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LECTURE 1

INTRODUCTION TO D-MODULES

In this first lecture, we introduce the sheaf of differential operators and its (left or
right) modules. Our main concern is to develop the relationship between two a priori
different notions:

(1) the classical notion of a OX -module with a flat connection,
(2) the notion of a left DX -module.

Both notions are easily seen to be equivalent. However, the extension of the equiva-
lence to complexes (or to the derived category) is less clear. The notion of differential
complex is useful to express this equivalence, but will not be considered here.

The relationship between left and right DX -modules, although simple, is also some-
what subtle, and we insist on the basic isomorphisms.

The results in this lecture are mainly algebraic, and do not involve any analytic
property. They are given in the algebraic situation, but can be adapted to the complex
analytic setting. One can find many of these notions in the classical books [1–3, 7,
15,18,19,22]. Some of them are also directly inspired from the work of M. Saito [25]
about Hodge D-modules.

In this chapter, X denotes a smooth scheme of finite type over a field k of character-
istic 0 (which can be the field C of complex numbers) or a complex analytic manifold.
We will denote by OX the corresponding sheaves of functions. By a function, we will
mean a local section of OX .

1.1. The sheaf of differential operators

We will denote by ΘX the sheaf of vector fields on X. This is the OX -locally free
sheaf generated in local étale coordinates by ∂x1 , . . . , ∂xn . It is a sheaf of OX -Lie
algebras which is locally free as a OX -module.

In a dual way, we denote by Ω1
X the sheaf of 1-forms onX. We will set ΩkX = ∧kΩ1

X .
We denote by d : ΩkX → Ωk+1

X the (Kähler) differential.
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By definition, the vector fields act (on the left) on functions by derivation, in a
compatible way with the Lie algebra structure.

Let ωX denote the sheaf ΩdimX
X of forms of maximal degree. Then there is a natural

right action (in a compatible way with the Lie algebra structure) of ΘX on ωX : the
action is given by ω · ξ = −Lξω, where Lξ denotes the Lie derivative, equal to the
composition of the interior product ιξ by ξ with the differential d, as it acts on forms
of maximal degree (cf. Exercise E.1.1).

Definition 1.1.1 (The sheaf of differential operators). For any open set U of X, the ring
DX(U) of differential operators on U is the subring of Homk(OU ,OU ) generated by

– multiplication by functions on U ,
– derivation by vector fields on U .

The sheaf DX is defined by Γ(U,DX) = DX(U) for any open set U of X.

(cf. Exercise E.1.2 for more details on Hom.) By construction, the sheaf DX acts on
the left on OX , i.e., OX is a left DX -module.

Example 1.1.2 (The one-variable Weyl algebra). Assume that X is the affine line A1
k

with coordinate t. Then D(X) is called the one-variable Weyl algebra. This is the
quotient algebra of the free algebra generated by the polynomial algebras k[t] and
k[∂t] by the relation [∂t, t] = 1. We will denote it by k[t]〈∂t〉. It is a non-commutative
algebra. Its elements are the differential operators with polynomial coefficients. Such
an operator can be written in a unique way as

P (t, ∂t) = ad(t)∂dt + · · ·+ a1(t)∂t + a0(t)

where the ai are polynomials in t, and ad 6= 0. We call d the degree of the oper-
ator. The product of two such operators can be reduced to this form by using the
commutation relation

(1.1.3) ∂ta(t) = a(t)∂t + a′(t).

Its degree is equal to the sum of the degrees of its factors. The symbol of an operator
is the class of the operator modulo the operators of strictly lower degree. The set of
symbols of differential operators, equipped with the induced operations, is identified
with the algebra of polynomials of two variables with coefficients in k; it is thus a
Noetherian ring. This enables one to prove that the Weyl algebra is itself left and
right Noetherian.

The Weyl algebra contains as sub-algebras the algebras k[t] (operators of degree 0)
and k[∂t] (operators with constant coefficients).

Definition 1.1.4 (The filtration of DX by the order). The increasing family of subsheaves
FkDX ⊂ DX is defined inductively:

– FkDX = 0 if k 6 −1,
– F0DX = OX (via the canonical injection OX ↪→ Homk(OX ,OX)),
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– the local sections P of Fk+1DX are characterized by the fact that [P,ϕ] is a local
section of FkDX for any function ϕ.

(cf. Exercises E.1.4 and E.1.5.)

1.2. Left and right

Let us recall the basic lemmas for generating left or right D-modules. We refer for
instance to [6, § 1.1] for more details.

Lemma 1.2.1 (Generating left or right DX -modules). Let M l (resp. M r) be a OX-mo-
dule and let ϕl : ΘX ⊗kX

M l →M l (resp. ϕr : M r ⊗kX
ΘX →M r) be a k-linear

morphism such that, for any local sections f of OX , ξ, η of ΘX and m of M l

(resp. of M r), one has
(1) ϕl(fξ ⊗m) = fϕl(ξ ⊗m),
(2) ϕl(ξ ⊗ fm) = fϕl(ξ ⊗m) + ξ(f)m,
(3) ϕl([ξ, η]⊗m) = ϕl(ξ ⊗ ϕl(η ⊗m))− ϕl(η ⊗ ϕl(ξ ⊗m)),

resp.
(1) ϕr(mf ⊗ ξ) = ϕr(m⊗ fξ),
(2) ϕr(m⊗ fξ) = ϕr(m⊗ ξ)f −mξ(f),
(3) ϕr(m⊗ [ξ, η]) = ϕr(ϕr(m⊗ ξ)⊗ η)− ϕr(ϕr(m⊗ η)⊗ ξ).

Then there exists a unique structure of left (resp. right) DX-module on M l (resp. M r)
such that ξm = ϕl(ξ ⊗m) (resp. mξ = ϕr(m⊗ ξ)) for any ξ,m.

(cf. Exercises E.1.8–E.1.13.)

Definition 1.2.2 (Right-left transformation). Any left DX -module M l gives rise to a
right one M r by setting (cf. [6] for instance) M r = ωX ⊗OX

M l and, for any vector
field ξ and any function f ,

(ω ⊗m) · f = fω ⊗m = ω ⊗ fm, (ω ⊗m) · ξ = ωξ ⊗m− ω ⊗ ξm.

Conversely, set M l = Hom OX
(ωX ,M r), which also has in a natural way the structure

of a left DX -module (cf. Exercise E.1.11(2)).

Properties of this involution are given in Exercises E.1.14 and E.1.15.

Example 1.2.3. The transposition is the involution P 7→ tP of k[t]〈∂t〉 defined by the
following properties:

(1) t(P ·Q) = tQ · tP for all P,Q ∈ k[t]〈∂t〉,
(2) tP = P for any P ∈ k[t],
(3) t∂t = −∂t.
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If Mr is a right module over k[t]〈∂t〉, we can equip it canonically with a structure
of left module M l by setting, for any m ∈Mr,

P ·m def= m tP.

Conversely, to any left module is canonically associated a right module.

1.3. Examples of D-modules

We list here some classical examples of D-modules. One may get many other
examples by applying various operations on D-modules.

1.3.a. Let I be a sheaf of left ideals of DX . Then the quotient M = DX/I is a
left DX -module. If I is locally generated by a finite set P1, . . . , Pk of differential
operators then, locally, M is the DX -module associated with P1, . . . , Pk.

Notice that different choices of generators of I give rise to the same DX -module M

(cf. Exercise E.1.16). It may be sometime difficult to guess that two sets of operators
generate the same ideal. Therefore, it is useful to develop a systematic procedure to
construct from a system of generators a division basis of the ideal in order to have a
decision algorithm.

1.3.b. If I is an ideal of OX , it generates a left ideal I = DX ·I in DX . For instance,
if X = An, let I be the ideal generated by a coordinate xn. Then DAn/DAn · xn =
DAn−1 [∂xn

].
More generally, let L be a OX -module. There is a very simple way to get a left

(resp. right) DX -module from L : consider DX ⊗OX
L (resp. L ⊗OX

DX) equipped
with the natural left (resp. right) action of DX . This is called an induced DX -module.
Although this construction is very simple, it is also very useful to get cohomological
properties of DX -modules.

1.3.c. One of the main geometrical examples of DX -modules are the vector bundles
on X equipped with an integrable connection. Recall that left DX -modules are OX -
modules with an integrable connection. Among them, the coherent OX -modules are
particularly interesting. We will see (cf. §2.2.c), that such modules are OX -locally
free, i.e., correspond to vector bundles of finite rank on X.

More generally, we have:

Proposition 1.3.1. The category of OX-modules equipped with an integrable connection
(the morphisms being compatible with the connections) is equivalent to the category
of left DX-modules.

(cf. Exercises E.1.6 and E.1.7.)
It may happen that, for some X, such a category of OX locally free sheaves with

an integrable connection does not give any interesting geometric object (cf. Exercise
E.1.17).
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However, on Zariski open sets of X, there may exist interesting vector bundles with
connection.

In the complex analytic setting, this leads to the notion of meromorphic vector
bundle with connection. Let D be a divisor in X and denote by OX(∗D) the sheaf of
meromorphic functions on X with poles along D at most. This is a sheaf of left DX -
modules, being a OX -module equipped with the natural connection d : OX(∗D) →
Ω1
X(∗D). By definition, a meromorphic bundle is a locally free OX(∗D) module of

finite rank. When it is equipped with an integrable connection, it becomes a left
DX -module.

In the algebraic setting, this notion is equivalent to the notion of vector bundle on
U = X rD.

1.3.d. One may twist the previous examples. Assume that there exists a closed
form ω on X. Define ∇ : OX → Ω1

X by the formula ∇ = d+ ω. As ω is closed, ∇ is
an integrable connection on the trivial bundle OX .

Usually, there only exist meromorphic closed form on X, with poles on some divi-
sor D. Then ∇ is an integrable connection on OX(∗D).

If ω is exact, ω = df for some meromorphic function f on X, then ∇ may be
written as e−f ◦ d ◦ ef .

More generally, if M is any meromorphic bundle with an integrable connection ∇,
then, for any such ω, ∇+ ω defines a new DX -module structure on M .

1.3.e. One may construct new examples from old ones by using various operations.
– Let M be a left DX -module. Then Hom DX

(M ,DX) has a natural structure of
right DX -module. Using a resolution N • of M by left DX -modules which are acyclic
for Hom DX

(•,DX), one gets a right DX -module structure on the Ext kDX
(M ,DX).

– Given two left (resp. a left and a right) DX -modules M and N , the same ar-
gument allows one to put on the various Tor i,OX

(M ,N ) a left (resp. a right) DX -
module structure.

– We will see in Lecture 4 the geometric operation “direct image” (push-forward)
of a DX -module by a holomorphic map. The “inverse image” (pull-back) also exists,
but it will not be explained in these notes.

1.3.f. Fourier transform. The relation [∂t, t] = 1 defining the Weyl algebra can
also be written as [(−t), ∂t] = 1, so that we have an isomorphism of algebras

k[t]〈∂t〉 −→ k[τ ]〈∂τ 〉
t 7−→ −∂τ ,
∂t 7−→ τ.

Any module M over k[t]〈∂t〉 becomes ipso facto a module over k[τ ]〈∂τ 〉.
This transformation is not at all trivial. Moreover, it does not behave well with

respect to the correspondence of Proposition 1.3.1 (cf. Exercise E.1.19).
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1.3.g. Duality. Another important operation on DX -modules is duality. However,
as for sheaves of OX -modules, the dual of a DX -module consists in general of a
complex.

Let M be a left DX -module. Then Hom DX
(M ,DX) does not have a natu-

ral structure of left DX -module. Nevertheless, as DX is also a right DX -module
over itself, the previous objects gets a natural right action of DX , hence is a right
DX -module. More generally, using standard techniques of homological algebra, the
sheaves Ext kDX

(M ,DX) are naturally right DX -modules. Here, the right-left trans-
formation of Definition 1.2.2 proves useful to recover a left DX -module.

It is instructive to compare the two notions of duality for a vector bundle with
flat connection (in the sense of vector bundles with connections and in the sense of
DX -modules).

Let M be a locally free OX -module of finite rank equipped with a flat connection
∇ : M → Ω1

X ⊗OX
M . Let M ∨ denote the dual bundle Hom OX

(OX ,M ), and let
∇∨ the natural connection on M ∨, defined by the property that, for any local section
ϕ of M ∨ and any local section m of M , we have d(ϕ(m)) = ∇∨ϕ(m)+ϕ(∇m). Then
∇∨ is flat, hence (M ∨,∇∨) comes from a unique left DX -module that we call M ∗.
How can we recover M ∗ by using one of the Ext kDX

(M ,DX)?

M ∗ is the left DX-module assocated with the right DX-module Ext dimX
DX

(M ,DX).

We will give the proof in the case X is a Zariski open set in A1 for simplicity. Hence,
O(X) = k[t, 1/p] for some non-zero polynomial p ∈ k[t] and we consder a free O(X)-
module M with a connection, that is, a left action of O(X)〈∂t〉.

