Vanishing cycles and their algebraic computation (III)

Claude Sabbah

Centre de Mathématiques Laurent Schwartz

UMR 7640 du CNRS

École polytechnique, Palaiseau, France

Programme SEDIGA ANR-08-BLAN-0317-01

Position of the problem

Position of the problem

- X: smooth quasi-projective $/\mathbb{C}$ (Zariski top.)
- $f: X \longrightarrow \mathbb{A}^1_t$ not necess. projective
- PROBLEM: To compute in algebraic terms the monodr. on $H^k(f^{-1}(c), \phi_{f-c}\mathbb{C}_{X^{\mathrm{an}}})$

Position of the problem

- X: smooth quasi-projective $/\mathbb{C}$ (Zariski top.)
- $f: X \longrightarrow \mathbb{A}^1_t$ not necess. projective
- PROBLEM: To compute in algebraic terms the monodr. on $H^k(f^{-1}(c), \phi_{f-c}\mathbb{C}_{X^{\mathrm{an}}})$
- Recall: $\phi_{f-c}\mathbb{C}_{X^{an}}$ is a constructible complex supported on $\operatorname{Sing}(f^{-1}(c))$, equipped with

$$\mathrm{T}_{c}: \phi_{f-c}\mathbb{C}_{X^{\mathrm{an}}} \longrightarrow \phi_{f-c}\mathbb{C}_{X^{\mathrm{an}}}$$

It induces

 $\mathrm{T}_{c}: H^{k}(f^{-1}(c), \phi_{f-c}\mathbb{C}_{X^{\mathrm{an}}}) \longrightarrow H^{k}(f^{-1}(c), \phi_{f-c}\mathbb{C}_{X^{\mathrm{an}}})$

- F: a finite dim. $\mathbb{C}((z))$ -vect. space, $\dim_{\mathbb{C}((z))} F = \mu$,
- $\nabla : F \to F \otimes dz$ a *connection*, *i.e.*, $\nabla_{\partial_z} : F \to F$ is \mathbb{C} -linear + Leibniz rule.

- F: a finite dim. $\mathbb{C}((z))$ -vect. space, $\dim_{\mathbb{C}((z))} F = \mu$,
- $\nabla : F \to F \otimes dz$ a *connection*, *i.e.*, $\nabla_{\partial_z} : F \to F$ is \mathbb{C} -linear + Leibniz rule.
- $v = (v_1, \ldots, v_\mu)$: $\mathbb{C}((z))$ -basis of F,
- Matrix of ∇ : $\nabla_{\partial_z} v = v \cdot A_v(z)$
- Change of basis: $w = v \cdot P(z) \Rightarrow$

$$A_w(z) = P(z)^{-1}A_v(z)P(z) + P(z)^{-1}P'_z$$

- F: a finite dim. $\mathbb{C}((z))$ -vect. space, $\dim_{\mathbb{C}((z))} F = \mu$,
- $\nabla : F \to F \otimes dz$ a *connection*, *i.e.*, $\nabla_{\partial_z} : F \to F$ is \mathbb{C} -linear + Leibniz rule.
- $v = (v_1, \ldots, v_\mu)$: $\mathbb{C}((z))$ -basis of F,
- Matrix of ∇ : $\nabla_{\partial_z} v = v \cdot A_v(z)$
- Change of basis: $w = v \cdot P(z) \Rightarrow$

$$A_w(z) = P(z)^{-1}A_v(z)P(z) + P(z)^{-1}P'_z$$

DEFINITION: (*F*, ∇) has *reg. sing.* if ∃ a basis *v* s.t. $A_v(z) = M/z, \quad M \text{ cst. matrix. Set } E = \mathbb{C} \cdot v.$

