}}=\partial / \partial z+t / z^{2}$.

Assume f proper

Proof: Reduction to dimension one.

- M a reg. hol. $\mathbb{C}[t]\left\langle\partial_{t}\right\rangle$-mod. $\Rightarrow G$ is $\mathbb{C}\left[z, z^{-1}\right]$-free of finite rk $=\sum_{c} \operatorname{dim} \phi_{t-c}{ }^{p} \mathrm{DR}^{\mathrm{an}} M$,
$G:=\operatorname{coker}\left[\mathbb{C}\left[z, z^{-1}\right] \otimes_{\mathbb{C}} M \xrightarrow{z \partial_{t}-1} \mathbb{C}\left[z, z^{-1}\right] \otimes_{\mathbb{C}} M\right]$
equipped with $\nabla_{\partial_{z}}=\partial / \partial z+t / z^{2}$.
- Formal stationary phase formula gives
$\left(\mathbb{C}((z)) \otimes_{\mathbb{C}[z]} G, \nabla_{\partial_{z}}\right) \simeq \bigoplus_{c \in \mathbb{C}} \widehat{\mathscr{E}}^{-c / z} \otimes \widehat{\mathrm{RH}}^{-1}\left({ }^{p} \phi_{t-c}{ }^{p} \mathrm{DR} M^{\mathrm{an}}, \mathrm{T}\right)$.

Assume f proper

Proof: Reduction to dimension one.

- M a reg. hol. $\mathbb{C}[t]\left\langle\partial_{t}\right\rangle$-mod. $\Rightarrow G$ is $\mathbb{C}\left[z, z^{-1}\right]$-free of finite rk $=\sum_{c} \operatorname{dim} \phi_{t-c}{ }^{p} \mathrm{DR}^{\mathrm{an}} M$,
$G:=\operatorname{coker}\left[\mathbb{C}\left[z, z^{-1}\right] \otimes_{\mathbb{C}} M \xrightarrow{z \partial_{t}-1} \mathbb{C}\left[z, z^{-1}\right] \otimes_{\mathbb{C}} M\right]$
equipped with $\nabla_{\partial_{z}}=\partial / \partial z+t / z^{2}$.
- Formal stationary phase formula gives
$\left(\mathbb{C}((z)) \otimes_{\mathbb{C}[z]} G, \nabla_{\partial_{z}}\right) \simeq \bigoplus_{c \in \mathbb{C}} \widehat{\mathscr{E}}^{-c / z} \otimes \widehat{\mathrm{RH}}^{-1}\left({ }^{p} \phi_{t-c}{ }^{p} \mathrm{DR} M^{\mathrm{an}}, \mathrm{T}\right)$.
- Apply to $M=\mathscr{H}^{k} f_{+} \mathscr{O}_{X}\left(\Rightarrow^{p} \phi_{t-c}{ }^{p} \mathrm{DR} M^{\mathrm{an}}=E_{c}^{k}\right)$

Example with f non proper

Example with f non proper

- $f \in \mathbb{C}[t], \quad X=\mathbb{A}_{t}^{1} \backslash\left\{f^{\prime}=0\right\}, \quad f_{\mid X}: X \rightarrow \mathbb{C}$,
$G:=\operatorname{coker}\left(\mathbb{C}\left[t, 1 / f^{\prime}\right]\left[z, z^{-1}\right] \xrightarrow{z \partial_{t}-f^{\prime}} \mathbb{C}\left[t, 1 / f^{\prime}\right]\left[z, z^{-1}\right]\right)$
(and ker $=0$ easy).