We will now construct a free resolution of M as a O(X)〈∂t〉-module. In order
to do that, let us forget for a while the connection on M and consider it only as a
O(X)-module. The induced O(X)〈∂t〉-module O(X)〈∂t〉 ⊗O(X) M (cf. §1.3.b) is free
and can be identified with k[∂t]⊗k M . Any element can be written in a unique way
as
∑
k>0 ∂

k
t ⊗mk, and the (left) action of O(X)〈∂t〉 is given by the formulas

∂t

(∑
k>0

∂kt ⊗mk

)
=
∑
k>0

∂k+1
t ⊗mk(1.3.2)

f(t)(∂kt ⊗mk) = ∂kt ⊗ f(t)mk +
k−1∑
`=0

∂`t ⊗ g`(t)mk,(1.3.3)

where have set [f(t), ∂kt ] =
∑k−1
`=0 ∂

`
tg`(t) in the algebra O(X)〈∂t〉.

Let us consider the homomorphism

O(X)〈∂t〉 ⊗
O(X)

M
∂t ⊗ 1− 1⊗ ∂t−−−−−−−−−−−−−→ O(X)〈∂t〉 ⊗

O(X)
M

∑
k>0

∂kt ⊗mk 7−−−−−−−−−−−−−→
∑
k>0

∂kt ⊗ (mk−1 − ∂tmk),
(1.3.4)
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where we now use the action of ∂t on M . Let us show that the morphism (1.3.4) is
O(X)〈∂t〉-linear: we will for instance check that

f · (∂t ⊗ 1− 1⊗ ∂t)(1⊗m) = (∂t ⊗ 1− 1⊗ ∂t)(1⊗ fm),

letting the other properties as an exercise; we have

f · (∂t ⊗ 1− 1⊗ ∂t)(1⊗m) = ∂t ⊗ fm− 1⊗ f ′m− 1⊗ f∂tm
= ∂t ⊗ fm− 1⊗ ∂t(fm)
= (∂t ⊗ 1− 1⊗ ∂t)(1⊗ fm).

Let us show the injectivity of (1.3.4): let
∑
k>0 ∂

k
t ⊗mk be such thatmk−1−∂tmk=0

for any k > 0 (setting m−1 = 0); as mk = 0 for k � 0, we deduce that mk = 0 for
any k.

We then identify the cokernel of (1.3.4) to M (as a O(X)〈∂t〉-module) by the
mapping ∑

k>0
∂kt ⊗mk 7−→

∑
k>0

∂ktmk.

Let us now come back to the computation of Ext1 with this resolution. A left
O(X)〈∂t〉-linear morphism k[∂t] ⊗k M → O(X)〈∂t〉 is determined by its restriction
to 1⊗M , which must be O(X)-linear. We deduce an identification

HomO(X)〈∂t〉

(
k[∂t]⊗

k
M,O(X)〈∂t〉

)
= M∗⊗

k
k[∂t],

where the structure of right O(X)〈∂t〉-module on the right-hand term is given formulas
analogous to (1.3.2) and (1.3.3). Therefore, applying the functor

HomO(X)〈∂t〉(•,O(X)〈∂t〉)l

to the complex (1.3.4), we get a complex of the same kind, where we have replaced
M with M∗. Taking up the argument used for (1.3.4), we deduce an identification

Ext1
O(X)〈∂t〉(M,O(X)〈∂t〉)l 'M∗.

Exercises for Lecture 1

Exercise E.1.1 (The Lie derivative). Let ω be a local section of ωX and set d = dimX.
For any local vector field ξ, the interior product ιξω is the (d−1)-form defined by the
formula:

∀ ξ2, . . . , ξd ∈ ΘX , ιξω(ξ2, . . . , ξd) = ω(ξ, ξ2, . . . , ξd)
and the Lie derivative Lξω by Lξω = (dιξ + ιξd)ω = dιξω (as dω = 0).

Prove that the formula ω ·ξ def= −Lξω is a right action of the Lie algebra ΘX on ωX .

Exercise E.1.2 (The sheaf Hom ). Let X be a topological space and let F and G

be two sheaves of A -modules on X, A being a sheaf of rings on X. We de-
note by HomA (F ,G ) the Γ(X,A )-module of morphisms of sheaves of A -modules
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from F to G . An element φ of HomA (F ,G ) is a collection of morphisms φ(U) ∈
HomA (U)(F (U),G (U)), on open subsets U of X, compatible with the restrictions.

Show that the presheaf Hom A (F ,G ) defined by

Γ(U,Hom A (F ,G )) = HomA|U (F|U ,G|U )

is a sheaf (notice that U 7→ HomA (U)(F (U),G (U)) is not a presheaf, because there
are no canonical morphisms of restriction).

Exercise E.1.3. Show that a differential operator P of order 6 1 satisfying P (1) = 0
is a derivation of OX , i.e., a section of ΘX .

Exercise E.1.4 (Local computations). Let U be an open set of An with coordinates
x1, . . . , xn. Denote by ∂x1 , . . . , ∂xn the corresponding vector fields.

(1) Show that the following relations are satisfied in D(U):

[∂xi
, ϕ] = ∂ϕ

∂xi
, ∀ϕ ∈ O(U), ∀ i ∈ {1, . . . , n},

[∂xi
, ∂xj

] = 0 ∀ i, j ∈ {1, . . . , n},

∂αx · ϕ =
∑

06β6α

α!
(α− β)!β!∂

α−β
x (ϕ)∂βx ,

ϕ · ∂αx =
∑

06β6α

α!
(α− β)!β! (−1)|α−β|∂βx∂α−βx (ϕ),

with standard notation concerning multi-indices α, β.
(2) Show that any element P ∈ D(U) can be written in a unique way as

∑
α aα∂

α
x

or
∑
α ∂

α
x bαwith aα, bα ∈ O(U). Conclude that DX is a locally free left and right

module over OX .
(3) Show that max{|α| ; aα 6= 0} = max{|α| ; bα 6= 0}. It is denoted by ordxP .
(4) Show that ordxP does not depend on the coordinate system chosen on U .
(5) Identify FkDX with the subsheaf of local sections of DX having order 6 k (in

some or any local coordinate system). Show that it is a locally free OX -module of
finite rank.

(6) Show that the filtration F•DX is exhaustive (i.e., DX = ∪kFkDX) and that it
satisfies

FkDX · F`DX = Fk+`DX .

Exercise E.1.5 (The graded sheaf grFDX ). The goal of this exercise is to show that the
sheaf of graded rings grFDX may be canonically identified with the sheaf of graded
rings Sym ΘX . If one identifies ΘX with the sheaf of functions on the cotangent space
T ∗X which are linear in the fibres, then Sym ΘX is the sheaf of functions on T ∗X

which are polynomial in the fibres. In particular, grFDX is a sheaf of commutative
rings.
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(1) Identify the OX -module Symk ΘX with the sheaf of symmetric k-linear forms
ξ : OX ⊗k · · · ⊗k OX on the k-fold tensor product, which behave like a derivation with
respect to each factor.

(2) Show that Sym ΘX
def= ⊕k Symk ΘX is a sheaf of graded OX -algebras on X and

identify it with the sheaf of functions on T ∗X which are polynomial in the fibres.
(3) Show that the map FkDX → Hom k

( k
⊗kOX ,OX

)
which sends any section P

of FkDX to
ϕ1 ⊗ · · · ⊗ ϕk 7−→ [· · · [[P,ϕ1]ϕ2] · · ·ϕk]

induces an isomorphism of OX -modules grFk DX → Symk ΘX .
(4) Show that the induced morphism

grFDX
def= ⊕kgrFk DX −→ Sym ΘX

is an isomorphism of sheaves of OX -algebras.

Exercise E.1.6 (The universal connection)
(1) Show that the natural left multiplication of ΘX on DX can be written as a

connection
∇ : DX −→ Ω1

X ⊗
OX

DX ,

i.e., as a k-linear morphism satisfying the Leibniz rule ∇(fP ) = df ⊗ P + f∇P
(where f is any local section of OX and P any local section of DX).

(2) Extend this connection for any k > 1 as a k-linear morphism
(k)∇ : ΩkX ⊗

OX

DX −→ Ωk+1
X ⊗

OX

DX

satisfying the Leibniz rule written as
(k)∇(ω ⊗ P ) = dω ⊗ P + (−1)kω ∧∇P.

(3) Show that (k+1)∇ ◦ (k)∇ = 0 for any k > 0 (i.e., ∇ is flat).
(4) Show that the morphisms (k)∇ are right DX -linear (but not left OX -linear).

Exercise E.1.7. More generally, show that a left DX -module M is nothing but a OX -
module with a flat connection ∇ : M → Ω1

X ⊗OX
M . Define similarly the iterated

connections (k)∇ : ΩkX ⊗
OX

M → Ωk+1
X ⊗OX

M . Show that

(k+1)∇ ◦ (k)∇ = 0.

Exercise E.1.8 (OX is a left DX -module). Use the left action of ΘX on OX to define on
OX the structure of a left DX -module.

Exercise E.1.9 (ωX is a right DX -module). Use the right action of ΘX on ωX to define
on ωX the structure of a right DX -module.

Exercise E.1.10 (Tensor products over OX )
(1) Let M and N be two left DX -modules.
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(a) Show that the OX -module M ⊗OX
N has the structure of a left DX -

module by setting, by analogy with the Leibniz rule,

ξ · (m⊗ n) = ξm⊗ n+m⊗ ξn.

(b) Notice that, in general, m⊗ n 7→ (ξm)⊗ n (or m⊗ n 7→ m⊗ (ξn)) does
not define a left DX -action on the OX -module M ⊗OX

N .
(c) Let ϕ : M →M ′ and ψ : N → N ′ be DX -linear morphisms. Show that

ϕ⊗ ψ is DX -linear.
(2) Let M be a left DX -module and N be a right DX -module. Show that N ⊗OX

M has the structure of a right DX -module by setting

(n⊗m) · ξ = nξ ⊗m− n⊗ ξm.

Exercise E.1.11 (Hom over OX )
(1) Let M ,N be left DX -modules. Show that Hom OX

(M ,N ) has a natural
structure of left DX -module defined by

(ξ · ϕ)(m) = ξ · (ϕ(m)) + ϕ(ξ ·m),

for any local sections ξ of ΘX , m of M and ϕ of Hom OX
(M ,N ).

(2) Similarly, if M ,N are right DX -modules, then Hom OX
(M ,N ) has a natural

structure of left DX -module defined by

(ξ · ϕ)(m) = ϕ(m · ξ)− ϕ(m) · ξ.

Exercise E.1.12 (Tensor product of a left DX -module with DX )
Let M l be a left DX -module. Notice that M l ⊗OX

DX has two commuting
structures of OX -module. Similarly DX ⊗OX

M l has two such structures. The goal
of this exercise is to extend them as DX -structures and examine their relations.

(1) Show that M l ⊗OX
DX has the structure of a left and of a right DX -module

which commute, given by the formulas:{
f · (m⊗ P ) = (fm)⊗ P = m⊗ (fP ),
ξ · (m⊗ P ) = (ξm)⊗ P +m⊗ ξP,(left)

{
(m⊗ P ) · f = m⊗ (Pf),
(m⊗ P ) · ξ = m⊗ (Pξ),(right)

for any local vector field ξ and any local function f .
(2) Similarly, DX ⊗OX

M l also has such structures which commute, given by for-
mulas: {

f · (P ⊗m) = (fP )⊗m,
ξ · (P ⊗m) = (ξP )⊗m,(left)

{
(P ⊗m) · f = P ⊗ (fm) = (Pf)⊗m,
(P ⊗m) · ξ = Pξ ⊗m− P ⊗ ξm.(right)
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(3) Show that both morphisms

M l ⊗OX
DX −→ DX ⊗OX

M l DX ⊗OX
M l −→M l ⊗OX

DX

m⊗ P 7−→ (1⊗m) · P P ⊗m 7−→ P · (m⊗ 1)

are left and right DX -linear, induce the identity M l ⊗ 1 = 1 ⊗M l, and their com-
position is the identity of M l ⊗OX

DX or DX ⊗OX
M l, hence both are reciprocal

isomorphisms.
(4) Let M be a left DX -module and let L be a OX -module. Justify the following

isomorphisms of left DX -modules and right OX -modules:

M ⊗OX
(DX ⊗OX

L ) ' (M ⊗OX
DX)⊗OX

L

' (DX ⊗OX
M )⊗OX

L ' DX ⊗OX
(M ⊗OX

L ).

Assume moreover that M and L are OX -locally free. Show that M⊗OX
(DX⊗OX

L )
is DX -locally free.