- F: a finite dim. $\mathbb{C}((z))$ -vect. space, $\dim_{\mathbb{C}((z))} F = \mu$,
- $\nabla : F \to F \otimes dz$ a *connection*, *i.e.*, $\nabla_{\partial_z} : F \to F$ is \mathbb{C} -linear + Leibniz rule.
- $v = (v_1, \ldots, v_\mu)$: $\mathbb{C}((z))$ -basis of F,
- Matrix of ∇ : $\nabla_{\partial_z} v = v \cdot A_v(z)$
- Change of basis: $w = v \cdot P(z) \Rightarrow$

$$A_w(z) = P(z)^{-1}A_v(z)P(z) + P(z)^{-1}P'_z$$

- DEFINITION: (*F*, ∇) has *reg. sing.* if ∃ a basis *v* s.t. $A_v(z) = M/z, \quad M \text{ cst. matrix. Set } E = \mathbb{C} \cdot v.$
- $T : \exp(-2\pi i M) : E \to E$ indept. of such choice: *Monodromy* of (F, ∇) (*reg. sing.*)

• $\widehat{\mathrm{RH}}(F, \nabla) = (E, \mathrm{T})$

- E: finite dim. C-vect. space with autom. $T: E \xrightarrow{\sim} E$
- Choose $M: E \longrightarrow E$ s.t. $T = \exp(-2\pi i M)$

- **• E**: finite dim. \mathbb{C} -vect. space with autom. $\mathbf{T}: \mathbf{E} \xrightarrow{\sim} \mathbf{E}$
- Choose $M: E \longrightarrow E$ s.t. $T = \exp(-2\pi i M)$

$$\widehat{\operatorname{RH}}^{-1}(E,\operatorname{T}):=(\mathbb{C}(\!(z)\!)\otimes_{\mathbb{C}}E, {oldsymbol
abla}),\, {oldsymbol
abla}=\operatorname{d}+\operatorname{Md}\! z/z$$

- **• E**: finite dim. \mathbb{C} -vect. space with autom. $\mathbf{T}: \mathbf{E} \xrightarrow{\sim} \mathbf{E}$
- Choose $M: E \longrightarrow E$ s.t. $T = \exp(-2\pi i M)$
- $\widehat{\mathrm{R}\mathrm{H}^{-1}}(E,\mathrm{T}):=(\mathbb{C}(\!(z)\!)\otimes_{\mathbb{C}}E,
 abla),\,
 abla=\mathrm{d}+\mathrm{M}\mathrm{d}z/z$
- $\widehat{\mathbf{RH}}^{-1}(E, \mathbf{T})$: $\mathbb{C}((z))$ -vect. space with *reg. sing.* connection.
- $\Rightarrow \widehat{\operatorname{RH}}(\mathbb{C}((z)) \otimes_{\mathbb{C}} E, \nabla) = (E, \mathbf{T})$

● (F, ∇) any $\mathbb{C}((z))$ -vect. space with connection.

- (F, ∇) any $\mathbb{C}((z))$ -vect. space with connection.
- Look for an analogue of Jordan's decomp. of A(z).

- (F, ∇) any $\mathbb{C}((z))$ -vect. space with connection.
- Look for an analogue of Jordan's decomp. of A(z).
- Levelt-Turrittin decomp. (up to $z \rightsquigarrow z^{1/e}$)

$$(F,
abla) \simeq igoplus_{arphi \in \mathbb{C}(\!(z)\!)} (F_{arphi},
abla^{ ext{reg}} + \mathrm{d}arphi \operatorname{Id})$$

Moreover, $[\varphi] \in \mathbb{C}((z))/\mathbb{C}[z]$ and $(F_{[\varphi]}, \nabla^{reg})$ uniquely determined.

- (F, ∇) any $\mathbb{C}((z))$ -vect. space with connection.
- Look for an analogue of Jordan's decomp. of A(z).
- Levelt-Turrittin decomp. (up to $z \rightsquigarrow z^{1/e}$)

$$(F,
abla) \simeq igoplus_{arphi \in \mathbb{C}(\!(z)\!)} (F_{arphi},
abla^{ ext{reg}} + \mathrm{d}arphi \operatorname{Id})$$

Moreover, $[\varphi] \in \mathbb{C}((z))/\mathbb{C}[z]$ and $(F_{[\varphi]}, \nabla^{reg})$ uniquely determined.