Example with f non proper

- $f \in \mathbb{C}[t], \quad X=\mathbb{A}_{t}^{1} \backslash\left\{f^{\prime}=0\right\}, \quad f_{\mid X}: X \rightarrow \mathbb{C}$,
$G:=\operatorname{coker}\left(\mathbb{C}\left[t, 1 / f^{\prime}\right]\left[z, z^{-1}\right] \xrightarrow{z \partial_{t}-f^{\prime}} \mathbb{C}\left[t, 1 / f^{\prime}\right]\left[z, z^{-1}\right]\right)$
(and ker $=0$ easy).
- G is $\mathbb{C}\left[z, z^{-1}\right]$-free of rank $\operatorname{deg} f \cdot \#$ Crit f
$\Rightarrow \mathbb{C}((z)) \otimes_{\mathbb{C}\left[z, z^{-1}\right]} G$ does not give the right answer ($=0$)

Example with f non proper

- $\widehat{G}=0$ with

$$
\widehat{G}:=\operatorname{coker}\left(\mathbb{C}\left[t, 1 / f^{\prime}\right]((z)) \xrightarrow{z \partial_{t}-f^{\prime}} \mathbb{C}\left[t, 1 / f^{\prime}\right]((z))\right)
$$

Example with f non proper

- $\widehat{G}=0$ with

$$
\widehat{G}:=\operatorname{coker}\left(\mathbb{C}\left[t, 1 / f^{\prime}\right]((z)) \xrightarrow{z \partial_{t}-f^{\prime}} \mathbb{C}\left[t, 1 / f^{\prime}\right]((z))\right)
$$

Proof:

- ker $=0$ easy
- Given $\psi_{k_{o}}, \psi_{k_{o}+1}, \cdots \in \mathbb{C}\left[t, 1 / f^{\prime}\right]$, can find $\varphi_{k_{o}}, \varphi_{k_{o}+1}, \cdots \in \mathbb{C}\left[t, 1 / f^{\prime}\right]$ s.t.

$$
\psi_{k_{o}}=-f^{\prime} \varphi_{k_{o}}, \ldots, \quad \psi_{k+1}=\partial_{t} \varphi_{k}-f^{\prime} \varphi_{k+1}, \ldots
$$

(solve induct. with f^{\prime} invertible in $\mathbb{C}\left[t, 1 / f^{\prime}\right]$).

Strategy of the proof

Theorem 3.3.2. For each k,

$$
\begin{aligned}
& \left(H^{k}\left(X,\left(\Omega_{X}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \simeq \bigoplus_{c \in \mathbb{C}} \widehat{\mathscr{E}}^{-c / z} \otimes \widehat{\mathrm{RH}}^{-1}\left(H^{k-1}\left(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}\right), \mathrm{T}\right)
\end{aligned}
$$

Strategy of the proof

Theorem 3.3.2. For each k,

$$
\begin{aligned}
& \left(H^{k}\left(X,\left(\Omega_{X}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \simeq \bigoplus_{c \in \mathbb{C}} \widehat{\mathscr{E}}^{-c / z} \otimes \widehat{\mathrm{RH}}^{-1}\left(H^{k-1}\left(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}\right), \mathrm{T}\right)
\end{aligned}
$$

- Introduce an intermediate term

$$
\left(H^{k}\left(X^{\mathrm{an}},\left(\Omega_{X^{\mathrm{an}}}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right)
$$

Strategy of the proof

Theorem 3.3.2. For each k,

$$
\begin{aligned}
& \left(H^{k}\left(X,\left(\Omega_{X}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \simeq \bigoplus_{c \in \mathbb{C}} \widehat{\mathscr{E}}^{-c / z} \otimes \widehat{\mathrm{RH}}^{-1}\left(H^{k-1}\left(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}\right), \mathrm{T}\right)
\end{aligned}
$$

- Introduce an intermediate term

$$
\left(H^{k}\left(X^{\mathrm{an}},\left(\Omega_{X^{\mathrm{an}}}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right)
$$

- Choose a comm. diag.

\boldsymbol{Y} : smooth proj.
$D:=Y \backslash X:$ ncd

Strategy of the proof

- GAGA type thm by standard methods:

$$
\begin{aligned}
& \left(H^{k}\left(X,\left(\Omega_{X}^{\cdot}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \quad \simeq\left(H^{k}\left(Y,\left(\Omega_{Y}^{\cdot}(* D)((z)), \mathrm{d}-\mathrm{d} F / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \quad \simeq\left(H^{k}\left(Y^{\mathrm{an}},\left(\Omega_{Y^{\mathrm{an}}}(* D)((z)), \mathrm{d}-\mathrm{d} F / z\right)\right), \nabla_{\partial_{z}}\right) .
\end{aligned}
$$