Exercise E.1.13 (Tensor product of a right DX -module with DX )
Same exercise with a right DX -module M r. Use the following formulas for

M r ⊗OX
DX : {

f · (m⊗ P ) = (mf)⊗ P = m⊗ (fP ),
ξ · (m⊗ P ) = (mξ)⊗ P −m⊗ ξP,(left)

{
(m⊗ P ) · f = m⊗ (Pf),
(m⊗ P ) · ξ = m⊗ (Pξ),(right)

and for DX ⊗OX
M r: {

f · (P ⊗m) = (fP )⊗m,
ξ · (P ⊗m) = (ξP )⊗m,(left)

{
(P ⊗m) · f = P ⊗ (mf) = (Pf)⊗m,
(P ⊗m) · ξ = P ⊗mξ − (ξP )⊗m.(right)

Exercise E.1.14 (Compatibility of right-left transformations)
Show that the natural morphisms

M l −→Hom OX
(ωX , ωX ⊗OX

M l), ωX ⊗OX
Hom OX

(ωX ,M r) −→M r

are isomorphisms of DX -modules.

Exercise E.1.15 (Local expression of the left-right transformation)
Let U be an open set of An.
(1) Show that there exists a unique k-linear involution P 7→ tP from D(U) to itself

such that
– ∀ϕ ∈ O(U), tϕ = ϕ,
– ∀ i ∈ {1, . . . , n}, t∂xi = −∂xi ,
– ∀P,Q ∈ D(U), t(PQ) = tQ · tP .
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(2) Let M be a left (resp. right) DU -module and let tM be M equipped with the
right (resp. left) DU -module structure

P ·m def= tPm.

Show that tM
∼−→M r (resp. tM

∼−→M l).

Exercise E.1.16. Show that the two sets of differential operators {∂x1 , . . . , ∂xn
} and

{∂x1 , x1∂x2 + · · ·+ xn−1∂xn
} generate the same ideal of DAn .

Exercise E.1.17. Classify all vector bundles with connection on the projective line
P1(k). (Hint: Start with rank-one bundles; use then the existence of a decomposition
as the direct sum of rank-one bundles).

Exercise E.1.18 (Products of operators and exact sequences of modules)
(1) Prove that, in the Weyl algebra k[t]〈∂t〉, we have

PQ = 0 =⇒ P = 0 or Q = 0

(consider the highest degree terms in ∂t).
(2) Show that, if Q 6= 0, right multiplication by Q induces an isomorphism

k[t]〈∂t〉/(P ) ·Q−→
∼

(Q)/(PQ),

if (R) denotes the left ideal k[t]〈∂t〉 ·R.
(3) Prove that the sequence of left k[t]〈∂t〉-modules is exact:

0 −→ k[t]〈∂t〉/(P ) ·Q−−−→ k[t]〈∂t〉/(PQ) −→ k[t]〈∂t〉/(Q) −→ 0.

Exercise E.1.19 (Examples of Fourier transforms)
(1) Compute the Fourier transform of (C[t], d).
(2) (This part uses the lectures on regular singularity.) Show that, if P ∈ k[t]〈∂t〉 is

a differential operator with a regular singularity at infinity, then the Fourier transform
of P has only two singularities, one at 0 which is regular, and one at infinity, whic
may be irregular.



LECTURE 2

CHARACTERISTIC VARIETY

One of the most basic geometric object attached to a D-module is its characteristic
variety. This variety gives some control on the solutions of a D-module. We will not
insist on this aspect in these notes (cf. however Exercise E.2.4). Our main concern will
be Bernstein’s inequality (the dimension of the characteristic variety is bounded from
below by the dimension of the underlying variety), and more precisely the involutivity
theorem, although we will not give a proof of the latter.

2.1. Good filtrations and coherence

2.1.a. Good filtrations. Let M be a DX -module and let F•M be an increasing
filtration of M by OX -submodules indexed by Z. We say that this filtration is a
F -filtration if it is exhaustive (i.e.,

⋃
` F`M = M ) and

∀ k, ` ∈ Z, FkDX · F`M ⊂ Fk+`M .

In other words, (M , F•) is a filtered module over the filtered ring (DX , F•).

Definition 2.1.1. A F -filtration F•M is good if the following two properties are fulfilled:
(1) for any ` ∈ Z, F`M is a OX -coherent module,
(2) locally on X there exists `0 ∈ N such that, for any k ∈ N,

(a) FkDX · F`0M = F`0+kM ,
(b) F−kDX · F−`0M = F−(`0+k)M , that is, F`M = 0 for any `� 0.

Proposition 2.1.2. Any two good F -filtrations F•M and F ′•M are locally comparable,
i.e., for any x ∈ X there exists `1 ∈ N such that, in some open neighbourhood of x
the following inclusions hold for any ` ∈ Z:

F`−`1M ⊂ F ′`M ⊂ F`+`1M .

Examples 2.1.3
(1) The stupid filtration of OX defined by FkOX = 0 for k 6 −1 and FkOX = OX

if k > 0 is good.
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(2) Let V be a vector bundle on X with a flat connection ∇ : V → Ω1
X ⊗ V . Let

F •V be a finite decreasing exhaustive filtration by holomorphic subbundles. Define
the increasing filtration F•V by FpV = F−pV . Then F•V is a F -filtration of (V,∇)
if and only if F •V satisfies Griffiths’ transversality property: ∇F pV ⊂ Ω1

X ⊗ F p−1V

for all p ∈ Z. Then, the filtration is good.
(3) Let D be a reduced divisor in X. Then the filtration FkOX(∗D) def= OX(kD) is

a F-filtration. When D is smooth, this is a good filtration and in particular OX(∗D) is
DX -coherent (see the computation in Example 2.2.5(2). When D is not smooth, this
is not necessarily true, but one can show that OX(∗D) has a good filtration (i.e., is
DX -coherent). This is not trivial at all and relies on Bernstein’s functional equation.
This equation implies that, if U is affine and f ∈ O(U), there exists k0 > 0 such that,
for any k > 0, f−k0−k ∈ D(U) · f−k0 .

2.1.b. Coherence. Let us begin by recalling the definition of coherence. Let A be
a sheaf of rings on a space X. A sheaf of A -modules F is said to be A -coherent if
it is locally of finite type and if, for any open set U of X and any A -linear morphism
ϕ : A r

|U → F|U , the kernel of ϕ is locally of finite type. The sheaf A is a coherent
sheaf of ring if it is coherent as a (left and right) module over itself. If A is coherent,
the a sheaf F is A -coherent if and only if it has locally a finite presentation.

Recall (cf. Exercise E.1.5) that grFDX is identified with the sheaf of commutative
rings Sym ΘX , which is a coherent sheaf on X.

Proposition 2.1.4. A F -filtration is good if and only if F`M = 0 for `� 0 and grFM

is coherent over grFDX .

We say that M is coherent over DX if it has a good F -filtration in the neighbour-
hood of any point of X (in the complex analytic setting, a good filtration may exist
locally but possibly not globally).

One should be careful that this definition is tautological for DX . But fortunately
this does not lead to a contradiction as one can show that DX is coherent as a sheaf
of rings.

Proposition 2.1.5. Let M be a DX-module with a good filtration F•M and let N be a
coherent DX-submodule of M . Then the filtration F•N

def= N ∩ F•M is good.
If ϕ : M → N is a morphism of coherent DX-modules, then a good filtration

on M induces a good filtration on Kerϕ and Cokerϕ.

2.2. Support and characteristic variety

2.2.a. Support. Let M be a coherent DX -module. Being a sheaf on X, M has a
support Supp M , which is the closed subset complement to the set of x ∈ X in the
neighbourhood of which M is zero. Recall that the support of a coherent OX -module
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is a closed algebraic (or analytic) subset of X. Such a property extends to coherent
DX -modules:

Proposition 2.2.1. The support Supp M of a coherent DX-module M is a closed alge-
braic (or analytic) subset of X.

Proof. The property of being an algebraic (or analytic) subset being local, we may
assume that M is generated over DX by a coherent OX -submodule F . Then the
support of M is equal to the support of F .

2.2.b. Characteristic variety. However, the support is usually not the right geo-
metric object attached to a DX -module M , as it does not provide enough information
on M . A finer object is the characteristic variety that we introduce below. The fol-
lowing lemma will justify its definition.

Lemma 2.2.2. Let M be a coherent DX-module. Then there exists a coherent sheaf
I (M ) of ideals of grFDX such that, for any open set U of X and any good filtration
F•M|U , we have I (M )|U = Rad(anngrF DU

grFM|U ).

We denote by Rad(I) the radical of the ideal I and by ann the annihilator ideal of
the corresponding module. Hence, for any x ∈ U , we have

Rad(anngrF DX,x
grFMx) = {ϕ ∈ grFDX,x | ∃ `, ϕ`grFMx = 0}.

Proof. It is a matter of showing that, if F•M|U and F ′•M|U are two good filtrations,
then the corresponding ideals coincide. Notice first that these ideals are homogeneous,
i.e., if ϕ belongs to the ideal, then so does any homogeneous component of ϕ. Let ϕ
be a homogeneous element of degree j in the ideal corresponding to F•M . Then,
locally, there exists ` such that, for any k, we have ϕ`FkM ⊂ Fk+j`−1M and thus,
for any p > 0,

ϕ(p+1)`FkM ⊂ Fk+j(p+1)`−p−1M .

Taking `1 as in Proposition 2.1.2 associated to F•M , F ′•M , we have

ϕ(2`1+1)`F ′kM ⊂ ϕ(2`1+1)`Fk+`1M ⊂ Fk+`1+j(2`1+1)`−2`1−1M

⊂ F ′k+2`1+j(2`1+1)`−2`1−1M = F ′k+j(2`1+1)`−1M .

This shows that ϕ is in the ideal corresponding to F ′•M . By a symmetric argument,
we find that both ideals are identical.

Notice that we consider the radicals of the annihilator ideals, and not these anni-
hilator ideals themselves, because of the shift `1. In fact, the annihilator ideals may
not be equal, as shown by Exercise E.2.1.

Definition 2.2.3 (Characteristic variety). The characteristic variety Char M is the sub-
set of the cotangent space T ∗X defined by the ideal I (M ).
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Locally, given any good filtration of M , the characteristic variety is defined as the
set of common zeros of the elements of anngrF DX

grFM .
Assume that M is the quotient of DX by the left ideal I . Then one may choose for

F•M the filtration induced by F•DX , so that Char M is the locus of common zeros of
the elements of grFI . In general, finding generators of grFI from generators of I

needs the use of Gröbner bases.
In local coordinates x1, . . . , xn, denote by ξ1, . . . , ξn the complementary symplectic

coordinates in the cotangent space. Then grFI is generated by a finite set of homo-
geneous elements aα(x)ξα, where α belongs to a finite set of multi-indices. Hence the
homogeneity of the ideal I (M ) implies that

(2.2.4) Supp M = π(Char M ) = Char M ∩ T ∗XX,

where π : T ∗X → X denotes the bundle projection and T ∗XX denotes the zero section
of the cotangent bundle.

Examples 2.2.5
(1) M = OX . Let us use the stupid filtration of OX (cf. Example 2.1.3). The

associated graded sheaf is
grM = OX = gr0M .

And we have ann grM = ⊕k>1grFk DX . If (x1, . . . , xn; ξ1, . . . , ξn) is a local coordinate
system of T ∗X, Char OX is the subvariety of T ∗X defined by the equations ξ1 = · · · =
ξn = 0; in other words we have Char OX = T ∗XX.

(2) X = An, M = OX [1/x1]. Let us set by I = DX · (x1∂x1 + 1, ∂x2 , . . . , ∂xn).
We have a natural morphism of left DX -modules

DX/I −→ OX [1/x1]
[P ] 7−→ P · (1/x1).

This morphism is an isomorphism: surjectivity is easy; to prove injectivity, we note
that any [P ] has a representative P of the form h+

∑d
k=1 pk∂

k
x1

where h is a section
of OX and the pk are constant; then P · (1/x1) = 0 implies h = 0 and pk = 0 for all k.

Let F•M be the filtration on M induced by the canonical filtration of DX :

FkM = FkDX · (1/x1) = {g/xk1 | g ∈ O}.

We have anngrD(grM ) = grI . In order to compute grI , we remark that any element
of I can be written in a unique way as

A1(x1∂x1 + 1) +A2∂x2 + · · ·+An∂xn ,

with Ai ∈ D independent of the (n − i) last derivations ∂xi+1 , . . . Computing the
graded object can now be done on the coefficients Ai and we find that grI is the
ideal generated by (x1ξ1, ξ2, . . . , ξn), so

Char(OX [1/x1]) = T ∗x1=0X ∪ T ∗XX.
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2.2.c. Coherent D-modules with characteristic variety contained in the
zero section.

Proposition 2.2.6. Let M be a coherent DX-module. Then Char M ⊂ T ∗XX if and
only if M is locally free of finite rank over OX , i.e., is a vector bundle with a flat
connection.

Proof
(⇐) We choose the stupid filtration on M , which is good. Then grFM is M with

the trivial action of Symk ΘX for k > 1, hence the support of M as a Sym ΘX -module
is T ∗XX.