- Write $(F_{\varphi}, \nabla^{\mathrm{reg}} + \mathrm{d}\varphi \operatorname{Id}) = \widehat{\mathscr{E}}^{\varphi} \otimes (F_{\varphi}, \nabla^{\mathrm{reg}}).$
- (F, ∇) of **exponential type** if any [φ] has simple pole, *i.e.*, [φ] = c/z for some $c \in \mathbb{C}$.

• EXAMPLE: Given $(E, T, c \in \mathbb{C})$, consider

$$\widehat{\mathscr{E}}^{-c/z}\otimes (E(\!(z)\!),
abla):=ig(E(\!(z)\!),
abla-\mathrm{d}(c/z)ig).$$

● **EXAMPLE:** Given $(E, T, c \in \mathbb{C})$, consider

$$\widehat{\mathscr{E}}^{-c/z}\otimes (E(\!(z)\!),
abla):=ig(E(\!(z)\!),
abla-\mathrm{d}(c/z)ig).$$

• Choose
$$(E_c^k, \mathbf{T}) = (H^k(f^{-1}(c), \phi_{f-c}\mathbb{C}_X), \mathbf{T})$$

 $(c \in \mathbb{C}.)$

PROBLEM: To give an algebraic formula (in terms of f) for $\bigoplus_{c \in \mathbb{C}} (\widehat{\mathscr{E}}^{-c/z} \otimes \widehat{\mathrm{RH}}^{-1}(E_c^k, \mathbf{T})).$

- X: smooth quasi-projective $/\mathbb{C}$ (Zariski top.)
- $f: X \longrightarrow \mathbb{A}^1_t$ not necess. projective

- X: smooth quasi-projective $/\mathbb{C}$ (Zariski top.)
- $f: X \longrightarrow \mathbb{A}^1_t$ not necess. projective

- X: smooth quasi-projective $/\mathbb{C}$ (Zariski top.)
- $f: X \longrightarrow \mathbb{A}^1_t$ not necess. projective

Formal Brieskorn complex attached to f:

$$\begin{array}{l} 0 \to \mathscr{O}_X(\!(z)\!) \stackrel{\mathrm{d-d}f/z}{\longrightarrow} \Omega^1_X(\!(z)\!) \stackrel{\mathrm{d-d}f/z}{\longrightarrow} \cdots \Omega^{n+1}_X(\!(z)\!) \to 0 \\ \\ \mathsf{Equipped with} \ \hline \nabla_{\partial_z} := \partial/\partial z + f/z^2 \end{array}$$

THEOREM 3.3.2. For each k,

$$\begin{split} & \left(H^k \big(X, (\Omega^{\bullet}_X (\! (z)\!), \mathrm{d} - \mathrm{d} f/z) \big), \nabla_{\partial_z} \right) \\ & \simeq \bigoplus_{c \in \mathbb{C}} \widehat{\mathscr{E}}^{-c/z} \otimes \widehat{\mathrm{RH}}^{-1} \Big(H^{k-1} \big(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}} \big), \mathrm{T} \Big) \end{split}$$

THEOREM 3.3.2. For each k,

$$\begin{pmatrix} H^k(X, (\Omega^{\bullet}_X((z)), \mathrm{d} - \mathrm{d}f/z)), \nabla_{\partial_z} \end{pmatrix} \\ \simeq \bigoplus_{c \in \mathbb{C}} \widehat{\mathscr{E}}^{-c/z} \otimes \widehat{\mathrm{RH}}^{-1} \Big(H^{k-1}(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}), \mathrm{T} \Big)$$

REMARKS.

• Conj. by Kontsevich. ($\stackrel{?}{\Longrightarrow} \phi_f$ on formal schemes)

THEOREM 3.3.2. For each k,

$$\begin{pmatrix} H^k(X, (\Omega_X^{\bullet}((z)), \mathrm{d} - \mathrm{d}f/z)), \nabla_{\partial_z} \end{pmatrix} \\ \simeq \bigoplus_{c \in \mathbb{C}} \widehat{\mathscr{C}}^{-c/z} \otimes \widehat{\mathrm{RH}}^{-1} \Big(H^{k-1}(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}}), \mathrm{T} \Big)$$

REMARKS.