Strategy of the proof

- GAGA type thm by standard methods:

$$
\begin{aligned}
& \left(H^{k}\left(X,\left(\Omega_{X}^{\cdot}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \quad \simeq\left(H^{k}\left(Y,\left(\Omega_{Y}^{\cdot}(* D)((z)), \mathrm{d}-\mathrm{d} F / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \quad \simeq\left(H^{k}\left(Y^{\mathrm{an}},\left(\Omega_{Y^{\mathrm{an}}}^{\cdot}(* D)((z)), \mathrm{d}-\mathrm{d} F / z\right)\right), \nabla_{\partial_{z}}\right) .
\end{aligned}
$$

- Local statement on $Y^{\text {an }}$:

$$
\left.\left.\left(\Omega_{Y^{\mathrm{an}}}^{*}(* D)((z)), \mathrm{d}-\mathrm{d} F / z\right)\right) \simeq R j_{*}\left(\Omega_{X^{\mathrm{an}}}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right)
$$

Strategy of the proof

- GAGA type thm by standard methods:

$$
\begin{aligned}
& \left(H^{k}\left(X,\left(\Omega_{X}^{\cdot}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \quad \simeq\left(H^{k}\left(Y,\left(\Omega_{Y}^{\cdot}(* D)((z)), \mathrm{d}-\mathrm{d} \boldsymbol{F} / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \quad \simeq\left(H^{k}\left(Y^{\mathrm{an}},\left(\Omega_{Y^{\mathrm{an}}}(* D)((z)), \mathrm{d}-\mathrm{d} \boldsymbol{F} / \boldsymbol{z}\right)\right), \nabla_{\partial_{z}}\right) .
\end{aligned}
$$

- Local statement on $Y^{\text {an }}$:

$$
\left.\left.\left(\Omega_{Y^{\mathrm{an}}}^{\circ}(* D)((z)), \mathrm{d}-\mathrm{d} F / z\right)\right) \simeq R j_{*}\left(\Omega_{X^{\mathrm{an}}}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right)
$$

- Assume that ($D \cup$ crit. fibres) is ncd. Then local computations $\Rightarrow \mathrm{OK}$.

Strategy of the proof

- GAGA type thm by standard methods:

$$
\begin{aligned}
& \left(H^{k}\left(X,\left(\Omega_{X}^{\cdot}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \quad \simeq\left(H^{k}\left(Y,\left(\Omega_{Y}^{\cdot}(* D)((z)), \mathrm{d}-\mathrm{d} \boldsymbol{F} / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \quad \simeq\left(\boldsymbol{H}^{k}\left(\boldsymbol{Y}^{\mathrm{an}},\left(\Omega_{Y^{\mathrm{an}}}(* D)((z)), \mathrm{d}-\mathrm{d} \boldsymbol{F} / z\right)\right), \nabla_{\partial_{z}}\right) .
\end{aligned}
$$

- Local statement on $Y^{\text {an }}$:

$$
\left.\left.\left(\Omega_{Y^{\text {an }}}(* D)((z)), \mathrm{d}-\mathrm{d} F / z\right)\right) \simeq R j_{*}\left(\Omega_{X^{\text {an }}}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right)
$$

- Assume that ($D \cup$ crit. fibres) is ncd. Then local computations \Rightarrow OK.
- Need a decomposition thm for proper modifications to reduce to the ncd case.

Strategy of the proof

- From

$\left.\left.\left(\Omega_{Y^{\text {an }}}^{\bullet}(* D)((z)), \mathrm{d}-\mathrm{d} F / z\right)\right) \simeq R j_{*}\left(\Omega_{X^{\text {an }}}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right)$,
we get

$$
\begin{aligned}
& \left(H^{k}\left(X,\left(\Omega_{X}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \quad \simeq\left(H^{k}\left(X^{\mathrm{an}},\left(\Omega_{X^{\mathrm{an}}}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right)
\end{aligned}
$$

Strategy of the proof

- From
$\left.\left.\left(\Omega_{Y^{\text {an }}}^{\circ}(* D)((z)), \mathrm{d}-\mathrm{d} F / z\right)\right) \simeq R j_{*}\left(\Omega_{X^{\text {an }}}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right)$,
we get

$$
\begin{aligned}
& \left(H^{k}\left(X,\left(\Omega_{X}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \quad \simeq\left(H^{k}\left(X^{\mathrm{an}},\left(\Omega_{X^{\mathrm{an}}}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right)
\end{aligned}
$$

- We now focus on $X^{\text {an }}$. Try to relate

$$
\left(\Omega_{X^{\mathrm{an}}}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)_{\mid f^{-1}(c)} \quad \text { with } \quad \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}
$$

\Rightarrow local statement on $X^{\text {an }}$.