(⇒) Let us choose (locally) a good filtration F•M such that FkM = FkDX ·F0M

for all k > 0 and FkM = 0 for k 6 −1. After the Nullstellensatz, there exists k0
such that Fk0DXF0M ⊂ Fk0−1M , hence Fk0M = Fk0−1M , and the filtration F•M
remains constant for k > k0 − 1. Therefore, M = Fk0−1M is OX -coherent.

Let us now show that M , being OX -coherent, is OX -locally free. Let xo ∈ X and let
m1, . . . ,mp be a system of generators of Mxo which induces a basis of Mxo/mxoMxo ,
where mxo is the maximal ideal of OX,xo . Let us choose local coordinates at xo.
Assume that there exists a non trivial relation:

p∑
i=1

uiei = 0, ui ∈ OX,xo

of finite order ν = inf{k | ∀ i, ui ∈ mkxo}. Choose v(j)
ik ∈ OX,xo such that ∂xjei =∑

v
(j)
ik ek. Applying ∂xj to the relation above we obtain

0 =
p∑
i=1

ui∂xjei + ∂ui
∂xj

ei =
p∑
i=1

∂ui
∂xj

ei +
p∑
i=1

ui

( p∑
k=1

v
(j)
ik ek

)
,

or
p∑
i=1

( ∂ui
∂xj

+
p∑
`=1

u`v
(j)
`i

)
ei = 0.

For a conveniently chosen index j, this appears as a relation of order ν − 1. By
repeating this process we would obtain a relation of order zero which contradicts the
independence over k in Mxo/mxoMxo .

2.2.d. Involutiveness of the characteristic variety. Let M be a coherent DX -
module, Char M ⊂ T ∗X its characteristic variety and Supp M its support. For
(x, 0) ∈ T ∗X, we denote by dim(x,0) Char M the dimension at (x, 0) of the variety
Char M .

Proposition 2.2.7. Let M be a non-zero coherent DX-module. Then, for any x ∈ X,
dim(x,0) Char M > dimX.

This inequality is called Bernstein’s inequality. There exists a more precise result.
In order to state it, consider on T ∗X the fundamental 2-form ω. In local coordinates
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(x1, . . . , xn, ξ1, . . . , ξn), it is written ω =
∑n

1=1 dξi ∧ dxi. For any (x, ξ) ∈ T ∗X,
ω defines on T(x,ξ)(T ∗X) a non-degenerate bilinear form. We denote by E⊥ the
orthogonal space in the sense of ω of the vector subspace E of T(x,ξ)(T ∗X). Recall
that if V is a subvariety of T ∗X, with smooth part V0,

– V is said to be involutive if, for any a ∈ V0, we have (TaV )⊥ ⊂ TaV ,
– V is said to be isotropic if, for any a ∈ V0, we have TaV ⊂ (TaV )⊥,
– V is said to be Lagrangian if, for any a ∈ V0, we have (TaV )⊥ = TaV .
We observe that if V is involutive, the dimension of any irreducible components

of V is bigger than dimX.

Theorem 2.2.8. Let M be a non-zero coherent DX-module. Then Char M is an invo-
lutive set in T ∗X.

The first proof has been given by Sato, Kawai, Kashiwara [26]. Next, Malgrange
gave a very simple proof in a seminar Bourbaki talk (see [12, p. 165]). And finally,
Gabber gave proof of a general algebraic version of this theorem (see [9], see also [2,
p. 473]).

The first consequence is that any irreducible component of the characteristic variety
of a coherent DX -module has a dimension > dimX.

2.3. Holonomic DX-modules

Definition 2.3.1. A coherent DX -module is said to be holonomic if its characteristic
variety Char M has dimension dimX.

Proposition 2.3.2. If M is holonomic and has support X, then there exists a Zariski
dense open set Xo in X such that M|Xo is a vector bundle with flat connection.

Proof. One component of the characteristic variety must be T ∗XX. We define Xo to be
the complement in X = T ∗XX of the intersection of T ∗XX with the other components
of the characteristic variety. We can apply Proposition 2.2.6.

Examples 2.3.3
(1) Any vector bundle with flat connection is a holonomic DX -module.
(2) For any smooth hypersurface H of X, OX(∗H) is holonomic, Char OX(∗H) =

T ∗XX ∪ T ∗YX.
(3) For n > 2, if P is a section of DX , the quotient DX/DXP is never holonomic.

Its characteristic variety is a hypersurface of T ∗X. On the other hand, if n > 3, two
operators may be enough to define a holonomic DX -module (cf. Exercise E.1.16).

From Exercise E.2.2 we get

Proposition 2.3.4. In an exact sequence 0 → M ′ → M → M ′′ → 0 of coherent left
DX-modules, M is holonomic if and only if M ′ and M ′′ are so.
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Remark 2.3.5. The explicit computation of the characteristic variety of a given DX -
module may be complicated. A useful tool in the case of holonomic DX -modules
is Kashiwara’s index theorem, which can reduce the computation to a topological
problem (cf. Remark 3.3.3).

Example 2.3.6. Let M be a holonomic DX -module with support equal to X. Assume
that, for Xo as in Proposition 2.3.2, the complement X r Xo is a divisor D in X.
A much refined version of Proposition 2.2.c says that OX(∗D)⊗OX

M is a locally free
OX(∗D)-module of finite rank equipped with a meromorphic connection and that it
is also a holonomic DX -module. The proof uses Bernstein’s relation, as explained in
dimension one in Proposition 2.4.5.

The kernel and the cokernel of the localization morphism M → OX(∗D)⊗OX
M

are holonomic DX -modules (after Proposition 2.3.4) supported on D . Iterating in a
convenient way this procedure is useful for reducing the proof of a given property of
holonomic DX -modules to the proof for meromorphic bundles with connection.

Concerning duality, the behaviour of holonomic DX -modules is similar to that of
vector bundles with flat connection (cf. §1.3.g):

Theorem 2.3.7 (Homological characterization of holonomic DX -modules)
Let M be a coherent DX-module. Then Ext kDX

(M ,DX) = 0 for k > dimX.
Moreover, M is holonomic if and only if Ext kDX

(M ,DX) = 0 for k 6= dimX. The
left DX-module associated to the right DX-module Ext dimX

DX
(M ,DX) is then also holo-

nomic.

2.4. Holonomic modules over the one-variable Weyl algebra

General references for this section are [1, 4, 7, 8, 12,15,20,23,29].
In the following, when saying “module” over the Weyl algebra, we will usually

mean left module of finite type over k[t]〈∂t〉.
Any module has thus a presentation

(2.4.1) k[t]〈∂t〉p
·A−−−→ k[t]〈∂t〉q −→M −→ 0,

where A is a p × q matrix with entries in k[t]〈∂t〉. The vectors are here written as
line vectors, multiplication by A is done on the right and commutes thus with the left
action of k[t]〈∂t〉.

2.4.a. Holonomic modules. We will say that a module M over k[t]〈∂t〉 is holo-
nomic if any element of M is annihilated by some non-zero operator of k[t]〈∂t〉, i.e.,
satisfies a non-trivial differential equation. This equation can have degree 0: we will
then say that the element is torsion. A holonomic module contains by definition no
sub-module isomorphic to k[t]〈∂t〉. In an exact sequence of k[t]〈∂t〉-modules

0 −→M ′ −→M −→M ′′ −→ 0
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the middle term is holonomic if and only if the extreme ones are so.
Given δ = (δ1, . . . , δq) ∈ Zq, let us call δ-degree of an element (P1, . . . , Pq) of

k[t]〈∂t〉q the integer maxk=1,...,q(degPk− δk). Let us call good filtration any filtration
of M obtained as the image, in some presentation like (2.4.1), of the filtration of
k[t]〈∂t〉q by the δ-degree, for some δ ∈ Zq.

The graded module of M with respect to some good filtration is a module of finite
type over the ring of polynomials of two variables.

Proposition 2.4.2
(1) A module is holonomic if and only if its graded module with respect to some

(or any) good filtration has a non-trivial annihilator.
(2) Any holonomic module can be generated by one element.

We deduce that a holonomic module has a presentation (2.4.1) with q = 1. That
any holonomic module is cyclic can be compared with the “lemma of the cyclic vector”
for connections of one variable. We will not give the proof, as it is not essential and
knowing that a module is finitely generated is usually enough.

Examples 2.4.3
(1) If P 6∈ k is an operator in k[t]〈∂t〉, the quotient module M of k[t]〈∂t〉 by the

left ideal over k[t]〈∂t〉 · P is a holonomic module: it has finite type, as it admits the
presentation

0 −→ k[t]〈∂t〉
·P−−−→ k[t]〈∂t〉 −→M −→ 0.

The graded module with respect to the filtration induced by the degree is equal to
the quotient of the ring of polynomials by the ideal generated by the symbol of P ; its
annihilator is non-trivial, hence the module is holonomic.

(2) If δ0 denotes the Dirac distribution at 0 on k, the sub-module of temperate
distributions generated by δ0 is holonomic: it has finite type by definition; moreover
we have tδ0 = 0, whence an isomorphism of k-vector spaces

k[∂t]
∼−→ k[t]〈∂t〉 · δ0;

last, it is easy to check that t`∂kt δ0 = 0 as soon as ` > k. This module is thus a
torsion module. It takes the form given in Example (1) by taking for P the degree 0
operator equal to t.

(3) More generally, any torsion module is a direct sum of modules isomorphic to
modules of the kind k[t]〈∂t〉/(t− to) (the readers should check this).

(4) Any holonomic module M can be included in a short exact sequence

0 −→ K −→ k[t]〈∂t〉/(P ) −→M −→ 0

where K is torsion: in order to do so, we choose a generator e of M (Proposition
2.4.2(2)) and we take for P an operator of minimal degree (say d) which kills e; it
is a matter of seeing that the kernel of the surjective morphism k[t]〈∂t〉/(P ) → M

which sends the class of 1 to e is torsion; if we work in the ring of fractions k[t, a−1
d ],
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in which we can invert the dominant coefficient ad of P , we can use the Euclidean
division algorithm (1) of any operator by P , and the minimality of the degree of P
shows that k[t, a−1

d ]〈∂t〉/(P )→M [a−1
d ] is bijective; we deduce that K has support in

the finite set of zeroes of ad.

Proposition 2.4.4. Let X be a Zariski open set of A1 and letMX be a O(X)〈∂t〉-module.
The following properties are equivalent:

(1) MX is the restriction to X of some holonomic k[t]〈∂t〉-module M ,
(2) there exists a Zariski dense open set U ⊂ X such that MX|U is the restriction

to U of some holonomic k[t]〈∂t〉-module M ,
(3) there exists a Zariski dense open set U ⊂ X such that MX|U is a (possibly zero)

vector bundle with connection.

The set of singular points of MX is the minimal set Σ ⊂ X such that MX|XrΣ is a
vector bundle. We will call rank of MX that of the associated meromorphic bundle.
If X = A1,

rkM = dimk(t) k(t) ⊗
k[t]

M.

Lattices. A lattice of the k[t]〈∂t〉-module M is a k[t] sub-module which generates it
over k[t]〈∂t〉, that is, such that

M =
∞∑
k=0

∂kt E.

Proposition 2.4.5. Let U be a Zariski open set of A1 such that M|U is a vector bundle
and let E ⊂M be any vector bundle on A1 such that E|U = M|U . Then E is a lattice
of the k[t]〈∂t〉-module M .

Sketch of proof
Let m1, . . . ,mr be generators of E as a k[t]-module. By assumption, there exists

a polynomial p(t) such that M =
⋃
k∈−N p(t)kE. It is then enough to show that, for

any m ∈ M (for instance, one of the mi), there exists an integer j 6 0 such that,
for all k < j, p(t)km belongs to the k[t]〈∂t〉-module generated by the p(t)im, with
i ∈ [j, 0].

This result can be shown by using Bernstein’s relation: there exists a non-zero
polynomial b(s) such that (2) b(s)p(t)sm = Q(t, ∂t, s)p(t)s+1m. One chooses for j an
integer less than the real part of any root of b. Then, for k < j, Bernstein’s relation
for s = k shows that p(t)km belongs to k[t]〈∂t〉 · p(t)k+1m, hence, by induction, to
k[t]〈∂t〉 · p(t)jm.

1. although the non-commutativity of the Weyl algebra! What is important for the Euclid algo-
rithm, is that the degree of the commutator [Q1, Q2] of two operators is strictly smaller than the
sum of the degrees of Q1 and Q2.

2. This relation has to be understood as an algebraic relation, obtained by formally differentiating
p(t)s+1, and then dividing both sides by p(t)s, where s is a new variable.



22 LECTURE 2. CHARACTERISTIC VARIETY

2.4.b. Duality. If M is a left k[t]〈∂t〉-module, then Homk[t]〈∂t〉(M,k[t]〈∂t〉) is
equipped with a structure of right k[t]〈∂t〉-module (by (ϕ · P )(m) = ϕ(m)P ). More
generally, the spaces Extik[t]〈∂t〉(M,k[t]〈∂t〉) are right k[t]〈∂t〉-modules.