- Conj. by Kontsevich. ($\stackrel{?}{\longrightarrow} \phi_f$ on formal schemes)
- For $f : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}, 0)$ isol. sing., Brieskorn ('70) \Rightarrow $\left(\mathscr{H}^k(\Omega^{\bullet}_{\mathbb{C}^{n+1}, 0}((z)), \mathrm{d-d}f/z), \nabla_{\partial_z}\right) = \begin{cases} 0 \text{ if } k \neq n+1 \\ \widehat{\mathrm{RH}}^{-1}(\mathscr{H}^n \phi_f \mathbb{C}, \mathrm{T}) \end{cases}$

THEOREM 3.3.2. For each k,

$$\begin{pmatrix} H^k(X, (\Omega_X^{\bullet}((z)), \mathrm{d} - \mathrm{d}f/z)), \nabla_{\partial_z} \end{pmatrix} \\ \simeq \bigoplus_{c \in \mathbb{C}} \widehat{\mathscr{E}}^{-c/z} \otimes \widehat{\mathrm{RH}}^{-1} (H^{k-1}(f^{-1}(c), \phi_{f-c}\mathbb{C}_{X^{\mathrm{an}}}), \mathrm{T})$$

REMARKS.

- Conj. by Kontsevich. ($\stackrel{?}{\Longrightarrow} \phi_f$ on formal schemes)
- For $f : (\mathbb{C}^{n+1}, 0) \to (\mathbb{C}, 0)$ isol. sing., Brieskorn ('70) \Rightarrow $(\mathscr{H}^k(\Omega^{\bullet}_{\mathbb{C}^{n+1}, 0}((z)), \mathrm{d-d}f/z), \nabla_{\partial_z}) = \begin{cases} 0 \text{ if } k \neq n+1 \\ \widehat{\mathrm{RH}}^{-1}(\mathscr{H}^n \phi_f \mathbb{C}, \mathrm{T}) \end{cases}$
 - No Hodge theory needed, today, only resol. of sing.

THEOREM 3.2.1.(1) For each k,

$$egin{aligned} & \left(\mathbb{C}(\!(z)\!)\otimes_{\mathbb{C}[z,z^{-1}]}H^k\!\left(X,(\Omega^{ullet}_X[z,z^{-1}],\mathrm{d}-\mathrm{d}f/z)
ight),
abla_{\partial_z}
ight) \ &\simeq igoplus_{c\in\mathbb{C}}\widehat{\mathscr{E}}^{-c/z}\otimes\widehat{\mathrm{R}\mathrm{H}}^{-1}\!\left(H^{k-1}\!\left(f^{-1}(c),\phi_{f-c}\mathbb{C}_{X^{\mathrm{an}}}
ight),\mathrm{T}
ight) \end{aligned}$$

Can prove: f is proper \Rightarrow this is equiv. to Th. 3.3.2.

Proof: *Reduction to dimension one*.

Proof: Reduction to dimension one.

• *M* a reg. hol. $\mathbb{C}[t]\langle\partial_t\rangle$ -mod. $\Rightarrow G$ is $\mathbb{C}[z, z^{-1}]$ -free of finite $\mathsf{rk} = \sum_c \dim \phi_{t-c}{}^p \mathrm{DR}^{\mathrm{an}} M$, $G := \operatorname{coker} \left[\mathbb{C}[z, z^{-1}] \otimes_{\mathbb{C}} M \xrightarrow{z\partial_t - 1} \mathbb{C}[z, z^{-1}] \otimes_{\mathbb{C}} M \right]$

equipped with $\nabla_{\partial_z} = \partial/\partial z + t/z^2$.

Proof: Reduction to dimension one.

