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Abstract

We describe a recent result of M. Hager, stating roughly that for non-

selfadjoint ordinary differential operators with a small random perturbation

we have a Weyl law for the distribution of eigenvalues with a probability very

close to 1.
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1 Introduction and some history

In this talk we discuss a recent result by M. Hager [9] which is part of her thesis.
Some of the basic ideas in that work have their roots in the general theory of partial

∗Dedicated to Professor Takahiro Kawai on the occasion of his sixtieth birthday
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differential equations. Let us recall that H. Lewy [11] gave an example of an operator
in R3 which is not locally solvable near any point,

P = Dx1 − x2Dx3 + i(Dx2 + x1Dx3). (1.1)

Hörmander [10] discovered the role of the Poisson brackets in this context and gave
a very general result on non-local solvability of linear partial differential equations
saying that a differential operator with smooth coefficients is non locally solvable if
the Poisson bracket 1

2i
{p, p} is not identically zero on the characteristic set p = 0,

where p denotes the principal symbol of the operator. The simplest model of a
non locally solvable operator is perhaps the the Mizohata operator in two or more
dimensions ([12])

P = Dx2 + ix2Dx1 . (1.2)

It is not locally solvable near any point of the hyperplane x2 = 0. Since then, there
have been great developments in the solvability theory, but we shall here follow a
slightly different historical line.

We first recall that the proof in [10] is based on what nowadays is called a
quasi-mode construction for the adjoint operator: If this adjoint is denoted by P
and its principal symbol by p, let (x0, ξ0) ∈ Rn

x × (Rn
ξ \ {0}) be a point in the

cotangent space where p = 0 and 1
2i
{p, p} > 0. Then there exists a smooth function

φ ∈ C∞(neigh (x0)) with φ′(x0) = ξ0, Im φ′′(x0) > 0, φ(x0) = 0 and a classical
symbol

a ∼ a0(x) + ha1(x) + ... in C∞(neigh (x0)), a0(x0) 6= 0,

such that

P (x, Dx)(a(x; h)e
i
h

φ(x)) = O(h∞), h → 0, in C∞(neigh (x0)). (1.3)

Here O(h∞) stands for ”ON(hN ) for every N ≥ 0”. When P has analytic coeffi-
cients, we can replace O(h∞) by O(e−1/(C0h)) for some constant C0 > 0. The latter
fact follows from the work of Sato-Kawai-Kashiwara [14], but the result is at least
partially older (L. Boutet de Monvel, P. Kree [1]).

Following work of Yu. Egorov and V. Kondratiev on the oblique derivative prob-
lem ([6]), L. Hörmander asked me to make a more complete study of pseudodiffer-
ential operators P on a (para-)compact manifold X, with

{p, p}(x, ξ) 6= 0 whenever p(x, ξ) = 0, ξ 6= 0. (1.4)

Under some additional assumptions (in order to get a global result), I obtained in
my thesis [15] that a certain operator

P =

(
P R−

R+ 0

)
: D(P ) ×H− → L2(X) ×H+ (1.5)
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has an inverse

E =

(
E E+

E− E−+

)

modulo smoothing operators, where E−+ is smoothing. Here H± are Sobolev spaces
on manifolds Γ± with dim Γ± = dim (X)−1. This result implies that the null-space
of

P : D′(X)/C∞(X) → D′(X)/C∞(X)

is equal to
{E+v+; v+ ∈ D′(Γ+)}/C∞(X),

which is a big space, and a similar statement can be made about the cokernel of P
in D′(X)/C∞(X).

At about the same time, Sato-Kawai-Kashiwara [14] made a complete study in
the analytic category, and they showed among many other things that operators
satisfying (1.4) can be reduced to the Mizohata operator.

In September 1972 I met T. Kawai for the first time and we had a very interesting
discussion. He pointed out to me that the results of my thesis do not imply that the
space of local solutions to the exact equation Pu = 0 is large, while in the analytic
category the corresponding results ([14]) do so, thanks to the Cauchy-Kowalewski
theorem. Indeed, it was showed by L. Nirenberg [13] for perturbations of the H.
Lewy operator that there may be a radical difference between the analytic and the
C∞ case. (See also [17], [15] for related results for perturbations of the Mizohata
operator.)

This talk deals with closely related problems for eigenvalues and we will establish
an ”opposite result”: By destroying analyticity, the spectral properties ”improve”
with high probability.

Before describing the precise result in the next section, we end this introduction
with an extremely quick review of the notion of pseudospectrum which has been
developped by L.N. Trefethen and other specialists in numerical analysis and which
then migrated towards PDE thanks to the efforts of E.B. Davies and M. Zworski.
See [7, 2, 18]. Let P : H → H be a closed densely defined operator, where H is a
complex Hilbert space. For ε > 0, we define the ε-pseudospectrum by

σε(P ) = σ(P ) ∪ {z ∈ C \ σ(P ); ‖(z − P )−1‖ >
1

ε
}, (1.6)

where σ(P ) denotes the spectrum of P . We have

σε(P ) =
⋃

Q∈L(H),
‖Q‖<ε

σ(P + Q), (1.7)
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which shows that σε is a region of spectral instability.
When P is selfadjoint or more generally normal, we have

σε(P ) = {z ∈ C; dist (z, σ(P )) < ε},

but in general, σε(P ) is much larger than the right hand side in the above equation.