Proposition 2.4.6 (Duality preserves holonomy). If M is holonomic,
(1) the right modules Extik[t]〈∂t〉(M,k[t]〈∂t〉) are zero for i 6= 1;
(2) the left module DM associated to the right module Ext1

k[t]〈∂t〉(M,k[t]〈∂t〉) is
holonomic;

(3) we have D(DM) 'M .

Proof. By using the long Ext exact sequence associated to the short exact sequence
2.4.3-(4), we are reduced to showing the proposition for M = k[t]〈∂t〉/(P ). This
module has the resolution

0 −→ k[t]〈∂t〉
·P−−−→ k[t]〈∂t〉 −→M −→ 0

and, applying the functor Homk[t]〈∂t〉(•,k[t]〈∂t〉) to this resolution, we get the exact
sequence

0 −→ Homk[t]〈∂t〉(M,k[t]〈∂t〉) −→ k[t]〈∂t〉
P ·−−−→ k[t]〈∂t〉

−→ Ext1
k[t]〈∂t〉(M,k[t]〈∂t〉) −→ 0

on which we see that Ext1
k[t]〈∂t〉(M,k[t]〈∂t〉) = k[t]〈∂t〉/(P ) (here, (P ) denotes the

right ideal generated by P ) and that all other Ext vanish. We thus have here

DM = k[t]〈∂t〉/(tP ).

Exercises for Lecture 2

Exercise E.2.1. Let t be a coordinate on A1 and set M = OA1(∗0)/OA1 . Consider the
two elements m1 = [1/t] and m2 = [1/t2], where [•] denotes the class modulo OA1 .
Show that the good filtrations generated respectively by m1 and m2 do not give rise
to the same annihilator ideals.

Exercise E.2.2. Let 0→M ′ →M →M ′′ → 0 be an exact sequence of DX -modules.
Show that Char M = Char M ′ ∪ Char M ′′. (Hint: take a good filtration on M and
induce it on M ′ and M ′′.)

Exercise E.2.3 (Coherent DX -modules with characteristic variety contained in T ∗YX)
Let i : Y ↪→ X be the inclusion of a smooth codimension p closed submani-

fold. Define the p-th algebraic local cohomology with support in Y by RpΓ[Y ]OX =
lim−→k

Ext p(OX/I k
Y ,OX), where IY is the ideal defining Y . RpΓ[Y ]OX has a natu-

tal structure of DX -module. In local coordinates (x1, . . . , xn) where Y is defined by
x1 = · · · = xp = 0, we have

RpΓ[Y ]OX '
OAn [1/x1 · · ·xn]∑p

i=1 OAn(xi/x1 · · ·xn)
.
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Denote this DX -module by BYX.
(1) Show that BYX has support contained in Y and characteristic variety equal

to T ∗YX.
(2) Identify BYX with i+OY (cf. Lecture 4).
(3) Let M be a coherent DX -module with characteristic variety equal to T ∗YX.

Show that M is locally isomorphic to (BYX)d for some d.

Exercise E.2.4 (Non-characteristic restriction). Let i : Y ↪→ X denote the inclusion of
a closed submanifold. The cotangent map to the inclusion defines a natural bundle
morphism$ : T ∗X|Y → T ∗Y , the kernel of which is by definition the conormal bundle
T ∗YX of Y in X. Let M be a coherent left DX -module.

(1) Define a natural left DY -module structure on the OY -module i∗M =
OY ⊗i−1OX

i−1M and denote the corresponding DY -module by i+M .
(2) Show that the following conditions are equivalent:

(a) T ∗YX ∩ Char M ⊂ T ∗XX,
(b) $ : Char M|Y → T ∗Y is finite, i.e., proper with finite fibres.

When one of these conditions is fulfilled, Y is said non-characteristic with respect
to M .

(3) Assume that M is DX -coherent and that Y is non-characteristic with respect
to M . Show that i+M is DY -coherent and Char i+M ⊂ $(Char M|Y ).

Remark first that the question is local near a point x ∈ Y , hence one can assume
that M has a good filtration F•M .

(a) Put Fki∗M = image[i∗FkM → i∗M ]. Show that F•i∗M is a good
filtration with respect to F•i∗DX .

(b) Show that the module grF i∗M is a quotient of i∗grFM and that its
support is contained in Char M|Y . Using that coherence is preserved under
finite morphisms, show that it is a coherent grFDY -module.

(c) Conclude that the filtration F•i∗M is a good filtration of the DY -module
i+M . Using the good filtration above, show that Char i+M ⊂ $(Char M|Y ).





LECTURE 3

DE RHAM AND DOLBEAULT COHOMOLOGY
OF D-MODULES

3.1. De Rham and Spencer

Let M l be a left DX -module and let M r be a right DX -module.

Definition 3.1.1 (de Rham). The de Rham complex pDRM = Ωn+•
X (M l) of M l is

the complex having as terms the OX -modules Ωn+•
X ⊗OX

M l and as differential the
k-linear morphism (−1)n∇ defined in Exercise E.1.7.

Notice that the de Rham complex is shifted by n = dimX with respect to the usual
convention (we denote by DR the unshifted de Rham complex; the left exponent p is
here for the “perverse convention”). The shift produces, by definition, a sign change
in the differential, which is then equal to (−1)n∇. The need of such a shift is clear
when considering the correspondence left↔right with the Spencer complex introduced
below.

Definition 3.1.2 (Spencer). The Spencer complex (Sp•X(M r), δ) is the complex having
as terms the OX -modules M ⊗OX

∧−•ΘX (with • 6 0) and as differential the k-linear
map δ given by

m⊗ ξ1 ∧ · · · ∧ ξk 7
δ−−−→

k∑
i=1

(−1)i−1mξi ⊗ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξk

+
∑
i<j

(−1)i+jm⊗ [ξi, ξj ] ∧ ξ1 ∧ · · · ∧ ξ̂i ∧ · · · ∧ ξ̂j ∧ · · · ∧ ξk.

The relations between de Rham, Spencer, and the right-left transformation are
analyzed in Exercises E.3.5–E.3.8.

Of special interest will be, of course, the de Rham or Spencer complex of the
ring DX , considered as a left or right DX -module. Notice that, in Ωn+•

X (DX), the
differentials are right DX -linear, and in Sp•X(DX) they are left DX -linear.

Let M be a left DX -module and let M r the associated right module. We will now
compare Ωn+•

X (M ) and Sp•X(M r).
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Proposition 3.1.3 (cf. Exercises E.3.6-E.3.8). For any left DX-module M , there is a
functorial isomorphism Sp•X(M r) ∼−→ Ωn+•

X (M ) which is termwise OX-linear.

3.2. Filtered objects: the Dolbeault complex

A F -filtration F•M of a DX -modules (cf. §2.1.a) gives rise to an increasing filtra-
tion of the de Rham complex:

Fp DR M = {0 −→ FpM −→ Ω1
X ⊗OX

Fp+1M −→ · · · −→ ΩnX ⊗OX
Fp+nM −→ 0}

The Dolbeault complex of the filtered DX -module (M , F•M ) is the graded complex
grF DR M . Let us note that, in Hodge theory, one uses decreasing filtrations. The
way to go from one convention to the other one is to set Fp = F−p.

The Dolbeault cohomology of the filtered DX -module (M , F•M ) is the hyperco-
homology of the complex grF DR M .

Example 3.2.1. We define the “stupid” (increasing) filtration on OX by setting

FpOX =
{

OX if p > 0,
0 if p 6 −1.

The de Rham complex is filtered by

(3.2.2) F p(Ω•X , d) = {0 −→ F−pOX
d−−→ F−p+1OX ⊗OX

Ω1
X

d−−→ · · · }.

If p 6 0, F p(Ω•X , d) = (Ω•X , d), although if p > 1,

F p(Ω•X , d) = {0 −→ · · · −→ 0 −→ ΩpX
p

−→ · · · −→ ΩdimX
X −→ 0}.

Therefore, the p-th graded complex is 0 if p 6 −1 and, if p > 0, it is given by

grpF (Ω•X , d) = {0 −→ · · · −→ 0 −→ ΩpX
p

−→ 0 −→ · · · −→ 0}.

In other words, the graded complex grF (Ω•X , d) =
⊕

p grpF (Ω•X , d), is the complex
(Ω•X , 0) (i.e., the same terms as for the de Rham complex, but with differential equal
to 0).

From general results on filtered complexes, the filtration of the de Rham complex in-
duces a (decreasing) filtration on the hypercohomology spaces (that is, on the de Rham
cohomology of X) and there is a spectral sequence starting from H∗

(
X, grF (Ω•X , d)

)
and abutting to grFH∗(X,C). Let us note that H∗

(
X, grF (Ω•X , d)

)
is nothing but⊕

p,qH
q(X,ΩpX).

3.3. The de Rham complex of a holonomic DX-module

Let M be a holonomic DX -module. We analyze the local properties of the de Rham
complex. We work over the field C of complex numbers. If X is an algebraic variety,
we denote by Xan the corresponding complex analytic manifold. In particular, OXan

is the sheaf of holomorphic functions on Xan and DXan is the sheaf of holomorphic
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differential operators. On X we use the Zariski topology and on Xan we use the
analytic topology.

Remark 3.3.1 (The case of OX ). The holomorphic Poincaré lemma asserts that
DR OXan is a resolution of the constant sheaf CXan . Warning: DR OX is not, in
general, a resolution of the constant sheaf CX .

3.3.a. Vector bundles with flat connection. Let (V,∇) be a vector bundle with
a flat connection on X. The theorem of Cauchy-Kowalevski asserts that, locally, V an

has a local frame made of ∇-flat sections. In other words, V an ' OXan ⊗C Ker∇an

and the connection ∇an on V an corresponds to the connection d ⊗ Id. From the
computatoin of the holomorphic de Rham complex for OX we conclude that the
holomorphic de Rham complex

0 −→ V
∇−−−→ Ω1

Xan ⊗ V ∇−−−→ Ω2
Xan ⊗ V −→ · · · −→ ΩdimX

Xan ⊗ V −→ 0

is a resolution of the locally constant sheaf Ker∇an.

3.3.b. The constructibility theorem of Kashiwara. To what extent can we
apply the previous result for holonomic DX -modules?

Theorem 3.3.2. If M is holonomic, each cohomology sheaf of DR M is a constructible
sheaf of C-vector spaces.

We say that a sheaf F is constructible if there exists a locally finite partition
of X by locally closed Zariski subsets Xi such that, for any i, the sheaf-theoretical
restriction F|Xi

is a locally constant sheaf of finite dimensional C-vector spaces of
finite rank on Xi.

Remark 3.3.3 (The local index theorem). Let F • be a bounded complex with con-
structible cohomology on X. Define the characteristic function χF : X→Z by

χF (x) =
∑
k

(−1)k dimC H k(F )x.

This function is constant on the strata Xi of the partition adapted to all the H k(F ).
The local index theorem of Kashiwara implies that, if M is holonomic, the character-
istic function of DR M determines the characteristic variety of M .

Corollary 3.3.4 (Finiteness of the de Rham cohomology). Let X be a compact complex
analytic manifold (or a smooth projective variety) and let M be a holonomic DX-
module. Then the cohomology spaces Hk(X,DR M ) are finite dimensional.

3.4. The case of curves

We now make a detailed analysis of the de Rham complex for holonomic DX -
modules when dimX = 1.
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3.4.a. The constructibility theorem. If M is supported on a point xo ∈ X, then
M ' (C[∂x]δ)d for some d ∈ N, where t is a local coordinate at xo and C[∂t]δ =
B{xo}|X (cf. Exercise E.2.3). The generator δ of this DX -module satisfies tδ = 0.

The de Rham complex of B{xo}|X is the complex

0 −→ C[∂t]δ
∂t−−−→ C[∂t]δ −→ 0

where the convention is that the right hand term has degree 0. We thus have
DR B{xo}|X ' Cxo .

If M is holonomic, with singular support S, then the constructibility of DR M

amounts to the following statement

Theorem 3.4.1. Let P ∈ C{t}〈∂t〉 be a differential operator; then the kernel and the
cokernel of P : C{t} → C{t} are finite dimensional vector spaces.

Proof. We will prove the theorem when P can be written as
∑d
i=0 ai(t)(t∂t)i where

ad 6≡ 0 and one of the coefficients ai is a unit. We will moreover assume that, if we
write P = b(t∂t)+ t

∑
i ci(t)(t∂t)i, where b ∈ C[s] is non-zero, then b(s) 6= 0 for s ∈ N.