- *M* a reg. hol. $\mathbb{C}[t]\langle\partial_t\rangle$ -mod. $\Rightarrow G$ is $\mathbb{C}[z, z^{-1}]$ -free of finite $\mathsf{rk} = \sum_c \dim \phi_{t-c}{}^p \mathrm{DR}^{\mathrm{an}} M$, $G := \operatorname{coker} \left[\mathbb{C}[z, z^{-1}] \otimes_{\mathbb{C}} M \xrightarrow{z \partial_t - 1} \mathbb{C}[z, z^{-1}] \otimes_{\mathbb{C}} M \right]$ equipped with $\nabla_{\partial_z} = \partial/\partial z + t/z^2$.
- Formal stationary phase formula gives

 $(\mathbb{C}((z))\otimes_{\mathbb{C}[z]}G,\nabla_{\partial_z})\simeq\bigoplus_{c\in\mathbb{C}}\widehat{\mathscr{E}}^{-c/z}\otimes\widehat{\mathrm{RH}}^{-1}({}^p\!\phi_{t-c}{}^p\mathrm{DR}M^{\mathrm{an}},\mathrm{T}).$

Proof: *Reduction to dimension one*.

- *M* a reg. hol. $\mathbb{C}[t]\langle\partial_t\rangle$ -mod. $\Rightarrow G$ is $\mathbb{C}[z, z^{-1}]$ -free of finite $\mathsf{rk} = \sum_c \dim \phi_{t-c}{}^p \mathrm{DR}^{\mathrm{an}} M$, $G := \operatorname{coker} \left[\mathbb{C}[z, z^{-1}] \otimes_{\mathbb{C}} M \xrightarrow{z \partial_t - 1} \mathbb{C}[z, z^{-1}] \otimes_{\mathbb{C}} M \right]$ equipped with $\nabla_{\partial_z} = \partial/\partial z + t/z^2$.
- Formal stationary phase formula gives

 $(\mathbb{C}((z))\otimes_{\mathbb{C}[z]}G,\nabla_{\partial_z})\simeq\bigoplus_{c\in\mathbb{C}}\widehat{\mathscr{E}}^{-c/z}\otimes\widehat{\mathrm{RH}}^{-1}({}^{p}\!\phi_{t-c}{}^{p}\mathrm{DR}M^{\mathrm{an}},\mathrm{T}).$

• Apply to $M = \mathscr{H}^k f_+ \mathscr{O}_X \ (\Rightarrow {}^p \phi_{t-c} {}^p \mathrm{DR} M^{\mathrm{an}} = E_c^k)$

 $\ \, {\boldsymbol{\mathfrak{f}}} \in \mathbb{C}[t], \quad X=\mathbb{A}^1_t\smallsetminus\{f'=0\}, \quad f_{|X}:X\to\mathbb{C},$

 $G:=\mathrm{coker}\Big(\mathbb{C}[t,1/f'][z,z^{-1}]\stackrel{z\partial_t-f'}{\longrightarrow}\mathbb{C}[t,1/f'][z,z^{-1}]\Big)$

(and ker = 0 easy).

- $\ \, {\boldsymbol{\mathfrak{f}}} \in \mathbb{C}[t], \quad X=\mathbb{A}^1_t\smallsetminus\{f'=0\}, \quad f_{|X}:X\to\mathbb{C},$
- $G:=\mathrm{coker}\Big(\mathbb{C}[t,1/f'][z,z^{-1}]\stackrel{z\partial_t-f'}{\longrightarrow}\mathbb{C}[t,1/f'][z,z^{-1}]\Big)$

(and ker = 0 easy).

Image of the second state of the second st

 $\Rightarrow \mathbb{C}((z)) \otimes_{\mathbb{C}[z,z^{-1}]} G$ does not give the right answer (= 0)

• $\widehat{G} = 0$ with $\widehat{G} := \operatorname{coker} \left(\mathbb{C}[t, 1/f']((z)) \xrightarrow{z\partial_t - f'} \mathbb{C}[t, 1/f']((z)) \right)$

• $\widehat{G} = 0$ with $\widehat{G} := \operatorname{coker} \left(\mathbb{C}[t, 1/f']((z)) \xrightarrow{z\partial_t - f'} \mathbb{C}[t, 1/f']((z)) \right)$

Proof:

• ker = 0 easy

• Given $\psi_{k_o}, \psi_{k_o+1}, \dots \in \mathbb{C}[t, 1/f']$, can find $\varphi_{k_o}, \varphi_{k_o+1}, \dots \in \mathbb{C}[t, 1/f']$ s.t. $\psi_{k_o} = -f'\varphi_{k_o}, \dots, \quad \psi_{k+1} = \partial_t \varphi_k - f'\varphi_{k+1}, \dots,$

(solve induct. with f' invertible in $\mathbb{C}[t, 1/f']$).