Example 1.1 Consider a Jordan block

J =




0 1 0 ... 0
0 0 1 ... 0
.. .. .. ... ..
0 0 0 ... 1
0 .. .. ... 0




: CN → CN , N � 1.

Then ‖(z − J)−1‖ ≥ |z|−N , so σε(J) ⊃ D(0, ε1/N), while σ(J) = {0}.
E.B. Davies [3] considered a general Schrödinger operator

P = −h2 d2

dx2
+ V (x) (1.8)

on R, where the potential V (x) is smooth and complex-valued. Here we are in-
terested in the semi-classical limit h → 0. The associated semi-classical symbol is
p(x, ξ) = ξ2 + V (x). Davies observed that if

z = ξ2
0 + V (x0), (1.9)

with ξ0 6= 0, Im V ′(x0) 6= 0, then there exists a function

u(x) = u(x; h) = a(x; h)eiφ(x)/h

with φ(x0) = 0, φ′(x0) = ±ξ0, Im φ′′(x0) > 0, a(x; h) ∼ h−1/4(a0(x) + ha1(x) + ...)
in C∞, such that

‖u‖ = 1, ‖(P − z)u‖ = O(h∞).

This implies that

either z ∈ σ(P ) or ‖(z − P )−1‖ ≥ 1

O(h∞)
.

In many cases when V (x) is analytic, the spectrum of V is confined to a union of
curves, much smaller then the set of values in (1.9).

M. Zworski [18] observed that this was a rediscovery of the old Hörmander con-
struction. Then with N. Dencker and Zworski [4], we established
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Proposition 1.2 Let P (x, hDx; h) be an h-pseudodifferential operator on Rn with
symbol

P (x, ξ; h) ∼ p(x, ξ) + hp−1(x, ξ) + ... ∈ a suitable class.

Assume

z = p(x0, ξ0),
1

2i
{p, p}(x0, ξ0) > 0.

Then there exists a function u = uh = a(x; h)eiφ(x)/h with the same properties as in
and around (1.3) such that ‖uh‖ = 1, ‖(P − z)uh‖ = O(h∞). When P is analytic
(in a suitable class) we may replace O(h∞) by O(e−1/(Ch)) for some C > 0.

In the Schrödinger case p = ξ2 + V (x) we have 1
2i
{p, p}(x, ξ) = −ξ · Im V ′(x).

2 The result of M. Hager

We work in L2(R). Let P = pw(x, hDx) be the Weyl quantization of p(x, hξ).
Assume that p(x, ξ) is holomorphic in a tubular neighborhood of R2, and

p(x, ξ) = O(m(Re (x, ξ))), (2.1)

where 1 ≤ m is an order function on R2, in the sense that

m(ρ) ≤ C0〈ρ − µ〉N0m(µ), ρ, µ ∈ R2, (2.2)

where 〈ρ − µ〉 =
√

1 + |ρ − µ|2. We may assume without loss of generality that m
belongs to its own symbol class: ∂αm = O(m) for every α ∈ N2. Then for h > 0
small enough, P : L2(R) → L2(R) is a closed densely defined operator with domain
D(P ) = H(m) := (mw(x, hD))−1(L2(R)).

Let
Σ = p(R2),

and let Σ∞ denote the set of accumulation points of p at (x, ξ) = ∞. Let Ω̃ ⊂⊂
C \ Σ∞ be a connected open set not entirely contained in Σ. Assume that

|p(x, ξ) − z0| ≥
m(x, ξ)

C0
, (x, ξ) ∈ R2,

for some z0 ∈ Ω̃ \ Σ and some constant C0 > 0. If K̃ ⊂ C \ Σ is compact, then

σ(P ) ∩ K̃ = ∅ for h small enough. Moreover, the spectrum of P in Ω̃ is discrete
when h > 0 is small enough.
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Assume that
ξ 7→ p(x, ξ) is even. (2.3)

Let Ω ⊂⊂ Ω̃ be open and simply connected. Assume

p(x, ξ) ∈ Ω ⇒ {p, p}(x, ξ) 6= 0. (2.4)

Then for z ∈ Ω:

p−1(z) = {ρ+
j (z), ρ−

j (z); j = 1, 2, .., n}, (2.5)

ρ±
j = (xj ,±ξj), ± 1

2i
{p, p}(ρ±

j ) > 0.

Assume for simplicity that xj 6= xk for j 6= k.
We now add a small random perturbation δqω(x) where ω denotes the random

parameter and δ is a small parameter satisfying

e
− 1

D0h < δ <
1

C0
h

3
2 , D0, C0 � 1. (2.6)

qω will be a random linear combination of eigenfunctions of an auxiliary operator

P̃ = p̃w, where ∂αp̃ = O(m̃), p̃ ≥ m̃

C
, (2.7)

〈ρ〉k0 ≤ m̃(ρ) ≤ C0〈ρ − µ〉N0m̃(µ), k0 > 0.