The general case can be reduced to this one. In such a setting, we will prove more
precisely that

(1) Ker[P : C{t} → C{t}] = 0,
(2) dim Coker[P : C{t} → C{t}] = v(ad), where v denotes the valuation.
For the first assertion, we remark that P · (

∑∞
n=n0

fnt
n) = b(n0)fn0t

n0 + · · · .
Let ∆r be a closed disk in C centered at zero and with radius r. Consider the space

Bm(∆r) of functions which are Cm in some open neighborhood of ∆r and which are
holomorphic in the interior of ∆r. This is a Banach space for the norm

‖f‖m = sup
|α|6m

sup
∆r

∣∣∣ ∂|α|f

∂α1x ∂α2y

∣∣∣
where we have set t = x + iy, α = (α1, α2) and |α| = α1 + α2. We shall use the
following results:

Proposition 3.4.2. For all m > 0 the injection Bm+1(∆r) ↪→ Bm(∆r) is compact.

Theorem 3.4.3. Let U, V : E → F be continuous linear operators between two Banach
spaces. If the index of U is defined (i.e., if the kernel and the cokernel of U are finite
dimensional) and if V is compact then the index of U + V is defined and is equal to
the index of V .

Now P defines a continuous operator Bd(∆r)→ B0(∆r) for each r > 0 sufficiently
small. We shall prove that this operator has an index, and that this index is equal to
−v(ad). Remark that P = ad(t)(t∂t)d + Q with degQ < d. Because of the previous
proposition, Q induces a compact operator Bd(∆r) → B0(∆r), and we are reduced
to showing that the index of ad(t)(t∂t)d is equal to −v(ad). This comes from the fact
that ∂t has index 1 and t has index −1.
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3.4.b. Example of computation of de Rham cohomology. Let X be a smooth
projective curve and let ω be a meromorphic 1-form on X with poles on a finite
set S. We consider the trivial rank-one bundle OX(∗S) with connection d + ω. It
defines a holonomic DX -module M . We wish to give a topological expression of
Hk(X,DR M ).

The basic topological object attached to the situation is the locally constant sheaf
L on X r S defined as Ker[d+ ω : OXrS → OXrS ].

Question: Do we have Hk(X,DR M ) = Hk(X r S,L )?
(1) If S is empty (i.e., ω is holomorphic) the answer is “yes”, since DR M = L .
(2) If ω has only simple poles, the answer is “yes”. We will now show how to prove

this result.

Remark 3.4.4. In higer rank and higher dimension, the analogous result is called the
Grothendieck-Deligne comparison theorem.

Instead of making a global comparison, we make a local comparison. If j : XrS ↪→
S denotes the inclusion, the cohomology of X r S with coefficients in L is the
hypercohomology on X of a complex called Rj∗L . So we want to compare DR M

and Rj∗L . This is a local problem near each point of S, and we can assume that X
is a disc with coordinate t and ω has a pole at the origin only. It is not difficult to
reduce to the case where ω = αdt/t with α ∈ C.

On the one hand, the germ at the origin of the de Rham complex is the complex

0 −→ C{t}[t−1] t∂t + α−−−−−−−→ C{t}[t−1] −→ 0.

On the other hand, Rj∗L is isomorphic to the complex

0 −→ C{t}{t−1} t∂t + α−−−−−−−→ C{t}{t−1} −→ 0,

where C{t}{t−1} is the space of convergent Laurent series.
Now, we are left to proving that, setting τ = t−1 and if O(C) denotes the space of

entire functions with respect to τ ,

τ∂τ + β : O(C)/C[τ ] −→ O(C)/C[τ ]

is an isomorphism. The injectivity is easy. The surjectivity follows from the fact that,
if
∑
n gnτ

n is a series with infinite radius of convergence, the radius of convergence of
the series

∑
n fnτ

n defined for large n by fn = gn/(n+ β) is also infinite.
(3) Let us now assume that ω has a pole of order > 2 at one point of S at least.

We will analyze the de Rham complex in a way which can be generalized.
Let us denote by ρ : X̃ → X the real oriented blow-up of X at the points of

S (it amounts to working in polar coordinates near each point of S). Then X̃ is a
Riemann surface with boundary. Let A

X̃
be the sheaf on X̃ of germs of functions

on X̃ r ρ−1(S) = X r S which have moderate growth near ρ−1(S). In particular,
A
X̃|X̃rρ−1(S) = OXrS .
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Proposition 3.4.5. The complex

0 −→ A
X̃

d+ ω−−−−−→ Ω1
X ⊗ρ−1OX

A
X̃
−→ 0

has cohomology in degree 0 at most. The sheaf L̃ = Ker d + ω is equal to L when
restricted to X r S and, for any x ∈ S, if rx denotes the order of the pole of ω at
x, there exists a subdivision of S1 in max(1, 2(rx − 1)) intervals of the same length,
alternatively closed and open, such that L̃ is zero on the closed intervals and is a
(locally) constant sheaf of rank one on the open intervals.

Moreover, Hk(X,DR M ) = Hk(X̃, L̃ ).

When x ∈ S is a regular singularity (i.e., ω has a simple pole), then L̃|ρ−1(x) is a
locally constant sheaf on the circle. Computing Euler characteristics gives

χ(X,DR M ) = χ(X r S) +
∑
x∈S

(rx − 1).

3.4.c. General results on a curve. The previous computation illustrates, in a sim-
ple case, a general result for meromorphic connections on a smooth complex projective
curve.

Let X be a smooth complex projective curve, let S be a finite set of points and let
M be a locally free OX(∗S)-module of finite rank d with a connection.

Theorem 3.4.6 (Analogue of the Grothendieck-Ogg-Shafarevitch formula)

χ(X,DR M ) = d · χ(X r S) +
∑
x∈S

irrx(M ,∇)

where irrx(M ,∇) is the irregularity number of (M ,∇) at the point x.

Theorem 3.4.7. Let ρ : X̃ → X be the real blow-up of X at the points of S. Then
the moderate de Rham complex D̃RM has cohomology in degree 0 at most and
Hk(X,DR M ) = Hk(X̃, L̃ ), where L̃ = H 0(D̃RM ). Moreover, L̃|XrS = L and,
for any x ∈ S, L̃|ρ−1(x) is a constructible sheaf on the circle S1.

Exercises for Lecture 3

Exercise E.3.1. Check that (Sp•X(M r), δ) is indeed a complex, i.e., δ ◦ δ = 0.

Exercise E.3.2 (The Spencer complex is a resolution of OX as a left DX -module)
Let F•DX be the filtration of DX by the order of differential operators. Filter the

Spencer complex Sp•X(DX) by the subcomplexes Fk(Sp•X(DX)) defined as

· · · δ−−−→ Fk+`DX ⊗ ∧−`ΘX
δ−−−→ Fk+(`+1)DX ⊗ ∧−(`+1)ΘX

δ−−−→ · · ·

(1) Show that, locally on X, using coordinates x1, . . . , xn, the graded com-
plex grF Sp•X(DX) def= ⊕kgrFk Sp•X(DX) is equal to the Koszul complex of the ring
OX [ξ1, . . . , ξn] with respect to the regular sequence ξ1, . . . , ξn.
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(2) Conclude that grF Sp•X(DX) is a resolution of OX .
(3) Show that the Spencer complex Sp•X(DX) is a resolution of OX as a left DX -

module by locally free left DX -modules.

Exercise E.3.3. Similarly, show that the complex Ωn+•
X (DX) is a resolution of ωX as

a right DX -module by locally free right DX -modules.

Exercise E.3.4. Recall (holomorphic Poincaré Lemma) that, if X is a complex
manifold, (Ω•X , d) is a resolution of the constant sheaf. Therefore, the cohomology
Hk(X,C) is canonically identified with the hypercohomology Hk

(
X, (Ω•X , d)

)
of the

de Rham complex.
(1) Let X be a smooth algebraic variety over C (equipped with the Zariski topol-

ogy). Is the algebraic de Rham complex a resolution of the constant sheaf CX?
(2) Do we have H∗(X,CX) = H∗

(
X, (Ω•X , d)

)
?

Exercise E.3.5. Let M r be a right DX -module.
(1) Show that the natural morphism

M r⊗DX
(DX ⊗OX

∧kΘX) −→M r⊗OX
∧kΘX

defined by m⊗ P ⊗ ξ 7→ mP ⊗ ξ induces an isomorphism of complexes

M r ⊗DX
Sp•X(DX) ∼−→ Sp•(M r).

(2) Similar question for Ωn+•
X (DX)⊗DX

M l → Ωn+•
X (M l).

Exercise E.3.6 (de Rham, Spencer, left and right). Consider the function

Z ε−−→ {±1}, a 7−→ ε(a) = (−1)a(a−1)/2,

which satisfies in particular

ε(a+ 1) = ε(−a) = (−1)aε(a), ε(a+ b) = (−1)abε(a)ε(b).

Given any k > 0, the contraction is the morphism

ωX ⊗OX
∧kΘX −→ Ωn−kX

ω ⊗ ξ 7−→ ε(n− k)ω(ξ ∧ •).

Show that the isomorphism of right DX -modules

ωX ⊗OX

(
DX ⊗OX

∧kΘX

) ι−−→∼ Ωn−kX ⊗OX
DX[

ω ⊗ (1⊗ ξ)
]
· P 7−→

(
ε(n− k)ω(ξ ∧ •)

)
⊗ P

(where the right structure of the right-hand term is the natural one and that of the
left-hand term is nothing but that induced by the left structure after going from left
to right) induces an isomorphism of complexes of right DX -modules

ι : ωX ⊗
OX

(
Sp•X(DX), δ

) ∼−→
(
Ωn+•
X ⊗

OX

DX ,∇
)
.
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Exercise E.3.7. Similarly, if M is any left DX -module and M r = ωX ⊗OX
M is the

associated right DX -module, show that there is an isomorphism

M r ⊗DX

(
Sp•X(DX), δ

)
'
(
ωX ⊗OX

M ⊗OX
∧−•ΘX , δ

)
∼−→
(
Ωn+•
X ⊗OX

M ,∇
)
'
(
Ωn+•
X ⊗

OX

DX ,∇
)
⊗DX

M

given on ωX ⊗OX
M ⊗OX

∧kΘX by

ω ⊗m⊗ ξ 7−→ ε(n− k)ω(ξ ∧ •)⊗m.

Exercise E.3.8. Using Exercise E.3.7, show that there is a functorial isomorphism
Sp•X(M r) ∼−→ Ωn+•

X (M ) for any left DX -module M , which is termwise OX -linear.



LECTURE 4

DIRECT IMAGES OF D-MODULES

The notion of direct image of a D-module answers the following problem: given a
C∞ differential form η of maximal degree on a complex manifold X, which satisfies a
linear system of holomorphic differential equations (recall that DX acts on the right
on the sheaf E n,n

X of forms of maximal degree), what can be said of the form (or more
generally the current) obtained by integrating η along the fibres of a holomorphic map
f : X → Y ? Does it satisfy a finite (i.e., coherent) system of holomorphic differential
equations on Y ? How can one define intrinsically this system?

Such a question arises in many domains of algebraic geometry. The system of
differential equation is often called the “Picard-Fuchs system”, or the Gauss-Manin
system. A way of “solving” a linear system of holomorphic or algebraic differential
equations on a space Y consists in recognizing in this system the Gauss-Manin system
attached to some holomorphic or algebraic function f : X → Y . The geometric
properties of f induce interesting properties of the system. Practically, this reduces
to expressing solutions of the system as integrals over the fibers of f of some differential
forms.

The definition of the direct image of a D-module cannot be as simple as that of
the direct image of a sheaf. One is faced to a problem which arises in differential
geometry: the cotangent map of a holomorphic map f : X → Y is not a map from
the cotangent space T ∗Y of Y to that of X, but is a bundle map from the pull-back
bundle f∗T ∗Y to T ∗X. In other words, a vector field onX does not act as a derivation
on functions on Y . The transfer module DX→Y will give a reasonable solution to this
problem.

We have seen that the notion of a left DX -module is equivalent to that of a OX -
module equipped with a flat connection. Correspondingly, there are two notions of
direct images.

– The direct image of a OX -module with a flat connection is known as the Gauss-
Manin connection attached to te original one. This notion is only cohomological.
Although many examples were given some centuries ago (related to the differential
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equations satisfied by the periods of a family of elliptic curves), the systematic con-
struction was only achieved in [16]. The construction with a filtration is due to
Griffiths [13,14] (the main result is called Griffiths’ transversality theorem). There is
a strong constraint however: the map should be smooth (i.e., without critical points).

– The direct image of left D-modules was constructed in [26]. This construction has
the advantage of being very functorial, and defined at the level of derived categories,
not only at the cohomology level as is the first one. It is very flexible. The filtered
analogue is straightforward. It appears as a basic tool in various questions in algebraic
geometry.

4.1. Direct images of right D-modules

4.1.a. The transfer module. Let us begin with a preliminary remark. Let M l be
a left DX -module and let N be a left f−1DY -module. Then M l ⊗f−1OY

f−1N can
be equipped with a left DX -module structure: if ξ is a local vector field on X, we set

ξ · (m⊗ n) = (ξm)⊗ n+ Tf(ξ)(m⊗ n).