THEOREM 3.3.2. For each k,

$$igg(H^kig(X,(\Omega^ullet_X((z)),\mathrm{d}-\mathrm{d}f/z)ig),
abla_{\partial_z}ig) \ \simeq igoplus_{c\in\mathbb{C}}\widehat{\mathscr{E}}^{-c/z}\otimes\widehat{\mathrm{RH}}^{-1}ig(H^{k-1}ig(f^{-1}(c),\phi_{f-c}\mathbb{C}_{X^{\mathrm{an}}}ig),\mathrm{T}ig)$$

THEOREM 3.3.2. For each k,

$$igg(H^kig(X,(\Omega^ullet_X(x)),\mathrm{d}-\mathrm{d}f/z)ig),
abla_{\partial_z}igg) \simeq igoplus_{c\in\mathbb{C}}\widehat{\mathscr{E}}^{-c/z}\otimes\widehat{\mathrm{R}\mathrm{H}}^{-1}ig(H^{k-1}ig(f^{-1}(c),\phi_{f-c}\mathbb{C}_{X^{\mathrm{an}}}ig),\mathrm{T}ig)$$

Introduce an intermediate term

$$ig(H^kig(X^{\mathrm{an}},(\Omega^ullet_{X^{\mathrm{an}}}(\!(z)\!),\mathrm{d}-\mathrm{d}f/z)ig),
abla_{\partial_z}ig)$$

THEOREM 3.3.2. For each *k*,

$$\begin{split} & \left(H^k \big(X, (\Omega^{\bullet}_X (\! (z)\!), \mathrm{d} - \mathrm{d} f/z) \big), \nabla_{\partial_z} \right) \\ & \simeq \bigoplus_{c \in \mathbb{C}} \widehat{\mathscr{E}}^{-c/z} \otimes \widehat{\mathrm{RH}}^{-1} \Big(H^{k-1} \big(f^{-1}(c), \phi_{f-c} \mathbb{C}_{X^{\mathrm{an}}} \big), \mathrm{T} \Big) \end{split}$$

• Introduce an intermediate term $\left(H^k(X^{\mathrm{an}}, (\Omega^{\bullet}_{X^{\mathrm{an}}}((z)), \mathrm{d} - \mathrm{d}f/z)), \nabla_{\partial_z}\right)$

Choose a comm. diag.

Y: smooth proj.

$$D := Y \setminus X$$
: ncd

GAGA type thm by standard methods:

$$egin{aligned} &\left(H^kig(X,(\Omega^ullet_X((z)),\mathrm{d}-\mathrm{d}f/z)ig),
abla_{\partial_z}ig)\ &\simeq ig(H^kig(Y,(\Omega^ullet_Y(*D)(\!(z)),\mathrm{d}-\mathrm{d}F/z)ig),
abla_{\partial_z}ig)\ &\simeq ig(H^kig(Y^{\mathrm{an}},(\Omega^ullet_{Y^{\mathrm{an}}}(*D)(\!(z)),\mathrm{d}-\mathrm{d}F/z)ig),
abla_{\partial_z}ig). \end{aligned}$$

GAGA type thm by standard methods:

$$egin{aligned} & \Big(H^kig(X,(\Omega^ullet_X((z)),\mathrm{d}-\mathrm{d}f/z)ig),
abla_{\partial_z}ig) \ & \simeq \Big(H^kig(Y,(\Omega^ullet_Y(*D)(\!(z)),\mathrm{d}-\mathrm{d}F/z)ig),
abla_{\partial_z}ig) \ & \simeq \Big(H^kig(Y^{\mathrm{an}},(\Omega^ullet_{Y^{\mathrm{an}}}(*D)(\!(z)),\mathrm{d}-\mathrm{d}F/z)ig),
abla_{\partial_z}ig). \end{aligned}$$