Strategy of the proof

- Would like to compare

$$
\left(\Omega_{X^{\text {an }}}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)
$$

with

$$
\mathbb{C}((z)) \otimes_{\mathbb{C}\left[z^{-1}\right]}\left(\Omega_{X^{\mathrm{an}}}^{\circ}\left[z^{-1}\right], \mathrm{d}-\mathrm{d} f / z\right)
$$

Strategy of the proof

- Would like to compare

$$
\left(\Omega_{X^{\text {an }}}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)
$$

with

$$
\mathbb{C}((z)) \otimes_{\mathbb{C}\left[z^{-1}\right]}\left(\Omega_{X^{\text {an }}}^{\circ}\left[z^{-1}\right], \mathrm{d}-\mathrm{d} f / z\right)
$$

- More useful: $\partial_{t} \leftrightarrow z^{-1}$, compare with

$$
\widehat{\mathscr{E}}_{\mathbb{C}} \otimes_{\mathscr{C}}\left(\Omega_{X^{\text {an }}}^{-}\left[z^{-1}\right], \mathrm{d}-\mathrm{d} f / z\right)
$$

Strategy of the proof

- Comparison OK (loc. comput. on resol. of sing. + come back)

Strategy of the proof

- Comparison OK (loc. comput. on resol. of sing. + come back)
- Use previous results of M. Saito and M. Kapranov to conclude

$$
\begin{aligned}
& \left(H^{k}\left(X^{\mathrm{an}},\left(\Omega_{X^{\mathrm{an}}}^{\circ}((z)), \mathrm{d}-\mathrm{d} f / z\right)\right), \nabla_{\partial_{z}}\right) \\
& \quad \simeq\left(H^{k}\left(X^{\mathrm{an}}, \widehat{\mathscr{E}}_{\mathbb{C}} \otimes_{\mathscr{X C C}_{C}}\left(\Omega_{X^{\mathrm{an}}}^{\cdot}\left[z^{-1}\right], \mathrm{d}-\mathrm{d} f / z\right), \nabla_{\partial_{z}}\right)\right. \\
& \quad \bigoplus_{c \in \mathbb{C}} \widehat{\mathscr{E}}^{-c / z} \otimes \widehat{\mathrm{RH}}^{-1}\left(H^{k-1}\left(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}\right), \mathrm{T}\right)
\end{aligned}
$$

Conclusion for the 3 lectures

Conclusion for the 3 lectures

- The case f proper is more comfortable and brings more info.
- If f not proper, consider a diagram

$\Rightarrow\left(\Omega_{X} \cdot\left[z, z^{-1}\right], \mathrm{d}-\mathrm{d} f / z\right)$ captures info for $\phi_{g-c} \boldsymbol{R} \kappa_{*} \mathbb{C}_{X}$.
- But in general $\phi_{g-c} \boldsymbol{R} \kappa_{*} \mathbb{C}_{X} \neq \boldsymbol{R} \kappa_{c *} \phi_{f-c} \mathbb{C}_{X}$. $\left(\kappa_{c}: f^{-1}(c) \longleftrightarrow g^{-1}(c)\right)$

Tame case

Tame case

- However, if tameness assumption:

$$
\forall c \in \mathbb{C}, \quad \operatorname{Supp} \phi_{g-c} \boldsymbol{R} \kappa_{*} \mathbb{C}_{X} \cap\left(\boldsymbol{X}^{\prime} \backslash \boldsymbol{X}\right)=\varnothing
$$

\Rightarrow can work with f "as if" it were proper.

- Useful in Mirror Symmetry for Fano manifolds (or Fano orbifolds).