One can show that the conditions of Lemma 1.2.1 are fulfilled.

Definition 4.1.1 (Transfer module). The sheaf DX→Y = OX ⊗f−1OY
f−1DY is a left-

right (DX , f
−1DY )-bimodule when using the natural right f−1DY -module structure

and the left DX -module introduced above.

(Cf. Exercises E.4.1, E.4.2 and E.4.3.)

4.1.b. The relative Spencer complex. Recall that the Spencer complex
Sp•X(DX), which was defined in 3.1.2, is a complex of left DX -modules. Denote
by Sp•X→Y (DX) the complex Sp•X(DX) ⊗OX

DX→Y (the left OX -structure on each
factor is used for the tensor product). It is a complex of (DX , f

−1DY )-bimodules:
the right f−1DY structure is the trivial one; the left DX -structure is that defined by
Exercise E.1.10(1).

Examples 4.1.2
(1) For f = Id : X → X, the complex Sp•X→X(DX) = DX ⊗OX

Sp•X(DX) is
a resolution of DX→X = DX as a left and right DX -module (notice that the left
structure of DX is used for the tensor product).

(2) For f : X → pt, the complex Sp•X→pt(DX) = Sp•X(DX) is a resolution of
DX→pt = OX .

(3) If X = Y ×Z and f is the projection, denote by ΘX/Y the sheaf of relative tan-
gent vector fields, i.e., which do not contain ∂yj in their local expression in coordinates
adapted to the product Y × Z. The complex DX ⊗OX

∧−•ΘX/Y is also a resolution
of DX→Y as a bimodule by locally free left DX -modules (Exercise: describe the right
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f−1DY -module structure). We moreover have a canonical quasi-isomorphism as bi-
modules

Sp•X→Y (DX) =
(
DX ⊗OX

∧−•ΘX/Y

)
⊗

f−1OY

f−1( ∧−• ΘY ⊗OY
DY

)
=
(
DX ⊗OX

∧−•ΘX/Y

)
⊗

f−1DY

f−1(Sp•Y (DY )⊗OY
DY

)
∼−→
(
DX ⊗OX

∧−•ΘX/Y

)
⊗

f−1DY

f−1DY→Y

= DX ⊗OX
∧−•ΘX/Y .

(4) In general, Sp•X→Y (DX) = Sp•X(DX)⊗f−1OY
f−1DY is a resolution of DX→Y

by locally free left DX -modules (cf. Exercise E.4.4).

Definition 4.1.3 (Direct images of D-modules). The k-th direct image H kf+M of the
right DX -module M is the right DY -module

H kf+M = Rkf∗

(
M ⊗

DX

Sp•X→Y (DX)
)
.

Remarks 4.1.4
(1) If F is any sheaf on X, we have Rjf∗F = 0 for j 6∈ [0, 2 dimX]. Therefore,

taking into account the length dimX of the relative Spencer complex, we find that
H jf+M are zero for j 6∈ [−dimX, 2 dimX].

(2) If M is a left DX -module, one defines H kf+M as (H kf+M r)l.
(3) In the case where X = Y × Z and f is the projection, and if M is a right

DX -module, we have M ⊗DX
Sp•X→Y (DX) = M ⊗OX

∧−•ΘX/Y . Similarly, if M is a
left DX -module, we deduce that

H kf+M = Rkf∗(Ωd+•
X/Y ⊗OX

M ),

where d = dimZ, the differential of the complex is the relative connection ∇X/Y and
the connection on H kf+M is induced by ∇Z on the complex.

Example 4.1.5 (Direct image of induced D-modules). Let L be a OX -module and let
L ⊗OX

DX be the associated induced right DX -module. Let f : X → Y be a
proper map. Then that H kf+(L ⊗OX

DX) ' (Rkf∗L ) ⊗OY
DY . Indeed, L ⊗OX

Sp•X→Y (DX)→ L ⊗OX
DX→Y is a quasi-isomorphism as DX is OX -locally free. The

result follows then from the projection formula.

4.2. Coherence of direct images

Let f : X → Y be a holomorphic map and M be a DX -module. We say that M

is f -good if there exists a covering of Y by open sets Vj such that M is good on each
f−1(Vj).

Theorem 4.2.1. Let M be a f -good DX-module. Assume that f is proper on the support
of M . Then, for any k, H kf+M has DY -coherent cohomology.
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This theorem is an application of Grauert’s coherence theorem for OX -modules,
and this is why we restrict to f -good DX -modules. In general, it is not known
whether the theorem holds for any coherent DX -module or not. Notice, however,
that one may relax the geometric condition on f| Supp M (properness) by using more
specific properties of D-modules: as we have seen, the characteristic variety is a
finer geometrical object attached to the D-module, and one should expect that the
right condition on f has to be related with the characteristic variety. The most
general statement in this direction is the coherence theorem for elliptic pairs, due to
P. Schapira and J.-P. Schneiders [28]. For instance, if X is an open set of X ′ and f is
the restriction of f ′ : X ′ → Y , and if the boundary of X is f -non-characteristic with
respect to M then the direct image of M has DY -coherent cohomology.

Proof of Theorem 4.2.1. As the coherence property is a local property on Y , the state-
ment one proves is, more precisely, that the direct image of a good DX -module M

is a good DY -module when f is proper on Supp M . By an extension argument, it is
even enough to assume that M has a good filtration and show that, locally on Y , the
DY -modules H kf†M have a good filtration.

First step: induced D-modules. Assume that M = L ⊗OX
DX and L is OX -coherent.

By Example 4.1.5, it is enough to prove that Rkf∗L is OY -coherent when f is proper
on Supp L : this is Grauert’s Theorem.

Second step: finite complexes of induced D-modules. Let L• ⊗OX
DX be a finite

complex of induced DX -modules. Assume that f restricted to the support of each
term is proper. Using Artin-Rees (Corollary 2.1.5), one shows by induction on the
length of the complex that the modules H kf+(L• ⊗OX

DX) have a good filtration.

Third step: general case. Fix a compact set K of Y . We will show that the DY -
modules H kf+M have a good filtration in a neighbourhood of K. Fix a good
filtration F•M of M . As f−1(K) ∩ Supp M is compact, there exists k such that
L 0 def= FkM generates M as a DX -module in some neighbourhood of f−1(K). Hence
L 0 is a coherent OX -module with support contained in Supp M and we have a
surjective morphism L 0 ⊗OX

DX → M in some neighbourhood of f−1(K) that
we still call X. The kernel of this morphism is therefore DX -coherent, has support
contained in Supp M and, by Artin-Rees (Corollary 2.1.5), has a good filtration.

The process may therefore be continued and leads to the existence, in some neigh-
bourhood of K, of a (maybe infinite) resolution L −• ⊗OX

DX by coherent induced
DX -modules with support contained in Supp M .

Fix some ` and stop the resolution at the `-th step. Denote by N −• this bounded
complex and by M ′ the kernel of N −` → N −`+1. We have an exact sequence of
complexes

0 −→M ′[`] −→ N −• −→M −→ 0,
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where M is considered as a complex with only one term in degree 0, and M ′[`] a
complex with only one term in degree −`. This sequence induces a long exact sequence

· · · −→H j+`f+M ′ −→H jf+N −• −→H jf+M −→H j+`+1f+M ′ −→ · · ·

Recall (cf. Remark 4.1.4(1)) that H j(f†M ) = 0 for j 6∈ [−dimX, 2 dimX]. Choose
then ` big enough so that, for any j ∈ [−dimX, 2 dimX], both numbers j + ` and
j+`+1 do not belong to [−dimX, 2 dimX]. With such a choice, we have H j(f†M ) '
H j(f†N −•) for j ∈ [−dimX, 2 dimX] and H j(f†M ) = 0 otherwise. By the second
step, H j(f†M ) has a good filtration in some neighbourhood of K.

4.3. Kashiwara’s estimate for the behaviour of the characteristic variety

Let M be a coherent DX -module with characteristic variety Char M . Let f : X →
Y be a holomorphic map and assume that the cohomology modules H j(f†M ) are
DY -coherent (for instance, assume that all conditions in Theorem 4.2.1 are fulfilled).
Is it possible to give an upper bound of the characteristic variety of each H j(f†M )
in terms of that of M ? There is such an estimate which is known as Kashiwara’s
estimate.

The most natural approach to this question is to introduce the sheaf of microdiffer-
ential operators and to show that the characteristic variety is nothing but the support
of the microlocalized module associated with M . The behaviour of the support of
a microdifferential module with respect to direct images is then easy to understand
(see, e.g., [1, 2, 21] for such a proof, see [28] for a very general result and [17] for an
algebraic approach).

Nevertheless, we will not introduce here microdifferential operators (see however
[27] for a good introduction to the subject). Therefore, we will give a direct proof of
Kashiwara’s estimate.

This estimate may be understood as a weak version of a general Riemann-Roch
theorem for DX -modules (see, e.g., [24] and the references given therein).

Let f : X → Y be a holomorphic map. We will consider the following associated
cotangent diagram:

T ∗X
T ∗f←−−−−− f∗T ∗Y f−−−→ T ∗Y.

Theorem 4.3.1 (Kashiwara’s estimate for the characteristic variety)
Let M be a f -good DX-module such that f is proper on Supp M . Then, for any

j ∈ Z, we have
Char H j(f†M ) ⊂ f

(
(T ∗f)−1(Char M )

)
.

Exercise 4.3.2. Explain more precisely this estimate when f is the inclusion of a closed
submanifold.

Sketch of proof. As in the proof of Theorem 4.2.1, we first reduce to the case where
M has a good filtration F•M .
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Notice first that it is possible to define a functor H kf+ for grFDX -modules, by the
formula H kf+(•) = Rkf∗(L(T ∗f)∗(•)). Moreover, the inverse image (T ∗f)∗ is nothing
but the tensor product ⊗f−1OY

grFDY . We therefore clearly have the inclusion

Supp H kf+grFM ⊂ f
(
(T ∗f)−1(Supp grFM )

)
= f

(
(T ∗f)−1(Char M )

)
.

The problem consists now in understanding the difference between H kf+grF and
grFH kf+. In order to analyse this difference, we will put M and grFM in a one
parameter family, i.e., we will consider the associated Rees module.

One then defines direct images of RFDX -modules, still denoted by f†, and shows
the RF analogue of Theorem 4.2.1. Therefore, H kf+RFM is RFDY -coherent. One
has to be aware that the cohomology of H kf+RFM can have z-torsion, hence does
not take the form RF of something. Nevertheless, as H kf+RFM is RFDY -coherent,

– the kernel sequence Ker
[
z` : H kf+RFM →H kf+RFM

]
is locally stationary,

– the quotient of H kf+RFM by its z-torsion (i.e., locally by Ker z` for ` big
enough) is RFDY -coherent, hence is the Rees module associated with some good
filtration F• on H kf+M . In other words, one has, for ` big enough,

H kf+RFM /Ker z` = RFH kf+M .

Consider the exact sequence

· · · −→H kf+RFM
z`−−−→H kf+RFM −→H kf+(RFM /z`RFM ) −→ · · ·

Then,

– H kf+RFM
/
z`H kf+RFM is a submodule of H kf+(RFM /z`RFM ),

– and, on the other hand, if ` is big enough, RFH kf+M /z`RFH kf+M is a
quotient of H kf+RFM

/
z`H kf+RFM .

Notice now that Char M is the support of RFM /z`RFM = ⊕k(FkM /Fk−`M ) for
any ` > 1. Then, f

(
T ∗f−1(Char M )

)
contains the support of H kf+(RFM /z`RFM ),

hence that of RFH kf+M /z`RFH kf+M , and therefore that of grFH kf+M .

4.4. The Gauss-Manin connection

Let M be a left DX -module and let f : X → Y be a morphism. On the one hand,
one may define the direct images H kf+M of M viewed as a DX -module. These are
left DY -modules. On the other hand, it is possible, when f is a smooth morphism, to
define a flat connection, called the Gauss-Manin connection on the relative de Rham
cohomology of M . We will compare both constructions, when f is smooth. Such a
comparison has yet been done when f is the projection of a product X = Y ×Z → Z

(cf. Example 4.1.2(3) and Remark 4.1.4(3)). The difficulty arises when f is not of
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this form. In the D-module case, Definition 4.1.3 amounts to decomposing f as

X �
� if

//

f
##

X × Y

p
��

Y

where if is the graph embedding, and computing H kp+(if,+M ). On the other hand,
the Gauss-Manin connection is comuted directly from f .

Let us begin with the Gauss-Manin connection. We assume in this section that
f : X → Y is a smooth morphism. We set n = dimX, m = dimY and d = n−m (we
assume that X and Y are pure dimensional, otherwise one works on each connected
component of X and Y ).