Local statement on Y^{an}:

 $(\Omega^{ullet}_{Y^{\mathrm{an}}}(*D)(\!(z)\!),\mathrm{d}-\mathrm{d} F/z))\simeq Rj_*(\Omega^{ullet}_{X^{\mathrm{an}}}(\!(z)\!),\mathrm{d}-\mathrm{d} f/z))$

GAGA type thm by standard methods:

$$egin{aligned} &\left(H^kig(X,(\Omega^ullet_X((z))\!),\mathrm{d}-\mathrm{d}f/z)ig),
abla_{\partial_z}ig)\ &\simeq &\left(H^kig(Y,(\Omega^ullet_Y(*D)(\!(z))\!),\mathrm{d}-\mathrm{d}F/z)ig),
abla_{\partial_z}ig)\ &\simeq &\left(H^kig(Y^{\mathrm{an}},(\Omega^ullet_{Y^{\mathrm{an}}}(*D)(\!(z))\!),\mathrm{d}-\mathrm{d}F/z)ig),
abla_{\partial_z}ig). \end{aligned}$$

Local statement on Y^{an}:

 $(\Omega^{ullet}_{Y^{\mathrm{an}}}(*D)(\!(z)\!),\mathrm{d}-\mathrm{d} F/z)ig)\simeq Rj_*(\Omega^{ullet}_{X^{\mathrm{an}}}(\!(z)\!),\mathrm{d}-\mathrm{d} f/z)ig)$

• Assume that $(D \cup crit. fibres)$ is *ncd*. Then local computations \Rightarrow OK.

GAGA type thm by standard methods:

$$egin{aligned} &\left(H^kig(X,(\Omega^ullet_X((z)),\mathrm{d}-\mathrm{d}f/z)ig),
abla_{\partial_z}ig)\ &\simeq ig(H^kig(Y,(\Omega^ullet_Y(*D)(\!(z)),\mathrm{d}-\mathrm{d}F/z)ig),
abla_{\partial_z}ig)\ &\simeq ig(H^kig(Y^{\mathrm{an}},(\Omega^ullet_{Y^{\mathrm{an}}}(*D)(\!(z)),\mathrm{d}-\mathrm{d}F/z)ig),
abla_{\partial_z}ig). \end{aligned}$$

Local statement on Y^{an}:

 $(\Omega^{ullet}_{Y^{\mathrm{an}}}(*D)(\!(z)\!),\mathrm{d}-\mathrm{d} F/z)ig)\simeq Rj_*(\Omega^{ullet}_{X^{\mathrm{an}}}(\!(z)\!),\mathrm{d}-\mathrm{d} f/z)ig)$

- Assume that $(D \cup crit. fibres)$ is *ncd*. Then local computations \Rightarrow OK.
- Need a decomposition thm for proper modifications to reduce to the ncd case.

From

$$\begin{split} (\Omega^\bullet_{Y^{\mathrm{an}}}(*D)(\!(z)\!),\mathrm{d-d} F/z)\big) &\simeq R j_*(\Omega^\bullet_{X^{\mathrm{an}}}(\!(z)\!),\mathrm{d-d} f/z)\big), \end{split}$$
 we get

$$egin{aligned} & \left(H^kig(X,(\Omega^ullet_X((z)),\mathrm{d}-\mathrm{d}f/z)ig),
abla_{\partial_z}ig)\ & \simeq & \left(H^kig(X^{\mathrm{an}},(\Omega^ullet_{X^{\mathrm{an}}}((z)),\mathrm{d}-\mathrm{d}f/z)ig),
abla_{\partial_z}ig) \end{aligned}$$