Let q1, q2, ... be an orthonormal basis of eigenfunctions of P̃ corresponding to the
eigenvalues E1 ≤ E2 ≤ ... → +∞. Let N = C/h for C � 1 and put

qω(x) =
∑

`≤N

α`(ω)q`(x), (2.8)

where α` are independent identically distributed complex random variables with
〈α`〉 = 0, variance σ = δ2/n and distribution:

1

πσ2
e−|α|2/σ2

d(Re α)d(Imα).

Theorem 2.1 (M. Hager) Let Γ ⊂⊂ Ω be open with smooth boundary. There
exist C, K, D > 0 such that for h > 0 sufficiently small, we have with probability
≥ 1 − Cδ

1
2n h−K that

|#(σ(P + δqω) ∩ Γ) − 1

2πh
vol (p−1(Γ))| ≤ D

( ln 1
δ

h

) 1
2
. (2.9)

Hager also has a similar theorem saying that with a probability very close to 1,
the Weyl asymptotics (2.9) holds simultaneously for all Γ varying in a class of sets
that satisfy the above assumptions uniformly.
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3 Quick outline of the proof

For more details, see [9]. Let e+
j , e−j be normalized Davies quasimodes associated to

(P − z, ρ+
j ) and ((P − z)∗, ρ−

j ) respectively with exponentially small remainders as
in the last part of Proposition 1.2. Consider

R+ : H(m) → Cn, (R+u)(j) = (u|e+
j ), (3.1)

R− : Cn → L2(R), R−u− =

n∑

1

u−(j)e−j .

With high probability we have ‖qω‖L∞ ≤ 1, and then

Pδ(z) =

(
P + δqω − z R−(z)

R+(z) 0

)
= H(m) × Cn → L2 ×Cn (3.2)

is invertible with inverse

E δ(z) =

(
Eδ Eδ

+

Eδ
− Eδ

−+

)
, (3.3)

where

Eδ
−+ = E0

−+ + δE
(1)
−+ + O(

δ2

√
h

) (3.4)

= δE
(1)
−+ + O(

δ2

√
h

),

(E
(1)
−+)j,k = −(qωek

+|ej
−) + O(e−

1
Ch ). (3.5)

Now,
z ∈ σ(P + δqω) ⇔ det Eδ

−+ = 0.

We can show that there exists a function

`δ(z) = `0(z) + O(
δ√
h

), `0 ∈ C∞(Ω),

such that

F δ(z) = e
`δ(z)

h det Eδ
−+(z) (3.6)

is holomorphic. Moreover,

(∆Re `0(z)+O(h))d(Re z)d(Im z) =
∑

j

(dξ−j (z)∧ dx−
j (z)− dξ+

j (z)∧ dx+
j (z)) (3.7)
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so ∫∫

Γ

∆(Re `0)d(Re z)d(Im z) = vol (p−1(Γ)) + O(h). (3.8)

Now,

|F δ(z)| ≤ e
Re `0(z)

h , (3.9)

and for every z ∈ Ω we have with a high probability that

|F δ(z)| ≥ e
Re `0(z)

h
− ε

h . (3.10)

Here ε � 1 should be suitably chosen, possibly depending on h. It then suffices to
apply

Proposition 3.1 Let Γ and Ω be as above, φ ∈ C∞(Ω;R). Let f be holomorphic
in Ω with

|f(z; h)| ≤ eφ(z)/h, z ∈ Ω.

Assume there exist ε � 1, zk ∈ Ω, k ∈ J , such that

∂Γ ⊂
⋃

k∈J

D(zk,
√

ε), #J = O(
1√
ε
),

|f(zk; h)| ≥ e
1
h
(φ(zk)−ε), k ∈ J.

Then,

#(f−1(0) ∩ Γ) =
1

2πh

∫∫

Γ

(∆φ)d(Re z)d(Im z) + O(

√
ε

h
).

4 Prospects

• Extension to higher dimensions. This works ([Hager-Sj] in preparation).

• More general random perturbations. In higher dimensions we run into ques-
tions about random matrices.

• Weyl asymptotics for large eigenvalues in the non-semiclassical case. Here one
would like to have results with probabality 1. This is under investigation.

• It would be interesting to see wether one could get similar results about reso-
nances.
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[10] L. Hörmander, Differential equations without solutions, Math. Ann. 140(1960),
169-173.

[11] H. Lewy, An example of a smooth linear partial differential equation without
solution, Ann. of Math., 66(2)(1957), 155–158.

[12] S. Mizohata, Solutions nulles et solutions non analytiques, J. Math. Kyoto
Univ. 1(1961/1962), 271–302.

[13] L. Nirenberg, Lectures on linear partial differential equations, CBMS Regional
Conference Series in Mathematics, No. 17. American Mathematical Society,
Providence, R.I., 1973.

9



[14] M. Sato, T. Kawai, M. Kashiwara, Microfunctions and pseudo-differential
equations. Hyperfunctions and pseudo-differential equations. Lecture Notes in
Math., Vol. 287, 265–529 Springer, Berlin, 1973.
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