Consider the Kozsul filtration L• on the complex (Ωn+•
X , (−1)nd), defined by

Lp Ωn+i
X = Im(f∗Ωm+p

Y ⊗OX
Ωd+i−p
X −→ Ωn+i

X ).

One can check easily that the Kozsul filtration is a decreasing finite filtration and that
it is compatible with the differential and that, locally, being in Lp means having at
least m+ p factors dyi in any summand.

Then, as f is smooth, we have (by computing with local coordinates adapted to f),

grpLΩn+i
X = f∗Ωm+p

Y ⊗OX
Ωd+i−p
X/Y ,

where ΩkX/Y is the sheaf of relative differential forms: ΩkX/Y = ∧kΩ1
X/Y and Ω1

X/Y =
Ω1
X

/
f∗Ω1

Y . Notice that ΩkX/Y is OX -locally free.

Let M be a left DX -module. We will moreover assume that f is proper when
restricted to the support of M . As f is smooth, the sheaf DX/Y of relative differential
operators is well defined and, composing the flat connection ∇ : M → Ω1

X ⊗OX
M

with the projection Ω1
X → Ω1

X/Y , we get a relative flat connection ∇X/Y on M , and
thus the structure of a left DX/Y -module on M . In particular, the relative de Rham
complex is defined as

pDRX/Y M = (Ωd+•
X/Y ⊗OX

M ,∇X/Y ).

We have pDRXM = (Ωn+•
X ⊗OX

M ,∇) (cf. Definition 3.1.1) and the Kozsul filtration
Lp Ωn+•

X ⊗OX
M is preserved by the differential ∇ (recall that being in Lp means

having at least m + p factors dyi in any summand). We may therefore induce the
filtration L• on the complex pDRXM . We then have an equality of complexes

grpL
pDRXM = f∗Ωm+p

Y ⊗OX

pDRX/Y M [−p].

Notice that the differential of these complexes are f−1OY -linear.
We get a spectral sequence (the Leray spectral sequence in the category of sheaves

of C-vector spaces, see, e.g., [11]). Using the projection formula for f∗ (as f is propoer
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on Supp M ) and the fact that Ωm+p
Y is OY -locally free, one obtains that the E1 term

is given by
Ep,q1 = Ωm+p

Y ⊗OY
Rqf∗

pDRX/Y M ,

and the spectral sequence converges to (a suitable graded object associated with)
Rp+qf∗

pDRXM .
By definition of the spectral sequence, the differential d1 : Ep,q1 → Ep+1,q

1 is the
connecting morphism (see Exercise E.4.5) in the long exact sequence associated to
the short exact sequence of complexes

0 −→ grp+1
L

pDRXM −→ Lp pDRXM
/

Lp+2 pDRXM −→ grpL
pDRXM −→ 0

after applying f! God• (or f∗God• if one of the previous properties is satisfied).

Lemma 4.4.1 (The Gauss-Manin connection). The morphism

∇GM def= d1 : Rqf∗pDRX/Y M = E−m,q1 −→ E−m+1,q
1 = Ω1

Y ⊗OY
Rqf∗

pDRX/Y M

is a flat connection on Rqf∗pDRX/Y M , called the Gauss-Manin connection and the
complex (E•,q1 , d1) is equal to the de Rham complex pDRY (Rqf∗pDRX/Y M ,∇GM).

Sketch of proof of Lemma 4.4.1. We will give the proof in the complex analytic case.
In the algebraic case, one should use Čech complexes. One can thus use a resolution
with C∞ differential forms E •X . One considers the complex E n+•

X ⊗OX
M , with the

differential D defined by

D(ϕ⊗m) = (−1)ndϕ⊗m+ (−1)kϕ ∧∇m,

if ϕ is a local section of E n+k
X (k 6 0). This C∞ de Rham complex is quasi-isomorphic

to the holomorphic one (this is not completely obvious), and is equipped with the
Kozsul filtration. The quasi-isomorphism is strict with respect to L•. One may
therefore compute with the C∞ de Rham complex.

Choose a partition of unity (χα) such that f is locally a product on a neighbourhood
of Suppχα for any α.

Let η ∧ (ϕ ⊗m) be a section of Em+p
Y ⊗ f!(E d+q

X/Y ⊗M ). In the neighbourhood of
Suppχα, we can choose a decomposition D = D

(α)
Y +D

(α)
X/Y . As

∑
α χα ≡ 1, we have

d1[η ∧ (ϕ⊗m)] =
∑
α

χαd1[η ∧ (ϕ⊗m)] =
∑
α

χαD
(α)
Y [η ∧ (ϕ⊗m)]

=
∑
α

χα

[
(−1)mdη ∧ (ϕ⊗m) + (−1)rη ∧ (ϕ∇(α)

Y m)
]
,

for a suitable r. One gets the desired result by a local computation.

Theorem 4.4.2. Let f : X → Y be a smooth morphism and let M be left DX-module.
Assume that f is proper on Supp M . Then there is a functorial isomorphism of left
DY -modules

Rkf∗
pDRX/Y M −→H kf†M

when one endows the left-hand term with the Gauss-Manin connection ∇GM.
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Exercises for Lecture 4

Exercise E.4.1 (DX→Y for a closed embedding). Assume that X is a complex submani-
fold of Y of codimension d, defined by g1 = · · · = gd = 0, where the gi are holomorphic
functions on Y . Show that

DX→Y = DY

/∑d
i=1 giDY

with its natural right DY structure. In local coordinates (x1, . . . , xn, y1, . . . , yd) such
that gi = yi, show that DX→Y = DX [∂y1 , . . . , ∂yd

].
Conclude that, if f is an embedding, the sheaves DX→Y and DY←X are locally

free over DX .

Exercise E.4.2 (Filtration of DX→Y ). Put FkDX→Y = OX ⊗f−1OY
f−1FkDX . Show

that this defines a filtration (cf. Definition ??) of DX→Y as a left DX -module and as
a right f−1DY -module, and that grFDX→Y = OX ⊗f−1OY

f−1grFDY .

Exercise E.4.3 (The chain rule). Consider holomorphic maps f : X→Y and g : Y →Z.
(1) Give an canonical isomorphism DX→Y ⊗f−1DY

f−1DY→Z
∼−→ DX→Z as right

(g ◦ f)−1DZ-modules.
(2) Use the chain rule to show that this isomorphism is left DX -linear.
(3) Same question with filtrations F•.

Exercise E.4.4 (The (filtered) relative Spencer complex)
(1) Show that Sp•X→Y (DX) is a resolution of DX→Y as a bimodule.
(2) Show that the terms of the complex Sp•X→Y (DX) are locally free left DX -

modules. (Hint: use Exercise E.1.12(4).)
(3) Define the filtration of Sp•X→Y (DX) by the formula

F` Sp•X→Y (DX) =
∑
j+k=`

Fj Sp•X(DX) ⊗
f−1OY

FkDX→Y ,

where the filtration on the Spencer complex is defined in Exercise E.3.2. Show that,
for any `, F` Sp•X→Y (DX) is a resolution of F`DX→Y .

Exercise E.4.5 (The connecting morphism). Let 0 → C•1 → C•2 → C•3 → 0 be an
exact sequence of complexes. Let [µ] ∈ HkC•3 and choose a representative in Ck3 with
dµ = 0. Lift µ as µ̃ ∈ Ck2 .

(1) Show that dµ̃ ∈ Ck+1
1 and that its differential is zero, so that the class [dµ̃] ∈

Hk+1C•1 is well defined.
(2) Show that δ : [µ] 7→ [dµ̃] is a well defined morphism HkC•3 → Hk+1C•1 .
(3) Deduce the existence of the cohomology long exact sequence, having δ as its

connecting morphism.





LECTURE 5

HIGGS MODULES AND D-MODULES

5.1. Higgs bundles and Higgs modules

5.1.a. Higgs fields. Let V be a vector bundle on X. Recall that a connection is
a k-linear morphism ∇ : V → Ω1

X ⊗ V satisfying Leibniz rule. A connection is flat
if its curvature ∇2 vanishes identically. Bundles with flat connection (V,∇) are in
one-to-one correspondence with DX -modules which are OX -coherent.

Definition 5.1.1. A Higgs field θ on V is a OX -linear morphism V → Ω1
X⊗V satisfying

the “zero curvature condition” θ ∧ θ = 0.

A pair (V, θ) of a vector bundle with a Higgs field θ is called a Higgs bundle. For
any local vector field ξ on X, we get a OX -linear morphism θξ : V → V . The Higgs
condition means that, for any two vector fields ξ, η, the endomorphisms θξ and θη
commute.

Corollary 5.1.2. There is a one-to-one correspondence between Higgs bundles (V, θ)
and Sym ΘX-modules which are OX-locally free.

Let π : T ∗X → X be the cotangent bundle of X. In the algebraic setting,
Sym ΘX = π∗OT∗X . In the complex analytic setting, a local section of Sym ΘX

is a polynomial in the cotangent variables with coefficients in OX .

Definition 5.1.3. A Higgs module H is a coherent Sym ΘX -module.

The support Σ of a Higgs module is a closed subset of T ∗X. If π|Σ is finite,
then π∗H is a coherent OX -module with a Higgs field. There is a one-to-one corre-
spondence between coherent OX -modules with a Higgs field and Higgs module whose
support Σ is finite over X.

Examples 5.1.4
(1) Let (V, θ) be a Higgs bundle over a curve X. Choose a local coordinate x on

the curve. Then the cotangent bundle T ∗X is trivialised with the section dx. The
characteristic polynomial of the endomorphism θ∂x

defines a curve in T ∗X which is
finite over X. The local sections of this curve are the eigenvalues of θ∂x

. The curve
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is called the spectral curve of θ. It is the support of the Higgs module associated to
the Higgs bundle.

(2) Let M be a DX -module equipped with a good filtration F•M . Then grFM is
a Higgs module, its support is the characteritic variety of M . As the characteristic
variety is homogeneous with respect to π, it is finite over X if and only if it is equal
to the zero section T ∗XX.

(3) Let (V,∇) be a vector bundle with a flat connection. Assume that V has
a finite decreasing filtration by sub-bundles · · · ⊂ F pV ⊂ F p−1V ⊂ · · · satisfying
the Griffiths’ transversality property ∇F pV ⊂ Ω1

X ⊗ F p−1V . The vector bundle
grFV

def= ⊕p(F pV/F p+1V ) is equipped with the Higgs field θ : grFV → grFV induced
by ∇. As it is homogeneous of degree −1, it is nilpotent and the support of the
corresponding Higgs module is the zero section.

5.1.b. Holonomic Higgs modules. Recall that the cotangent bundle T ∗X has a
natural symplectic 2-form ω which is exact, being equal to dη where η is the Liouville
1-form. Let Z ⊂ T ∗X be a closed irreducible subset. We say that Z is Lagrangian if
its smooth part Zo is Lagrangian, that is, the restriction of ω to Zo vanishes identically
(isotropy) and dimZ = dimX.

Definition 5.1.5. We say that a Higgs module is holonomic if each irreducible compo-
nent of its support is Lagrangian.

Examples 5.1.6

(1) Let M be a holonomic DX -module. Then the involutivity theorem (cf. §2.2.d)
implies that each irreducible component of the characteristic variety Char M is La-
grangian. In particular, for any good filtration of M , the module grFM is a holonomic
Higgs module.

(2) Let (V, θ) be a Higgs bundle. Its support Σ (as a Higgs module) is finite over X,
hence has dimension dimX.

– If dimX = 1, then the smooth part Σo of Σ is tautologically Lagrangian.
– If dimX is arbitrary but rk V = 1, then θ can be any arbitrary 1-form.

(V, θ) is holonomic if and only if θ is closed, i.e., dθ = 1.
– If X is projective and rk V is arbitrary, then the corresponding Higgs mod-

ule is holonomic, i.e., Σ is Lagrangian. Indeed, in such a case, Σ is also projective,
but possibly singular. Let f : Σ̃ → Σ be a resolution of singularities of Σ: Σ̃ is
smooth and projective, and f induces an isomorphism on Zariski dense open sets
Σ̃o → Σo. The pull-back f∗η of the Liouville form is a holomorphic one-form
on Σ̃. By Hodge theory, it is closed, hence f∗ω = f∗dη = df∗η = 0. Restricting
to Σ̃o ' Σo gives the assertion.
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5.2. z-connections and R-modules

5.2.a. The Rees ring of DX . Given a Higgs module having support of dimension
dimX, a way to ensure that it is holonomic is to link it to a holonomic module. Let
us consider the case of a DX -module M equipped with a good filtration F•M . The
Rees module RFM = ⊕kFkM zk is a module over the Rees ring RFDX = ⊕kFkDXz

k

and M = RFM /(z − 1)RFM , grFM = RFM /zRFM .

5.2.b. z-connections. Let (V, θ) be a Higgs bundle with rk V = 1. The holonomy
condition dθ = 0 is equivalent to the integrability condition of the z-connection zd+θ.

Exercises for Lecture 5
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