From

$$(\Omega^{ullet}_{Y^{\mathrm{an}}}(*D)(\!(z)\!),\mathrm{d-d}F/z))\simeq Rj_*(\Omega^{ullet}_{X^{\mathrm{an}}}(\!(z)\!),\mathrm{d-d}f/z)),$$
 we get

$$egin{aligned} & \left(H^kig(X,(\Omega^ullet_X((z)),\mathrm{d}-\mathrm{d}f/z)ig),
abla_{\partial_z}ig)\ & \simeq & \left(H^kig(X^{\mathrm{an}},(\Omega^ullet_{X^{\mathrm{an}}}((z)),\mathrm{d}-\mathrm{d}f/z)ig),
abla_{\partial_z}ig) \end{aligned}$$

• We now focus on X^{an} . Try to relate

 $(\Omega^{ullet}_{X^{\mathrm{an}}}(\!(z)\!),\mathrm{d}-\mathrm{d}f/z)_{|f^{-1}(c)}$ with $\phi_{f-c}\mathbb{C}_{X^{\mathrm{an}}}$

 \Rightarrow *local statement* on X^{an} .

Would like to compare

$$(\Omega^ullet_{X^{\mathrm{an}}}(\!(z)\!),\mathrm{d}-\mathrm{d}f/z)$$

with

 $\mathbb{C}(\!(z)\!)\otimes_{\mathbb{C}[z^{-1}]}(\Omega^{ullet}_{X^{\mathrm{an}}}[z^{-1}],\mathrm{d}-\mathrm{d}f/z)$

Would like to compare

$$(\Omega^ullet_{X^{\mathrm{an}}}(\!(z)\!),\mathrm{d}-\mathrm{d}f/z)$$

with

$$\mathbb{C}(\!(z)\!)\otimes_{\mathbb{C}[z^{-1}]}(\Omega^{ullet}_{X^{\mathrm{an}}}[z^{-1}],\mathrm{d}-\mathrm{d}f/z)$$

• More useful: $\partial_t \leftrightarrow z^{-1}$, compare with

$$\widehat{\mathscr{E}}_{\mathbb{C}}\otimes_{\mathscr{D}_{\mathbb{C}}}(\Omega^{ullet}_{X^{\mathrm{an}}}[z^{-1}],\mathrm{d}-\mathrm{d}f/z)$$

 Comparison OK (loc. comput. on resol. of sing. + come back)

- Comparison OK (loc. comput. on resol. of sing. + come back)
- Use previous results of M. Saito and M. Kapranov to conclude

$$egin{aligned} &\left(H^kig(X^{\mathrm{an}},(\Omega^ullet_{X^{\mathrm{an}}}(\!(z)\!),\mathrm{d}-\mathrm{d}f/z)ig),
abla_{\partial_z}ig)\ &\simeq ig(H^kig(X^{\mathrm{an}},\widehat{\mathscr{E}}_{\mathbb{C}}\otimes_{\mathscr{D}_{\mathbb{C}}}(\Omega^ullet_{X^{\mathrm{an}}}[z^{-1}],\mathrm{d}-\mathrm{d}f/z),
abla_{\partial_z}ig)\ &\oplus \widehat{\mathscr{E}}^{-c/z}\otimes\widehat{\mathrm{RH}}^{-1}ig(H^{k-1}ig(f^{-1}(c),\phi_{f-c}\mathbb{C}_{X^{\mathrm{an}}}ig),\mathrm{T}ig) \end{aligned}$$

Conclusion for the 3 lectures

Conclusion for the 3 lectures

- The case *f* proper is more comfortable and brings more info.
- If f not proper, consider a diagram

 $\Rightarrow (\Omega_X \cdot [z, z^{-1}], d - df/z) \text{ captures info for} \\ \phi_{g-c} R \kappa_* \mathbb{C}_X.$

• But in general $\phi_{g-c}R\kappa_*\mathbb{C}_X \neq R\kappa_{c*}\phi_{f-c}\mathbb{C}_X$. $(\kappa_c: f^{-1}(c) \hookrightarrow g^{-1}(c))$

Tame case

However, if tameness assumption:

 $\forall c \in \mathbb{C}, \quad \operatorname{Supp} \phi_{g-c} R\kappa_* \mathbb{C}_X \cap (X' \smallsetminus X) = arnothing$

 \Rightarrow can work with f "as if" it were proper.

 Useful in Mirror Symmetry for Fano manifolds (or Fano orbifolds).